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Abstract: The pandemic scenery caused by the new coronavirus, called SARS-CoV-2, increased
interest in statistical models capable of projecting the evolution of the number of cases (and associated
deaths) due to COVID-19 in countries, states and/or cities. This interest is mainly due to the fact
that the projections may help the government agencies in making decisions in relation to procedures
of prevention of the disease. Since the growth of the number of cases (and deaths) of COVID-19,
in general, has presented a heterogeneous evolution over time, it is important that the modeling
procedure is capable of identifying periods with different growth rates and proposing an adequate
model for each period. Here, we present a modeling procedure based on the fit of a piecewise growth
model for the cumulative number of deaths. We opt to focus on the modeling of the cumulative
number of deaths because, other than for the number of cases, these values do not depend on the
number of diagnostic tests performed. In the proposed approach, the model is updated in the
course of the pandemic, and whenever a “new” period of the pandemic is identified, it creates a
new sub-dataset composed of the cumulative number of deaths registered from the change point
and a new growth model is chosen for that period. Three growth models were fitted for each period:
exponential, logistic and Gompertz models. The best model for the cumulative number of deaths
recorded is the one with the smallest mean square error and the smallest Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values. This approach is illustrated in a case study, in
which we model the number of deaths due to COVID-19 recorded in the State of São Paulo, Brazil.
The results have shown that the fit of a piecewise model is very effective for explaining the different
periods of the pandemic evolution.

Keywords: COVID-19; growth model; piecewise model; estimation; non-linear minimum square

1. Introduction

Since the discovery of a new coronavirus in the city of Wuhan, China, the virus has
spread rapidly worldwide, and created a major global health crisis [1]. In fact, this disease
is one of the main health problems in the world and has had an enormous economic and
social impact, leading to an increase in poverty and the loss of thousands of lives in many
countries. Until 27 April 2021, four million deaths had been registered in the whole world
(www.worldometers.info/coronavirus, accessed on 23 July 2021).

This pandemic scenery has increased the interest in statistical models capable of
projecting the evolution of the disease in countries, states, or cities. This interest lies
mainly in projections that can assist government agencies in making decisions regarding
the intensification of social isolation, the acquisition of hospital equipment, an increase in
the number of intensive care units in hospitals.

Especially in the year 2020, many articles were published describing modeling pro-
cedures for the number of cases and/or deaths due to COVID-19 in many countries. In
general, the published works model the accumulated number of cases (or deaths) by using
some non-linear growth model. For example, Ref. [2] considered a simple exponential
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growth model to analyze the initial phase of the epidemic of COVID-19 in Africa, Ref. [3]
modeled the data from Philippines and Taiwan using the generalized logistic model, Ref. [4]
applied the Richards growth model to the data collected in China, France, Germany, Iran,
Italy, South Korea, and Spain, Ref. [5] calibrated the logistic growth model, the general-
ized logistic growth model, and the generalized Richards model for the number of cases
recorded in China, Ref. [6] considered the Gompertz model to predict the number of deaths
in Brazil, Ref. [7] estimated the number of total COVID-19 cases and deaths in the UK,
Russia, and Turkey using the Gompertz model, among others.

As discussed by the authors cited above, the growth models present satisfactory
performance for modeling the accumulated number of cases (or deaths) of COVID-19.
However, these models are generally adequate to model data from a specific period of the
pandemic. Since the growth in the cumulative number of cases and deaths by COVID-19
has, in general, presented a heterogeneous evolution over time, this implies that the
adjustment of only one of these growth models may not be adequate to explain the entire
study period.

In order to overcome this issue, this article introduces a piecewise model in which
different growth functions are adjusted for different pandemic periods of time. Our
proposed modeling is based on the fit of three growth models, exponential, logistic and
Gompertz, for each period of the pandemic. Our preference for these three models is
based on studies described in the literature that indicate they are excellent for use in
longitudinal data, see for example [8,9] and the references therein. However, the proposed
modeling is not restricted to these three growth models and can be easily adapted for other
growth models.

To identify the different periods of the pandemic in the course of time, we consider
a grid of values with increments of size 1, in which, each point of the grid represents a
possible change point of the pandemic. The increment of one unit represents the increase
of one day in the pandemic. Then, we fit the three growth models for two sub-datasets
obtained according to each possible change point. To choose the best model for each sub-
dataset, we consider as a criterion the mean square error (MSE), the Akaike Information
criterion [10,11], denoted by AIC, and the Bayesian Information criterion [12], denoted
by BIC. The best change point d is that associated with the model with the lowest mean
square error.

The fitting procedure of the three models is based on obtaining the point estimates
for the parameters of the growth models by using the non-linear least square method, as
described by [13,14]. We have used the software R [15] and the command nls of the package
nlstools [16,17]. Based on the fitted model, we find the coordinates of the inflection point
and consequently the estimated date for the peak of the pandemic in the current period.

The proposed modeling is illustrated in a case study, in which we model the cumula-
tive number of deaths recorded in the state of São Paulo, Brazil. However, the modeling
may be easily adapted for datasets from other countries, states, or cities. We opt for model-
ing the cumulative number of deaths instead of the cumulative number of recorded cases
because these values do not depend on the number of diagnostic tests performed. This
allows us to identify the changes in the pandemic’s evolution without having to adjust
for changes in the number of diagnostic tests. On the other hand, one can argue that the
modeling procedure now relies on accurate reporting of the mortality statistics due to
COVID-19. Since the health secretary of São Paulo state publishes the mortality statistics
daily and the information is checked by a group of news-press companies, we consider
that these published data are adequate for our modeling procedure. As an illustration of
the versatility of our proposal, we also present the model for the cumulative number of
recorded cases in the State of São Paulo, Brazil.

The two main advantages of the proposed modeling approach are: 1. its effectiveness
in describing the different periods of the pandemic; and 2. its capacity to explain each
period of the pandemic through the estimates for the epidemiological parameters of interest,
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such as the growth rate for the number of daily deaths and the date for the occurrence of
the peak.

The remainder of the paper is organized as follows: Section 2 presents the statistical
model. Section 3 describes the adopted modeling procedure to obtain a piecewise growth
model for the cumulative number of recorded deaths in the state of São Paulo, Brazil. In
this section, we also present the piecewise model fitted for the cumulative number of cases
recorded in the State. Section 4 concludes the paper with the final remarks. Additional
details are provided in Appendix A.

2. Statistical Model

Consider Dt to be the number of deaths due to COVID-19 recorded in the state of
São Paulo, Brazil, on the t-th day, for t = 0, . . . , n, where t = 0 represents the day that the
first death was recorded (17 March 2020) and n = 410 is the last day considered in the
study (27 April 2021). In this period, 96,191 deaths were recorded. This dataset is publicly
available on the website www.seade.gov.br/coronavirus/.

Figure 1 shows the recorded Dt values, for t = 1, . . . , n. As one can note, the recorded
Dt values have a high variability which makes the modeling procedure somewhat com-
plicated. The sample standard deviation of the Dt values is 237.8288. Due to this, we opt
to develop the modeling procedure by considering the cumulative values because these
values present a more stable behavior, as can be viewed in Figure 2a. Figure 2b shows the
values from Figure 2a in the log-scale.
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Figure 1. Number of deaths recorded by day.

Thus, let Xt be the number of deaths until the t-th day, in an accumulated way, i.e.,

X0 = D0 and Xt =
t

∑
i=0

Di,

for t = 1, . . . , n.
Then, we assume the following multiplicative growth model:

Xt = h(t|θ) · νt, (1)

where h(t|θ) is a nonlinear growth model indexed by the parameter θ (scalar or vector), νt
is a random error assumed as being generated from a log-normal distribution with mean µ
and variance σ2, for t = 1, . . . , n.
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(a) Original scale.
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(b) Logarithm scale.

Figure 2. Cumulative number of deaths until day t, for t = 0, 1, . . . , n.

To complete the model specification, we need now to set up the nonlinear growth
model h(t|θ) in Equation (1), for t = 1, . . . , n. Hereafter, we consider the following three
nonlinear growth models: exponential, logistic and Gompertz. Details on these three
growth models are presented in Appendix A.

In addition, in order to avoid working with values on the scale of thousands (see
Figure 2a), we opt to consider the model Equation (1) on the logarithmic scale. Thus, by
taking the logarithm transformation on both sides of Equation (1), we have that:

Yt = log(Xt) = f (t|θ) + εt (2)

where f (t|θ) = log(h(t|θ)) is the logarithmic transformation of a nonlinear growth model
h(t|θ) indexed by the parameter θ and εt = log(νt) for t = 1, . . . , nd. Thus, from log-normal
properties we have that εt is a random error assumed as being generated from a normal
distribution with mean µ and variance σ2, εt ∼ N (µ, σ2). In addition, we assume that
µ = 0 and cov(εt, εt′) = 0, for t, t′ = 1, . . . , n and t 6= t′.

However, since the cumulative number of deaths by COVID-19 has, in general, pre-
sented a heterogeneous evolution over time, the adoption of a single function f (t|θ) to
explain the entire considered period may not be adequate. Thus, in order to overcome this
issue, we consider that the function f (t|θ) is a piecewise function, given by

f (t|θ) =


f1(t|θ) , for 0 < t ≤ d1;
f2(t|θ) , for d1 < t ≤ d2;

... ,
...

... ;
fk(t|θ) , for t > dk.

.

That is, we assume that the entire period of the pandemic is divided into k different periods,
being f j(t|θ) a function considered for recorded data in the period (dj−1, dj], for j = 1, . . . , k.

Table 1 shows the mathematical functions considered for f j(t|θ), for j = 1, . . . , k. Other
than for the log-exponential model that presents an infinite growth, the log-logistic and
log-Gompertz have growth limits. The value α1 = log(α∗1) is the upper asymptote for
both log-models, where α∗1 is the upper asymptote of the models in the original scale
(see Appendixes A.2 and A.3). In the context of COVID-19, the value of α∗1 = exp{α1} is
an estimate for the maximum number of deaths that will occur. The parameters (α2, α3)
are related to the coordinates I = (T, f (T|θ)) of the inflection point. From a practical
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viewpoint, the point I is the peak of the pandemic, i.e., the point in which the curve of the
number of deaths (log-transformed) changes its slope (positive to negative), meaning that
before the peak the number of deaths grows at an increasing rate (positive slope) and after
the peak, the growth is characterized by a decreasing rate (negative slope). That is, after the
peak it is expected that the number of deaths is smaller each day. In addition, we have that
T is the day on which the peak will occur and f (T|θ) is the logarithm of the cumulative
number of deaths that will be recorded until the day T.

Table 1. Log-transformed growth models.

Model Parameters Mathematical Expression Inflection Point Growth at Inflection Point

log-exponential θ = (α1, α2) Yt = α1 + α2t does not exist does not exist

log-logistic θ = (α1, α2, α3) Yt = α1 − log(1 + α2 exp{−α3t}) T = log(α2)/α3 f (T|θ) = α1 − log(2)

log-Gompertz θ = (α1, α2, α3) Yt = α1 − α2 exp{−α3t} T = log(α2)/α3 f (T|θ) = α1 − 1

In order to get the parameter estimates of the three log-growth models, we adopt the
nonlinear least square method. For this, we use the software R [15] and the command nls
of the package nlstools [16,17]. Denote the estimates for the parameters of interest θ by θ̂,
where θ̂ = (α̂1, α̂2) for the log-exponential model and θ̂ = (α̂1, α̂2, α̂3) for the log-logistic
and log-Gompertz models.

To select the best model for the data of each period of the pandemic, we compare the
three log-growth models by using as a criterion the mean square error (MSE) and the model
selection criteria AIC and BIC, which are calculated according to the following expressions

MSE =
1
n

n

∑
t=1

(
Ŷt −Yt

)2, AIC = −2l(θ̂|y) + 2p and BIC = −2l(θ̂|y) + plog(n),

where Ŷt is the estimated value by the model, l(θ̂|y) = log(L(θ̂|y), in which, L(θ̂|y) and
p are the maximum value of the likelihood function and the number of parameters in
the model, respectively. The best model is the one that has the smallest MSE, AIC and
BIC values. At this point, one could opt to use another criterion of model choice, such as,
for instance, the likelihood ratio test (LRT). However, as discussed by [18], there are two
complications in the use of LRT for non-nested models: (1) the asymptotic distribution of
the LRT under the null hypothesis will not, in general, be chi-squared, and can be difficult
to evaluate mathematically; and (2) it is not clear whether model A or model B should be
treated as the null model when performing the hypothesis test. In addition, if one assumes
that the LRT is chosen from the three considered models, we need to make three tests
(exponential × logistic), (exponential × Gompertz), and (logistic × Gompertz). Due to
these two issues and the simplicity of obtaining the values of AIC and BIC using the R
software, this led us to consider them as model selection criteria instead of the LRT.

Without loss of generality and for the facility of presentation, we opt to describe how
to determine the change points dj in the next section, which describes the updating of the
model as the pandemic evolved in the State of São Paulo.

3. Results

In this section, we present the modeling procedure adopted in the course of 411 days
(from 17 March 2020 to 30 April 2021) of the pandemic in the state of São Paulo, Brazil. The
first analysis was done thirty days after the record of the first death, and then, every thirty
days, the model was updated.

Our choice for updating the model to every thirty days is based on the fact that, on
average, the first symptoms of COVID-19 manifest between 4 to 14 days; and that the
patients with grave symptoms remain an average time of 21 days in intensive clinical care.
Then, it is very plausible that the changes in the evolution in the number of deaths occur
between 25 to 35 days. Due to this, we opt to update the model every 30 days. However,
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this does not restrict the approach and a user can update the model by using another period
of time, such as 20, 10 or 5 days.

3.1. Fitting of a Single Growth Model

For the first analysis, consider the cumulative number of deaths recorded in the first
thirty days since the recording of the first death, i.e., the period from t = 0 (17 March
2020) to t = 29 (15 April 2020). Let D1 = {y0, . . . , y29} be the cumulative number of deaths
log-transformed.

Once the dataset D1 is defined, we fit the three log-growth models described in Table 1.
Table 2 shows the MSE, AIC and BIC values for the three fitted log-growth models. The
smallest values are highlighted in bold. As one can note, the log-Gompertz model is the
best model.

Table 2. MSE, AIC and BIC values for the fitted models for dataset D1.

Model
Criterion

MSE AIC BIC

log-exponential 0.2776 52.6845 56.8881
log-logistic 0.0968 23.0901 28.6949

log-Gompertz 0.0306 −11.5014 −5.8966

Table 3 shows the point estimates and the confidence intervals (95%) for the parameters
of the log-Gompertz model. The fitted model is given by

Ŷ(1)
t = 7.0025− 6.97 exp{−0.0861t},

for t ≥ 0, where Ŷ(1)
t denotes the fitted model in the first analysis.

Table 3. Parameter estimates for model Y(1)
t .

Values
Parameter

α1 α2 α3

Estimates 7.0025 6.9700 0.0861
C. interval (6.6901, 7.3981) (6.6779, 7.2712) (0.0734, 0.0994)

Figure 3a shows the values of the dataset D1 and the fitted model (black line) for a
period of 60 days (from day 0 to day 59), with 30 days of fitting and 30 days of projections.
Figure 3b shows the graphic in the original scale. According to the point-estimates pre-
sented in Table 3, the projection for the maximum number of deaths is 1, 099 (rounded
exp{7.0024} value) and the ordinate of the inflection point is T = log(6.97)

0.0861 = 22.5507, i.e.,
the peak of the pandemic was projected to occur on the 23rd day (08 April 2020) with 484
deaths. Until the 23rd day, 496 deaths were registered. That is, the projected value for
the 23rd day presented an absolute percentage error of 2.42% in relation to the recorded
value. Although the projections do not indicate a very critical future situation, these results
should be interpreted with great caution, since the recorded values on these thirty days
represent only the beginning of the pandemic.
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Figure 3. Data from 17 March 2020 to 15 April 2020 and fitted model Ŷ(1)
t , for t ≥ 0.

Unfortunately, the recorded values in the next thirty days (from 16 April 2020 to 15
May 2020) did not follow the projections of the initial fitted model since the recorded
values were all above the projections, as shown in Figure 4. Due to this, we insert these
thirty cumulative values (log-transformed) into the dataset D1 and obtain the dataset
Du

1 = {D1} ∪ {y30, . . . , y59}, which we refer to as updated D1. Then, we update the model
considering the dataset Du

1 .
Once the dataset Du

1 is defined, we repeat the fitting procedure of the three log-growth
models. Table 4 shows the MSE, AIC and BIC values for the three fitted log-growth
models. The smallest values are highlighted in bold. Again, the log-Gompertz model is the
best model.
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Figure 4. Data from 17 March 2020 to 15 May 2020 and fitted model Ŷ(1)
t , for t ≥ 0.

Table 5 shows the point estimates and the confidence intervals (95%) for the parameters
of the log-Gompertz model. The fitted model is given by

Ŷ(2)
t = 8.5646− 7.4705 exp{−0.05t},
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for t > 0, where Ŷ(2)
t denotes the fitted model in the second analysis.

Table 4. MSE, AIC and BIC values for the fitted models for dataset Du
1 .

Model
Criterion

MSE AIC BIC

log-exponential 0.4724 131.2807 137.5637
log-logistic 0.1700 71.9576 80.3350

log-Gompertz 0.0473 −4.8170 3.5604

Table 5. Parameter estimates for model Y(2)
t .

Values
Parameter

α1 α2 α3

Estimates 8.5646 7.4705 0.0500
C. interval (8.3497, 8.8117) (7.2472, 7.6960) (0.0452, 0.0551)

Figure 5 shows the values of Du
1 and the curves of the models fitted on the 30th and

60th day, respectively, in the log-scale and in the original scale for a period of 90 days, with
sixty days of fitting and thirty days of projection.
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Figure 5. Data from 17 March 2020 to 15 May 2020 and fitted models on 30th
(

Ŷ(1)
t

)
and 60th day

(
Ŷ(2)

t

)
.

The MSE of the updated model Ŷ(2)
t is 0.0473, for t ≥ 0. That is, an MSE value greater

than that of the first fitted model. Besides, as one can note, the last ten recorded values are
far from the projected values by the updated model and residuals are all positive, making
them serially correlated and, hence, violating the initial assumption that residuals are
uncorrelated. This result made us conjecture that the fit of a single growth model may not
be adequate since a new period with a growth rate and/or growth type different from the
first 30 days could be beginning.

In order to empirically verify our conjecture, we registered the cumulative values in
the next thirty days after the date 15 May 2020 (from 16 May 2020 to 14 June 2020) and plot
these values as shown in Figure 6. As one can note, our conjecture is very plausible. Due to
this, hereafter, we adopt the fit of a piecewise growth model.
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Figure 6. Data from 17 March 2020 to 14 June 2020 and fitted models on 30th
(

Ŷ(1)
t

)
and 60th day

(
Ŷ(2)

t

)
.

3.2. Fitting of a Piecewise Growth Model

Consider D = {y0, . . . , y89} as the cumulative number of deaths, log-transformed,
recorded in the first ninety days since the first case. Let D1 and D2 be two sub-datasets
of D representing two distinct periods of the pandemic. In order to define the change
point d and to obtain the sub-datasets D1 and D2, we adopt the following approach. Let
G = {18, . . . , 58} be a grid from 18 to 58 with increments of size 1. Each increment of one
unit represents the increase of one day in the pandemic. Then, we define the following
41 scenarios: D1 = {y0, . . . , yd} and D2 = {yd+1, . . . , y89}, for d ∈ G.

For each of the scenarios, we fit the three growth models to sub-datasets D1 and D2.
We select the best model for each of the sub-datasets by using the MSE, AIC and BIC as a
criterion. In addition, the best d value is the one associated with the fitted model that has
the lowest MSE value.

According to the criteria considered, the best model is composed of a log-Gompertz
model for D1 and D2. Figure 7 shows the MSE values of the fitted piecewise model for
each d value considered, d ∈ G. The point d = 20 has lead to a piecewise model with the
smallest MSE value. Due to this, we set up d = 20 as the separation point for D1 and D2.

Thus, let D1 = {y0, . . . , y20} and D2 = {y21, . . . , y89}. Table 6 shows the MSE, AIC
and BIC values for the three fitted growth models for D1 and D2. The smallest values are
highlighted in bold, indicating the log-Gompertz model for D1 and D2.

Table 7 shows the point estimates and the confidence intervals (95%) for parameters
of the log-Gompertz model for D1 and D2, respectively. The fitted model is given by the
following piecewise model

Y(3)
t =

{
6.0242− 6.3704 exp{−0.1227t} , for 0 ≤ t < 21;
10.0677− 4.3578 exp{−0.0242t} , for t ≥ 21;

,

where Ŷ(3)
t denotes the fitted model in the third analysis.

Table 6. MSE, AIC and BIC values for the models fitted for datasets D1 and D2.

Model
Dataset D1D1D1 Dataset D2D2D2

MSE AIC BIC MSE AIC BIC

log-exponential 0.2012 30.6927 33.6799 0.0456 −11.5210 −4.7755
log-logistic 0.0716 12.0195 16.0024 0.0046 −169.9950 −161.0010

log-Gompertz 0.0242 −9.6880 −5.7051 0.0017 −237.1040 −228.1100
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Figure 7. MSE values for fitted models according to the grid G.

Table 7. Estimates for the piecewise model parameters Y(3)
t .

Parameter
Dataset

D1D1D1 D2D2D2

α1
6.0242 10.0677

(5.6457, 6.5511) (9.9692, 10.1756)

α2
6.3704 4.3578

(6.0233, 6.7403) (4.2767, 4.4464)

α3
0.1227 0.0242

(0.0984, 0.1484) (0.0230, 0.0254)

Figure 8 shows the values of the sub-datasets D1 and D2 and the fitted model Ŷ(3)
t

(black line) for a period of 120 days (from day 0 to day 119), with 90 days of fitting and
30 days of projection, for t ≥ 0. The MSE of the fitted piecewise model is 0.0067. This
value is smaller than the MSE of the model fitted in Section 3.1, meaning that the piecewise
model fits the data better.

At this point, it is important to note that future projections are given by the log-
Gompertz model fitted for sub-dataset D2. According to point estimates for the param-
eters of this model, the projection for the maximum number of cases is 23,569 (rounded
exp{10.0677} value) and the ordinate of the inflection point is T = log(4.3578)

0.0242 = 60.8251,
i.e., the peak of the pandemic was projected to occur on the 81st day (20 + 61) day (17
May 2020) with 8710 deaths. There were 8842 deaths recorded by the 81st day, an absolute
percentage error of 1.49% in relation to the real value.
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Figure 8. Data from 26 February 2020 to 25 May 20 and fitted piecewise model Ŷ(3)
t , t ≥ 0.
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3.3. Updates of the Piecewise Model

Following the procedure described in Section 3.2, we update the piecewise model
every thirty days. However, in this section, we focus on describing the modeling procedure
adopted to obtain the piecewise model. That is, we focus on the periods at which the
change in the pandemic’s growth behavior happened.

In the updating ran on the 120th day (fourth analysis), the log-Gompertz model for
D2 was maintained. However, on the update run on the 150th day (fifth analysis), it was
possible to identify a third period of the pandemic. For the identification of this third period,
we consider the following procedure. Let D2 = {y21, . . . , yd} and D3 = {yd+1, . . . , y149},
for d ∈ G = {60, . . . , 110}, where G is a grid from 60 to 110 with increments of size 1,
representing possible change points of the pandemic. Repeating the procedure of fitting
the three growth models for each sub-dataset, we obtain that the log-Gompertz is the best
model for both sub-datasets.

Figure 9 shows the MSE values from models fitted for d = {90, . . . , 100}. As one can
note, d = 92 is the best change point, i.e., the point with the smallest MSE value. Thus, we
set D2 = {y21, . . . , y92} and D3 = {y93, . . . , y149}.

The fitted model is given by the following piecewise model

Ŷ(5)
t =


6.0242− 6.3704 exp{−0.1227} 0 ≤ t < 21;
10.0707− 4.3603 exp{−0.0241t} , for 21 ≤ t < 92;
10.8892− 1.5467 exp{−0.0132t} , for t ≥ 92;

,

where Ŷ(5)
t denotes the fitted model in the 5-th analysis.

Figure 10 shows the values of the sub-datasets D1, D2 and D3 and the fitted model
Ŷ(5)

t (black line) for a period of 180 days (from day 0 to day 179), with 150 days of fitting
and 30 days of projection. The MSE of the fitted piecewise model is 0.0004811.

Following this procedure, after 14 analysis steps, we identify seven different periods of
the pandemic with change points on the days d = {20, 92, 240, 295, 363, 381}. The piecewise
growth model has the following configuration: log-Gompertz for
D1 = {y0, . . . , y20}, D2 = {y21, . . . , y92}, D3 = {y93, . . . , y240}, log-exponential for
D4 = {y241, . . . , y295}, D5 = {y296, . . . , y363}, D6 = {y364, . . . , y381} and log-Gompertz
for D7 = {y382,...}. Its mathematical expression is given by

Ŷ(14)
t =



6.0242− 6.3704 exp{−0.1227t} , for 0 ≤ t < 21;
10.1376− 4.4034 exp{−0.0229t} , for 21 ≤ t < 93;
10.7378− 3.1148 exp{−0.0158t} , for 93 ≤ t < 241;
10.5955 + 0.0030t , for 241 ≤ t < 296;
10.7666 + 0.0043t , for 296 ≤ t < 364;
11.0592 + 0.0091t , for 364 ≤ t < 382;
11.7423− 0.5207 exp{−0.0226t} , for t ≥ 382;

, (3)

where Ŷ(14)
t denotes the fitted model in the 14-th analysis step.

Figure 11 shows the recorded values and the curve of the fitted piecewise model Ŷ(14)
t ,

in the log and original scale, for a period of 600 days. The MSE of the fitted model is 0.0042,
t ≥ 0. At this point of the analysis, the future projection is given by the log-Gompertz
model fitted for sub-dataset D7. According to the point estimated for the parameters of
this model, the projection for the maximum number of deaths is 122,296 (exp{11.7142}). In
other words, if the current scenario is maintained, it is expected that there will be additional
26,105 deaths.
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Figure 9. MSE values for fitted models according to the change point d.
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Figure 10. Data from 26 February 2020 to 25 May 20 and fitted piecewise model Ŷ(5)
t , t ≥ 0.
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Figure 11. Data from 26 February 2020 to 30 April 2021 and fitted piecewise model Ŷ(14)
t , t ≥ 0.
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Table 8 shows the projections of the model for the cumulative number of deaths in the
last ten days of the sub-dataset D7 and the recorded values. The fourth line of this Table
shows the absolute percentage error in relation to the real value. The biggest percentage
error was 0.7877%.

Table 8. Projections and percentage error for the period from 11/09/20 to 11/16/20.

Date 04/13/21 04/14/21 04/15/21 04/16/21 04/17/21 04/18/21 04/19/21 04/20/21 04/21/21 04/22/21

Projection 90,279 90,949 91,609 92,259 92,899 93,529 94,149 94,759 95,359 95,950
Real value 90,627 90,810 91,673 92,548 92,693 92,798 93,842 94,656 95,532 96,191

error 348 139 64 289 206 731 307 103 173 241
% error 0.3840 0.1531 0.0698 0.3123 0.2222 0.7877 0.3271 0.1088 0.1811 0.2505

In addition to modeling the different pandemic periods, the fitted piecewise model
also allows linking the model change points to facts that affect the speed of the epidemic
spreading. For example, on the 334th day (13 February 2021) the first case of COVID-19 by
the P1 variant was registered in the state of São Paulo. After thirty-one days, on the 364th
day (15 March 2021), the proposed approach has indicated a change point; changing from
an exponential model with a growth rate of 0.0043 to an exponential model with a growth
rate of 0.0091. That is, a change for a more aggressive pandemic phase occurred. Since
the disease has an average time from 4 to 14 days to manifest the first symptoms and the
patients with grave symptoms remain an average time of 21 days in intensive clinical care;
then, it is very plausible to consider that the P1 variant is one of the possible factors related
to the change point.

On the other hand, due to an excessive increase in the number of deaths due to
the COVID-19 in the first months of 2021, the government of the state of São Paulo has
published on 6 March 2021 (45-th day) a decree implementing an emergency phase to
contain the transmission of the disease. In this decree, a curfew from 8 pm to 5 am and
the closing of commerce was adopted. Twenty-eight days after the decree, the proposed
approach has identified a change from the exponential model to a Gompertz model (day
382—4 February 2021). That is, a change to a “little better” phase occurred because, in
this new phase, at least, it is possible to make a projection for the occurrence of a peak.
Although the modeling procedure does not allow us to associate directly the publication
of the decree with the “new” pandemic phase, it is very plausible to consider that the
adoption of the decree has contributed to this change.

To finalize this section, we inform the reader that the fitted piecewise model in Equa-
tion (3) is not absolutely continuous. However, in the opposite to the fit of a single growth
model, the absolute continuity of a piecewise model is not a fundamental property because
the aim is to identify change points at which model changes happen. Thus, the final model
may have a jump in the change points. However, as is expected for a growth model, the
piecewise fitted model has the following properties:

• f (t) is non-decreasing;
• f (t) is continuos to the right side of the change points;
• lim

t→−∞
f (t) = 0 and lim

t→+∞
f (t) = α∗1 , where α∗1 is the upper asymptote of the last function.

3.4. Piecewise Growth Model for the Cumulative Number of Cases

As another illustration of the good performance of the proposed method, we fit a
piecewise model for the cumulative number of cases recorded in the State of São Paulo,
Brazil, in the period from 26 February 2020 to 30 April 2021. In this period, 2,903,709 cases
of COVID-19 were recorded.

The cumulative number of cases also presented a heterogeneous behavior over time.
In the course of analysis, we identify eight different periods for the number of cases with
change points on the days d = {34, 93, 144, 256, 310, 346, 376}. However, at this point, it is
important to emphasize that the number of cases is directly connected with the number of
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diagnostic tests performed. Thus, when a change in the pandemic’s behavior is detected,
this may be due to increased testing.

The fitted piecewise model has the following mathematical expression

Ẑ(14)
t =



7.5950− log(1 + 4214.0455 exp{0.2850}) , for 0 ≤ t < 35;
13.1173− 5.2413 exp{−0.0192t} , for 35 ≤ t < 94;
14.3067− 2.8624 exp{−0.0143t} , for 94 ≤ t < 145;
14.0132− 1.1061 exp{−0.0228t} , for 145 ≤ t < 257;
13.9311 + 0.0048t , for 257 ≥ t < 311;
14.1852 + 0.0067t , for 311 ≥ t < 347;
14.4121 + 0.0047t , for 347 ≥ t < 377;
15.7549 + 1.1918 exp{−0.0061t} , for t ≥ 377;

, (4)

where Ẑ(14)
t denotes the fitted model for the number of cases in the 14-th analysis.

Figure 12 shows the recorded values and the curve of the fitted piecewise model Ẑ(14)
t ,

in the original scale, for a period of 1000 days. The MSE of the fitted model is 0.0042. At this
point of the analysis, the future projections are given by the log-Gompertz model fitted for
sub-dataset D8. According to point estimates for parameters of this model, the projection
for the maximum number of cases is 6,954,504 (exp{15.7549}).
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Figure 12. Fitted piecewise model for the cumulative number of cases.

4. Final Remarks

In this paper, we describe a case study on the evolution of the COVID-19 pandemic
in the state of São Paulo, Brazil. The main aim of the study was to fit a piecewise growth
model in order to be able to explain the different periods of the pandemic’s evolution.
In addition, there is also the interest in being able to give a short-term forecast for the
cumulative number of cases and predict the peak point of the pandemic for each period of
the pandemic.

The modeling procedure was developed in the course of time by updating the model
every thirty days. In addition, for each update, we also verify the existence of two different
periods of the pandemic. In the affirmative case, we separate the dataset of the period into
two sub-datasets and fit a growth model for each of the sub-datasets. Overall, we identify
seven periods of the pandemic for the cumulative number of deaths. To each period of the
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pandemic, we fit three non-linear growth models: exponential, logistic and Gompertz. In
order to select the best model for each sub-dataset, we consider the MSE, the AIC and BIC
as criteria.

The fitted piecewise model for the number of deaths is a mix of the Gompertz model
and the exponential model. From a practical viewpoint, this can be viewed as the main
advantage of the proposed method, because, it is capable of explaining each period by
different values of pandemic parameters, such as the peak and the growth rate for each
period. In addition, the results also show that the fit of a piecewise model is more effective
than the fit of a single growth model.

From a practical viewpoint, the identification of the change points shows for govern-
ment agencies that some containment procedures of the transmission of the disease need
to be implemented; or, if some containment procedures implemented are working. For
example, if the data from a period are explained by a Gompertz model, then there is a
projection for the peak of the pandemic (inflection point) and an estimate for the maximum
number of cases (upper asymptote). Under this scenery, the government’s agents may
elaborate better strategies for containment of the transmission of the virus. However, if a
change point is identified, in which, the recorded data after this change point are explained
by an exponential model, then there is a new situation without a projection for a peak.
That is, the situation changed to a more aggressive phase of the pandemic. This scenery
shows that that more restrictive containment strategies need to be implemented as soon
as possible.

On the other hand, if we identify a change point from a period explained by an
exponential model for a period explained by a Gompertz model; this indicates that a
change happened towards “a little better” situation because now, at least, it is possible to
project the peak of the pandemic. This information may be used by government agencies in
order to elaborate and justify the adoption of containment strategies of the transmission of
the disease, and, in this way, to obtain a flattening of the Gompertz curve and, consequently,
anticipate the occurrence of the peak and reduce the number of deaths (decrease the upper
asymptote value).

Both examples described above show that it is important to consider the fit of a piece-
wise growth model, such as the one in our proposal, in contrast to fitting a single growth
model. Although the paper has been developed considering only three growth models
(exponential, logistic, and Gompertz), the procedure presented can be easily adapted for
other kinds of growth models. The computational codes used for fitting the models are in
the R language and can be requested by contacting the authors via e-mail.
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Appendix A. Growth Model

In order to model the cumulative number of deaths recorded in the State of São Paulo
Brazil, let Yt as defined in Equation (2) of the paper.

https://www.seade.gov.br/coronavirus
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Appendix A.1. Exponential Growth Model

One of the best known nonlinear models to describe the growth of an epidemic
disease is the exponential model. Assuming this model, the cumulative number of deaths
is given by

Xt = f (t|θ) = α∗1 exp{α2t}, (A1)

for θ = (α∗1 , α2), where α∗1 is the number of deaths in the initial time, t = 0, and α2 is the
growth rate, for t ≥ 0.

Taking the logarithmic transformation on both sides of Equation (A1), one obtains the
following linearized form of the model, called the log-exponential model,

Yt = log(Xt) = α1 + α2t,

where α1 = log(α∗1), for t ≥ 0.
Figure A1 shows the exponential and log-exponential functions for an initial value

α∗1 = 2 and growth rate α2 = {0.10, 0.20, 0.40}. As one can note in Figure A1, increasing
the value of α2 increases the rate of growth curve, meaning a fast growth of the number
of disease death. In addition, the curve of this model grows infinitely regardless of the
population size. This can be viewed as a practical problem since the number of cumulative
deaths is bound, for instance, by the population size.
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Figure A1. Exponential and log-exponential models.

Appendix A.2. Logistic Growth Model

Consider now the logistic growth model [19]. In contrast to the exponential model,
this model has an S-shape curve and, consequently, a growth limit. The cumulative number
of deaths is given by

Xt = f (t|θ) =
α∗1

1 + α2 exp{−α3t} , (A2)

where θ = (α∗1 , α2, α3) are the model parameters, for t ≥ 0. The parameter α∗1 is the upper
asymptote. In the context of the COVID-19, the value of α∗1 is an estimate for the maximum
number of deaths. The parameter α2 is related to the coordinates (tm, Ntm) of the inflection
point, where tm = ln(α2)

α3
and Ntm =

α∗1
2 . The parameter α3 is the intrinsic growth rate at

the inflection point. The time-point to obtain 100(1− p)% of the upper asymptote α∗1 is

tp = log(pα2)−log(100−p)
α3

, for p ∈ (0, 1).
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Taking the logarithmic transformation on both sides of Equation (A2), we obtain the
log-logistic model,

Yt = log(Xt) = α1 − log(1 + α2 exp{−α2t}),

where α1 = log(α∗1), for t ≥ 0.
Figure A2 shows the logistic and log-logistic models for an upper asymptote α∗1 = 10,000,

α2 = 5 and α3 = {0.10, 0.15, 0.30}. Similar to the exponential model, by increasing the value
of the parameter α3, the curve is more inclined. In these Figures, the symbol • represents
the inflection point and the symbol � represents the time-point needed to reach 80% of the
α1 value.

Appendix A.3. Gompertz Growth Model

As the third growth model, consider the Gompertz model [20,21]. This model is
defined as

Xt = f (t|θ) = α∗1 exp{−α2 exp{−α3t}}, (A3)

where θ = (α∗1 , α2, α3) are the model parameters. The interpretation of the parameters is
similar to that described for the logistic model.

The main difference in relation to the logistic model is that the curve of the Gompertz
model is not symmetric in relation to the inflection point. While the ordinate value of
the inflection point of the logistic model is α∗1

2 , for the Gompertz model, this value is
approximately 37% of the α∗1 value. The time-point to obtain 100(1− p)% of the upper

asymptote α∗1 is tp = log(α2)−log(−log(p))
α3

, for p ∈ (0, 1).
Taking the logarithmic transformation on both sides of Equation (A3), we obtain the

log-Gompertz model,

Yt = log(Xt) = α1 − α2 exp{−α3t}, for t ≥ 0.

where α1 = log(α∗1), for t ≥ 0.
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Figure A2. Logistic and log-logistic models.

Figure A3 shows the Gompertz and log-Gompertz models for an upper asymptote
α∗1 = 10, 000, α2 = 5 and α3 = {0.10, 0.20, 0.40}. Similar to the exponential and logistic
models, by increasing the value of the parameter α3, the curve is more inclined. In these
Figures, the symbol • represents the inflection point and the symbol � represents the
time-point needed to reach 80% of the α∗1 value.
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Figure A3. Gompertz and log-Gompertz models.
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