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In this paper, we propose a hierarchical Bayesian approach for modeling the evolution of the 7-day
moving average for the number of deaths due to COVID-19 in a country, state or city. The proposed
approach is based on a Gaussian process regression model. The main advantage of this model is that
it assumes that a non-linear function f used for modeling the observed data is an unknown random
parameter in opposite to usual approaches that set up f as being a known mathematical function.
This assumption allows the development of a Bayesian approach with a Gaussian process prior for f .
In addition, we assume one more hierarchical level, putting prior distributions on the parameters of
the Gaussian process and on the variance of the random error. In order to estimate the parameters of
interest, we develop an MCMC algorithm based on the Metropolis-within-Gibbs sampling algorithm.
We also present a procedure for making predictions. The proposed method is illustrated in a case
study, in which, we model the 7-day moving average for the number of deaths recorded in the state
of São Paulo, Brazil. Results obtained show that the proposed method is very effective in modeling
and predicting the values of the 7-day moving average.
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1. Introduction

Especially in the year 2020, many articles were published describing modeling procedures
for the number of cases and/or deaths due to COVID-19 in many countries. The interest
in this kind of modeling lies mainly in projections that these models may provide and
consequently assist government agents in making decisions regarding the intensification
of social isolation, the acquisition of hospital equipment, an increase in the number of
intensive care units in hospitals, among others.

In general, the published works model the accumulated number of cases (or deaths) by
using some non-linear growth model. For example, [2] considered a simple exponential
growth model to analyze the initial phase of the epidemic of COVID-19 in Africa, [3]
modeled the data from Philippines and Taiwan using the generalized logistic model, [4]
applied the Richards growth model to the data collected in China, France, Germany,
Iran, Italy, South Korea, and Spain, [5] calibrated the logistic growth model, the gener-
alized logistic growth model, and the generalized Richards model for the number of cases
recorded in China, among others.
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Since the growth in the cumulative number of cases and deaths by COVID-19 has, in
general, presented a heterogeneous evolution over time, this implies that the adjustment
of only one of these growth models may not be adequate to explain the entire study
period. This heterogeneous evolution is due to the occurrence of more than one wave of
the pandemic or due to the accuracy of the statistical reports on the number of cases
and deaths recorded. For example, the number of cases may present a fast growth if
the number of the diagnostic tests is increased. On the other hand, tests that need to
be realized to include the death cases in mortality statistics may take some days. This
implies that may occur a sub-notification followed by an over-notification. In addition,
the number of cases and deaths may be sub-notified on the weekends and appear on the
statistical reports only a few days after.

An alternative is modeling, for instance, the 7-day moving average in order to minimize
the discrepancies that may be contained in the dataset. In this paper, we assume for the
7-day moving average dataset an additive model composed by a non-linear function f plus
a random error ε. However, in opposite to set up f as a known mathematical function, we
assume that f is an unknown random parameter. In order to estimate it from the data,
we adopt a Bayesian approach putting over the unknown non-linear function a Gaussian
process prior. In addition, we assume a more hierarchical level putting prior distributions
on the parameters of the Gaussian process.

In order to estimate parameters of interest, we develop an MCMC algorithm based on
the Metropolis-within-Gibbs sampling algorithm. We also present an MCMC algorithm
for making predictions. The proposed method is ilustrated in a case study, in which,
we model the 7-day moving average recorded in the state of São Paulo, Brazil. Results
obtained show that the proposed method is very effective in modeling the values of the
7-day moving average for the number of deaths due to COVID-19. In the course of 481
days of the pandemic, we run the estimation procedure four times, on the 100th, 180th,
280th and 465th days. In this four analysis the mean square error of the fitted model
was smaller than 0.05, indicating a very good performance of the porposed method.

The three main advantages of the proposed method are: 1. It is very flexible since it is
not restricted to a parametric mathematical function; 2. Does not need the fit of a set of
parametric models followed of the application of a model comparison procedure; 3. It is
easy to be implemented computationally since the estimation procedure is based on the
use of a Metropolis-within-Gibbs sampling algorithm.

Although, we develop the paper with focus on 7-day moving average for the number of
deaths, the method also can be used for modeling the moving average for the number of
cases. In addition, the method is not restricted to the 7-day moving average and a user
may use it for modeling a d-day moving average dataset, for d > 1.

The remainder of the paper is organized as follows. In Section 2, we present the
Bayesian approch for modeling the 7-day moving average for the number of deaths
recorded in a country, state and/or city. In this section, we also describe the MCMC
algorithms used for estimate the parameters of interest and make predictions. Section 3,
present an application of the proposed method to a case study. Section 4 concludes the
paper with the final remarks. Additional details are provided in the Appendix.

2. Bayesian model for 7-day Moving Average

Let Dt be the number of deaths by COVID-19 recorded in a country, state or city on the t-
th day, for t = 0, . . . , N , where t = 0 represents the day that the first death was recorded

and N is the last day considered in the analysis. Consider Yt =
t+6∑
m=t

Dm be the 7-day

moving average of the number of deaths due to the covid-19, for t = 1, . . . , n = N − 6.
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Assume that Yt values are generated according to the following additive model

Yt = ft + εt (1)

where ft = f(t) is an unknown function and εt is a random error assumed as being
generated from a normal distribution with mean 0 and variance σ2, εt ∼ N (0, σ2), for
t = 1, . . . , n.

At this point, it is usual to complete the model (1) by setting up ft as a known nonlinear
mathematical function. However, there may be several nonlinear parametric models that
can fit the observed data points equally well. Due to this, it is common to fit a set of
candidate models and then choose the best model using some model selection criteria,
such as AIC or BIC. That is, the analysis stays limited to the set of models previously
chosen by a user. In addition, the complexity and/or flexibility of the parametric models
considered is limited by the number of parameters in the model.

In order to give flexibility to the modeling and not to be restricted to a set of parametric
models, hereafter we assume that the unknown nonlinear function is a parameter of
interest. In order to estimate these parameters from an observed dataset, we assume a
Bayesian approach. Thus, considere Ff be the set of all possible functions that can explain
the data. Let Pf be a probability distribution defined over Ff , in a way that, a finite set
f = (f1, . . . , fn) of Ff follows a multivariate normal distribution with mean vector m of
dimension 1×n and covariance Σf of dimension n×n and elements σ(t, t′) = cov(ft, ft′),
for t, t′ = 1, . . . , n. In other words, we are assuming that a priori f ∼ Nn(m,Σf ), i.e., a
Gaussian process prior over f , where Nn(·) represents the n-variate normal distribution.

Thus, setting up m = 0 in order to represent our no informative prior knowledge about
the expected value of f and letting Σf be an unknown quantity, we propose the following
hierarchical Bayesian model

Y|f , σ2
ε ∼ Nn

(
f , σ2

ε I
)

;

f |Σf ∼ Nn(0,Σf )

σ2
ε ∼ IG

(
a

2
,
b

2

)
;

Σf |γ, σ2
f , ν ∼ IW

(
γ, σ2

fAν
)
.

σ2
f |c, d ∼ G

(
c

2
,
d

2

)
,

ν|g, h ∼ G(g, h)

where IG(·) and G(·) represent the inverse gamma and gamma distributions, respectively,
and IW

(
γ, σ2

fAν
)

represents the inverse-Wishart distribution with parameters γ and
σ2
fAν is a matrix of dimension n×n with elements k(t, t′), for t, t′ = 1, . . . , n. Each term
k(t, t′) is calculated according to the squared exponential kernel, i.e.,

k(t, t′) = exp

{
−(t− t′)2

2ν2

}
. (2)

We also assume that a, b, c, d, g and h are known hiperparameters. We set up all of
them equals to 0.1 in order to get non-informative prior distributions.

Using Bayes theorem, the joint posterior distribution for θ =
(
f , σ2

ε ,Σf , σ
2
f , ν
)

is

π (θ|y, t) ∝ L (θ|y, t)π (f |Σf )π(σ2
ε |a, b)π(Σf |γ, σ2

f , ν)π(σ2
f |c, d)π(ν|g, h) (3)
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where L (θ|y, t) ∝ (σε)
−n/2 exp

{
−1

2(y − f)TΣ−1
ε (y − f)

}
is the likelihood function from

a n-variate normal distribution, for Σε = σ2
ε I, being I is the identity matrix of dimension

n× n and the overwritten T represents the matrix transposte.
The conditional posterior distributions are given by

f |• ∼ Nn
(

Σ−1
ε

(
Σ−1
ε + Σ−1

f

)
y,
(
Σ−1
ε + Σ−1

f

)−1
)

(4)

σ2
ε |• ∼ IG

(
a+ n

2
,
b+ (y − f)T (y − f)

2

)
(5)

Σf |• ∼ IW(γ + n+ 1,ffT + σ2
fAν) (6)

σ2
f |• ∼ G

(
c+ nγ

2
,
d+ tr

(
AνΣ−1

f

)
2

)
, (7)

ν|• ∼ π(ν|•) ∝ π(Σf |•)π(ν|g, h), (8)

where the symbol • represents all other parâmeters.
Since Equations (4)-(7) have a known form and Equation (8) does not, then in order

to get estimates for the parameters of interest, we consider a Metropolis-within-Gibbs
sampling algorithm (MWGS). To each iteration of the MWGS algorithm, we update the
parameters θ−ν = (f , σ2

ε ,Σf , σ
2
f ) according to the algorithm 1.

Algorithm 1 Gibbs sampling algorithm

1: Let the state of the Markov chain consist of θ =
(
f , σ2

ε ,Σf , σ
2
f , ν
)
.

2: Initialize the algorithm with a configuration θ(0) =
(
f (0), σ

2(0)
ε ,Σ

(0)
f , σ

2(0)
f , ν(0)

)
.

3: procedure For the l-th iteration of the algorithm, l = 1, . . . , L

4: generate f (l) from conditional distribution (4), given σ
2(l−1)
ε , Σ

(l−1)
f ;

5: generate σ
2(l)
ε from conditional distribution (5), given f (l);

6: generate Σ
(l)
f from conditional distribution (6), given f (l) and σ

2(l−1)
f ;

7: generate σ
2(l)
f from conditional distribution (7), given Σ

(l)
f

In order to update parameter ν via Metropolis-Hastings algorithm, let ν∗ to be a
candidate value generated from a candidate generating-density q[ν∗|ν]. So, the value ν∗

is accepted with probability Ψ(ν∗|ν) = min(1,Hν), where

Hν =
π(Σf |γ, σ2

f , ν
∗)

π(Σf |γ, σ2
f , ν)

π(ν∗|g, h)

π(ν|g, g)

q[ν|ν∗]
q[ν∗|ν]

.

Now, it is necessary to specify the candidate-generating density q[ν∗|ν]. Usually q[·] is
chosen such that it is easy to sample from it. Two common choice are:

• q[ν∗|ν] = π[ν], i.e., the candidate generating-density is given by the prior distribution.
In this case, Hν simplifies to

Hν =
π(Σf |γ, σ2

f , ν
∗)

π(Σf |γ, σ2
f , ν)

.
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This case is denominated in the literature by Independent Metropolis-Hastings (IMH).
Although the choice of the prior distributions as the candidate generating-density is
mathematically attractive, this may lead to many rejections of the proposed moves
and a slow convergence of the algorithm. This happen, specially, for cases in which no
prior information is available and prior distribution has large variance.

• An alternative to the IMH is to explore the neighbourhood of the current value of the
chain in order to propose a new value. Thus, let q[ν∗|ν] = g(|ν − ν∗|), where g(·) is
a symmetric density, i.e., the probability of generating a move from ν to ν∗ depends
only on the distance between them. In this case, Hν simplifies to

Hν =
π(Σf |γ, σ2

f , ν
∗)

π(Σf |γ, σ2
f , ν)

π(ν∗|g, h)

π(ν|g, g)
. (9)

This case is denominated in the literature by random walk Metropolis (RWM).

In the remaining of the paper, we adopt the RWM algorithm for updating ν. But, this
does not prevent the proposed method to be applied with the Metropolis step being given
by the IMH. In order to implement a RWM, we set up ν∗ = ν + η with η ∼ N (0, σ2

ν).
However, as discussed by [22] the choice of σ2

ν has great influence on efficiency of the
algorithm. If σ2

ν is small, then random perturbations will be small in magnitude and
almost all will be accepted, requiring a large number of iterations to get convergence. On
the other hand, if σ2

ν is too large, then it will causes too many rejections of the proposed
moves and a considerably slowing down convergence.

According to [23], [24], [25] and [26], one may fix the value of σ2
ν testing some values

in a few pilot runs and then choosing a value in which acceptance ratio lies in between
20% and 30%. Thus, following this procedure we run 10 pilot runs of the algorithm with
L = 10.000 iterations for σ2

ν ∈ G, where G is a grid from 0.1 to 1 with increments of size
0.1. For σ2

ν = 0.1 the acceptance rate was of 75%, for σ2
ν = 0.2 the acceptance rate was of

25.82%, for σ2
ν = 0.3 the acceptance rate was of 24.75% for σ2

ν = 0.4 the acceptance rate
was of 21.12% and for the other values tested, σ2

ν ≥ 0.5 the aceptance rate was smaller
than 20%. Thus, we fix up σ2

ν = 0.3, the mean of the tested values that have leaded to
an acceptance rate between 20% and 30%.

The RWM for updating ν is implemented according to the steps of the Algorithm 2.
Using algorithms 1 and 2, we implemented the MWGS to get estimates for parameters
θ. The steps for the implementation of this algorithm are given in Algorithm 3.

Algorithm 2 Random Walk Metropolis

1: Let the state of the Markov chain consist of θ =
(
f , σ2

ε ,Σf , σ
2
f , ν
)
.

2: Initialize the algorithm with a configuration θ(0) =
(
f (0), σ

2(0)
ε ,Σ

(0)
f , σ

2(0)
f , ν(0)

)
.

3: procedure For the l-th iteration of the algorithm, l = 1, . . . , L
4: Generate r ∼ N (0, σ2

ν) and set ν∗ = ν(l − 1) + r
5: Calculate Ψ(ν∗|ν) = min(1,Hν), where Hν is given by Equation (9);
6: Generate u ∼ U(0, 1). If u ≤ Ψ(ν∗|ν) accept ν∗ and do ν(l) = ν∗. Otherwise,

reject ν∗ and set ν(l) = ν(l−1).

After running the L iterations of the algorithm 3, we discard the first B iterations as a
burn-in. We also consider jumps of size J , i.e., only 1 drawn from every J was extracted
from the original sequence obtaining a sub sequence of size S = [(L − B)/J ] to make
inferences. The estimates for parameters of interest are given by average of the generated
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values. For example, the estimates for f and σ2
ε are f̂ = f =

(
f1, . . . , (fn

)
and σ2

ε , where

f(t) =
1

S

L∑
l=1

f
(M(l))
t , σ̂2

ε =
1

S

L∑
l=1

σ2(M(l))
ε

and f(t)(M(l)) and σ
2(M(l))
ε are the generated values for ft and σ2

ε in the M(l) = (B+1+l ·
J)-th iteration of the algorithm, respectively, for t = 1, . . . , n. For the other parameters,
the estimates are obtained in a similar way. The credibility interval (95%) for each one
of the parameters is given by the quantiles 2.5% and 97.5% of the sampled values.

Algorithm 3 Metropolis-within-Gibbs algorithm (MWGS)

1: Let the state of the Markov chain consist of θ =
(
f , σ2

ε ,Σf , σ
2
f , ν
)
.

2: Initialize the algorithm with a configuration θ(0) =
(
f (0), σ

2(0)
ε ,Σ

(0)
f , σ

2(0)
f , ν(0)

)
.

3: procedure For the l-th iteration of the algorithm, l = 1, . . . , L
4: Update θ−ν according to Algorithm 1;
5: Update ν according to Algorithm 2;

2.1 Predictions

Defined the estimation procedure for the parameters θ, another interest lies in predicting
the value fn+1 = f(xn+1) for a new input xn+1. That is, the interest is in the predictive
distribution

π(yn+1|y) =

∫
π(yn+1|y,θ)π(θ|y)dθ, (10)

where π(θ|y) is the joint posterior distribution for θ, given in Equation (3). However,
this integrals does not have a known mathematical solution. Due to this, we present in
the following an MCMC algorithm for getting an approximation for this integral.

From model (1), the marginal distribution for Y is given by a n-variate normal distri-
bution with mean vector 0 and covariance matrix Σf +Σε, Y|Σf , σ

2
ε ∼ Nn(0,Σf +Σε); see

Appendix 1 for details. Since fn+1 ∼ N (mn+1, σ
2
n+1), the joint distribution for (Y, fn+1)

is [
Y
fn+1

]
|f ,x, xn+1,Υ ∼ Nn+1

([
f

m(xn+1)

]
,

[
Σf + Σε CT

C σ2
n+1

])
,

where Υ = (Σf , σ
2
ε , σ

2
n+1,C) and C = (σ(1, n + 1), . . . , σ(n, n + 1)) is a row vector,

1 × n, composed by the covariance among ft and fn+1, σ(t, n + 1) = cov(ft, fn+1), for
t = 1, . . . , n.

By using the properties of the multivariate normal distribution, the conditional poste-
rior distribution for fn+1 is given by

fn+1|y, f ,x, xn+1,Υ ∼ N
(
m(tn+1) + C (Σf + Σε)

−1 (y − f) , σ2
n+1 − C (Σf + Σε)

−1 CT
)
.

(11)
At this point, as we know the value of the 7-day moving average in the n-th day, we

fix up m(tn+1) = yn. In addition, we set up each σ(t, n + 1) = k(t, n + 1) in order to
get these values according to Equation (2). Then, a sample from conditional posterior
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distribution in (11) can be generated according to the implementation of the Algorithm
4.

Algorithm 4 Prediction

1: Let the state of the Markov chain consist of θ =
(
f , σ2

ε ,Σf , σ
2
f , ν
)

and fn+1.

2: Initialize the algorithm with a configuration θ(0) =
(
f (0), σ

2(0)
ε ,Σ

(0)
f , σ

2(0)
f , ν(0)

)
and

f
(0)
n+1.

3: procedure For the l-th iteration of the algorithm, l = 1, . . . , L
4: Update θ according to Algorithm 1;
5: Update ν according to Algorithm 2;

6: Conditional on θ(l) = θ(l) =
(
f (l), σ

2(l)
ε ,Σ

(l)
f , σ

2(l)
f , ν(l)

)
, generate f

(l)
n+1 from con-

ditional posterior distribution in (11).

After running the algorithm for the same L iterations, burn in B and junp J of the
algorithm (3), an approximation for the integral in (10) is given by

π̃(fn+1|y) =

L∑
l=1

f
(M(l))
n+1 ,

where M(l) is the (B + 1 + l · J)-th iteration of the algorithm.
The predictions for the next n+j days, for j = 2, . . . , r, is obtained in a similar way by

generating a sample from fn+j according to Algorithm 4, where fn+j is given by Equation

(11), setting up fn+j = f̂n+j−1 and C = (k(1, n+ j), . . . , k(n, n+ j)), for j = 2, . . . , r.
In many cases, the interest does lies in predicting the value fn+1 = f(xn+1) for a

new input xn+1 conditional on the last ys recorded values and not on all past values y.
For example, one can have interest in the value yn+1 given the recorded 7-day moving
average in the last s = 30 days, y30 = (yn−29, . . . , yn). This prediction is also made
using Algorithm 4, just changing y by ys and adapting the parameters θ for dimension
of ys. The predictions for the next n + j days is done as described in the paragraph
above, but with some obvious differences. The advantage of this kind of prediction is the
computation time that is very smaller than the prediction procedure conditional on y.

3. Application

In this section, we apply the proposed method to a real dataset. The dataset refers to
the 7-day moving average for the number of deaths recorded in the state of São Paulo,
Brazil. As an illustration of this dataset, we present in Figure 1 the number of deaths
recorded in the period from 03/17/2020 (first case) to 07/16/2021 and the 7-day moving
average recorded in the period from 03/23/2020 (t = 0) to 04/27/2021 (n = 480).

In order to estimate parameters of interest and make the predictions, we apply Algo-
rithms 3 and 4 with L = 55, 000 iterations, B = 5, 000 iterations and J = 10. Thus,
we got a sample of size 1, 000 to make inferences. Using these values, we ran our first
analysis on the 100th day after the recording of the first 7-day moving average. Figure
2 shows the observed value (symbols •) and the credibility band of 95% (blue area) de-
termined by the proposed method. This Figure also shows the prediction band of 95%
(black area) and the recorded values for the next ten days. The mean square error (MSE)
of the predicted values in relation to the recorded values was 0.0056. As one can note,
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the prediction band contains all recorded values. Both results show a very satisfactory
performance of the proposed method.
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Figure 1. Number of detahs by day and 7-day moving average values.
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Figure 2. Confidence and prediction bands (95%).

The estimated value for the σ2
ε is σ̂2

ε = 2.4427, with a credibility interval (95%) give
by (2.0154, 2.9632). Figure 3 show the ergodic mean (ErM) and the estimated autocor-
relation function (ACF) from the sampled values for σ2

ε . As one can note, there is no
reason to doubt the convergence of the sampled values, since the ErM values present
satisfactory stabilization and there is no significant ACF.

We also verify the convergence of the sampled values for f . The results are similar to
the presented by the sampled values for σ2

ε . As an ilustration, we show in Figure 4 the
ErM and the ACF for the sample valued for f22. The f22 was chosen at random among
the ft ∈ f , for t = 1, . . . , n. The estimate for f22 is f̂22 = 43.7603; and the credibility
interval (95%) is (40.2492, 49.2031). The recorded value was 43.43. That is an absolute
percentage error of 0.7604%. Analogously to the sampled value for σ2

ε , there is no reason
to doubt the convergence of the sampled values for f22.
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The estimate for parameter σ2
f is σ̂2

f = 3.8234 with credibility interval (2.0459, 3.9189).
The estimate for parameter ν is ν̂ = 0.2637 with credibility interval (0.0153, 0.4982) and
acceptance rate of 26.78%. The convergence checking for both parameters is similar to
the presented for σ2

ε and f22, i.e., the ergodic mean presents satisfactory stabilization
and there is no significant ACF.
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Figure 3. ErM and ACF from the sampled values for σ2
ε .
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Figure 4. ErM and ACF from the sampled values for f22.

3.1 Predictions based in the last 30 days

Consider now the interest in predict the evolution of the 7-day moving average values for
the next 15 days after the n-th day conditional on the recorded values in the last thirty
days. That is, the interest is to predict the values fn+j for j = 1, . . . , 15 conditional on
y30 = (yn−30+1, . . . , yn). In the following, we present the results from three analyses ran
at 180-th, 280-th and 465-th days.

In order to obtain these predictions, we apply Algorithm 4 just changing y by y30 and
adapting the dimension of the parameters θ. We ran this algorithm for the same values
for L, burn-in and jump J used in section 3. Figure 5 show the results of the analysis
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carried out on the 180-th day. The MSE of the fitted model is 0.0123. As one can note,
the five 7-day average values recorded after the 180-th day is inside the prediction band;
but the values recorded after the 185-th day are outside the band. This a good news
because it indicates that the reduction in the values of the 7-day moving average was
greater than expected. In this period of 15 days, the moving average reduced from 191.43
(180th day) to 153.29 (195-th day). A reduction of 19.42%
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(a) 2-nd analysis.

Figure 5. Recorded values and confidence band determined by the proposed method, 180-th day.

Figure 6 shows the results of the analysis ran on the 280-th day. The MSE of the
fitted model is 0.0471. As one can note, only the two last recorded values are outside
the prediction band. In this period of 15 days, the 7-day moving average value increased
44.05%, going from 119.14 (280th day) to 213 (295th day).
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(a) 2-nd analysis.

Figure 6. Recorded values and confidence band determined by the proposed method.
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Figure 7 shows the results of the analysis ran on the 465-th day. The MSE of the fitted
model is 0.0437. Note that, the credibility band determined by the proposed method
base on the recorded values in the last thirty days indicates a stabilization of the moving
average, but the recorded values were all below this region. This is a piece of very good
news because it shows that a greater reduction than expected happened. The reduction
was of 49.14%, going from 550.86 (365-th day) to 340.14 (480-th day).
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(a) 2-nd analysis.

Figure 7. Recorded values and confidence band determined by the proposed method, 280-th day.

Figure 8 shows the recorded values in the last 30 days and the credibility band deter-
mined by the proposed method for the next 15 days. As one can note, this graphic shows
that is not expected a great increase in the values of the 7-day moving average in the
next 15 days.
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Figure 8. Recorded values and confidence band determined by the proposed method, 465-th day.
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4. Final Remarks

This article presented a hierarchical Bayesian methodology for modeling the evolution of
the 7-day moving average for the number of deaths due to COVID-19. We opt to model
the 7-day moving average in opposite to the cumulative number of deaths, as is usual,
due to moving average smooth the possible discrepancies that may have in the statistical
reports of the number of deaths divulged.

Contrary to usual approaches, which are based on the adoption of a set of parametric
models followed by a comparison using some model selection criteria, such as, AIC and
BIC, the proposed approach assumes that the non-linear mathematical function is an
unknown random quantity that needs to be estimated from the observed data. Then, we
adopt a Bayesian nonlinear regression approach with a Gaussian process.

The adoption of the Gaussian process prior means that we are defining a probability
distribution over functions and the inference is taken directly in the space of the func-
tions. This approach is considered nonparametric since we are using a prior distribution
on the space of functions that corresponds to infinite-dimensional parameter space. Since
making inferences about the infinite number of parameters is impractical, the assump-
tion of the Gaussian process has the advantage of that conditional on a dataset a finite
number of parameters (function values) can be explicitly represented by a multivari-
ate normal distribution, making the estimation procedure simple to be computationally
implemented.

In addition, since the Gaussian process is heavily influenced by the choice of the covari-
ance function Σf , we assume one more hierarchical level by putting a prior distribution
over Σf and on its hyperparameters. The inference on the parameters of interest is carried
out using a Metropolis-within-Gibbs algorithm. We also present an MCMC algorithm to
make predictions.

The proposed method is illustrated in a case study, in which, we model the 7-day
moving average values recorded in the state of São Paulo, Brazil, in the period from
03/23/2020 to 04/27/2021. In this period, we run the estimation procedure four times
in order to verify the performance of the method. The results have shown a very good
performance of the method. The MSE values were all smaller than 0.05 and there is no
reason to doubt of the convergence of the sampled values by the MCMC algorithm.

From a statistical data analysis point of view, the proposed method is very interesting
because it does not need the assumption of a parametric model and the inference is done
by an MCMC algorithm that can be easily implemented in free softwares, such that,
R software. The computational codes were implemented in the R language and can be
obtained by e-mail to the authors.
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