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Preface

These are the hand-outs of the slides we will present in our course “Splines,
Knots and Penalties. The Craft of Smoothing” at the 9th School on Regres-
sion Models, State of Sao Paulo, Brazil during February 2005. We describe
in detail the basics and use of P-splines, a combination of regression on a
B-spline basis and difference penalties (on the B-spline coefficients).
Our approach is practical. We see smoothing as an everyday tool for data
analysis and statistics. We emphasize the use of modern software and we
provide functions for R/S-Plus and Matlab.
The notes contain six sessions, time permitting we will cover sessions 1
through 5, only highlighting session 6 :

• Session 1 will present the idea of bases for regression. It will show
why global bases, like power functions or orthogonal polynomials
are ineffective and why local bases (gaussian bell- shaped curves or
B-splines) are attractive.

• In Session 2 penalties will be introduced, as a tool to give complete
and easy control over smoothness. The combination of B-splines and
difference penalties will be studied for smoothing, interpolation and
extrapolation.

• In the first two sessions the data are assumed to be normally dis-
tributed around a smooth curve. In session 3 we extend P-splines to
non-normal data, like counts or a binomial response. The penalized
regression framework makes it straightforward to transplant most
ideas from generalized linear models to P-spline smoothing. Impor-
tant applications are density estimation and variance smoothing.

• Any smoothing method has to balance fidelity to the data and smooth-
ness. An optimal balance can be found by cross-validation or AIC.
This subject is studied in Session 4, as well as the computation of er-
ror bands of an estimated curve. We also show how optimal smooth-
ing performs on simulated data, to get confidence that it makes the
right choices.

• In the first four section we only consider one-dimensional smooth-
ing. When there are multiple explanatory variables, we can use gen-
eralized additive models, varying-coefficient models, or combina-
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tions of them. Tensor products of B-splines and multi-dimensional
difference penalties make an excellent tool for smoothing in two (or
more) dimensions.

• Session 6 places P-splines in perspective. It presents Bayesian and
mixed model interpretations of P-splines. This session ends with a
comparison of the strengths and weaknesses of P-splines and other
popular smoothers. It also compares “our” P-splines to a competing
approach that uses truncated power functions and ridge penalties.
We also consider complications that can occur with correlated noise.

This is the fourth time we will present this course. We have learned a
lot from the first times, and changed the material accordingly, but there
will probably be some rough edges remaining. We hope that you will not
hesitate to confront us with anything that is not clear or that you consider
missing or superfluous.
We very much hope that you will find this course useful, and interesting,
and enjoyable.

Paul Eilers (p.eilers@lumc.nl)
Brian Marx (bmarx@lsu.edu)
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Basics of Bases
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Session 1

Basics of Bases

The Craft of Smoothing 1

Linear regression line

• Scatterplot: pairs (xi, yi), i = 1 . . .m

• Assumption: straight line fits data well

• Equation: µi = α0 + α1xi
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How to fit the line

• Least squares: minimize

S =
m∑

i=1

(yi − α0 − α1xi)2 =

m∑
i=1

(yi − µi)2

• Matrix notation:

X =


1 x1

1 x2
... ...
1 xm

 α =

[
α0

α1

]
µ = Xα

• Minimize |y − Xα|2 ⇒ X′Xα̂ = X′y⇒ α̂ = (X′X)−1X′y

The Craft of Smoothing 1 2

How to do it in S+/R

# Construct matrix with columns 1 and x

X <- outer(x, 0:1, "ˆ")

# Do regression

fit <- lsfit(X, y, intercept = F)

alpha <- fit$coef

# Compute fitted values

mu <- X %*% alpha

The Craft of Smoothing 1 3



Curved relationships

• Linear fit not always OK

• Judged by eye, or after studying residuals
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Fitting curved relationships

• Linear fit too simple? Add higher powers of x:

µi = α0 + α1xi + α2x2
i + α3x3 + . . .

• More columns in matrix X

X =


1 x1 x2

1 x3
1 . . . xn

1
1 x2 x2

2 x3
2 . . . xn

2
... ... ... ... ...
1 xm x2

m x3
m . . . xn

m


• Same regression equations: X′Xα = X′y⇒ α̂ = (X′X)−1X′y

The Craft of Smoothing 1 5



Higher degree fit in S+/R

# Construct matrix with columns of powers of x

n <- 3

X <- outer(x, 0:n, "ˆ")

# Do regression

fit <- lsfit(X, y, intercept = F)

alpha <- fit$coefficients

# Compute fitted values

mu <- X %*% alpha

The Craft of Smoothing 1 6

Basis functions

• Regression model µ = Xα

• Columns of X: basis functions. Polynomial basis

• With sorted x nice visual representation

Cubic polynomial basis

The Craft of Smoothing 1 7



Basis functions scaled and added

Weighted sum of cubic polynomial basis

The Craft of Smoothing 1 8

Numerical aspects

• Higher degree polynomials numerically unstable

• Round-off problems with α̂ = (X′X)−1X′y

• Partial remedy: center and normalize x

• Better: use orthogonal polynomials

• Eliminate powers up to p − 1 from p-th basis function

• Chebyshev nice and easy: C(x; p) = cos[(p − 1) arccos(x)]

The Craft of Smoothing 1 9



Chebyshev basis

Basis of Chebyshev polynomials

The Craft of Smoothing 1 10

The motorcycle data

• Simulated crash experiment

• Acceleration of motorcycle helmets measured
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More motorcycle pictures

• High degree needed for decent curve fit

• Bad numerical condition (use orthogonal polynomials)
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Sensitivity to data changes

• Longer left part (near zero)

• Notice wiggles
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The trouble with polynomials

• High degree (10 or more) may be needed

• Basis functions (powers of x) are global

• Moving one end (vertically) moves other end too

• Good fit at one end spoils things at other end

• Unexpected wiggles

• The higher the degree the more sensitive

• Global polynomials are a dead end

The Craft of Smoothing 1 14

Working with sections

• Fit only small sections with low degree polynomial

• Width of sections?
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Neighboring sections

• No nice connection of sections

• Jumps at boundaries
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An alternative: local basis functions

• Get rid of global basis functions

• Local basis functions: non-zero on limited domain

• There they can change freely without harm elsewhere

• Simple example: Gaussian curve, mean τ, SD σ

g(x|τ, σ) = exp[
−(x − τ)2

2σ2 ]

• Essentially 0 for |x − τ| > 3σ

• (No division by σ
√

2π: peak of g always 1)

The Craft of Smoothing 1 17



Gaussian basis

• A set (basis) of Gaussian functions

• All the same σ, but different τs

• Spacing of τs: 2σ
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Fitting a curve with Gaussian basis functions

• Basis functions are columns in matrix G

• One row for each x, one column for each τ

gi j = g(xi|τ j, σ) = exp[
−(x − τ j)2

2σ2 ]

• Model E(y) = µ = Gα

• Linear regression: minimize S = |y − Gα|2

• Normal equations G′Gα̂ = G′y

• Explicit solution α̂ = (G′G)−1G′y

The Craft of Smoothing 1 19



Motorcycle fit with a Gaussian basis
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Components of the Gaussian fit
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Properties of the Gaussian basis

• Gaussian basis functions are quite practical

• Easy to compute

• Easy to explain

• Disadvantage 1: not really local

• Disadvantage 2: no exact fit to line (polynomial)

• Alternative: B-splines

The Craft of Smoothing 1 22

The Gaussian ripple
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One linear B-spline

• Two pieces, each a straight line, rest zero

• Nicely connected at knots (t1 to t3) same value

• Slope jumps at knots
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One quadratic B-spline

• Three pieces, each a quadratic segment, rest zero

• Nicely connected at knots (t1 to t4): same values and slopes

• Shape similar to Gaussian
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One cubic B-spline

• Four pieces, each a cubic segment, rest zero

• At knots (t1 to t5): same values, first & second derivatives

• Shape more similar to Gaussian
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A set of cubic B-splines
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B-splines in perspective
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B-spline basis

• Basis matrix B

• Columns are B-splines
B1(x1) B2(x1) B3(x1) . . . Bn(x1)
B1(x2) B2(x2) B3(x2) . . . Bn(x2)
... ... ... ... ...
B1(xm) B2(xm) B3(xm) . . . Bn(xm)


• In each row only a few non-zero elements (degree plus one)

• Only a few basis functions contribute to µi =
∑

bi jα j = B′i•α

The Craft of Smoothing 1 29



B-splines in rotated perspective
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B-splines have no ripple
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B-splines in action
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How to compute B-splines

• Work from first principles

• Compute parameters of the polynomial segments

• Nine (3 times 3) coefficients, 8 constraints, height arbitrary

• Easier: recursive formula De Boor

• Yet easier: differences of truncated power functions (TPF)

• TPF: f (x|t, p) = (x − t)p
+ = (x − t)pI(x > t)

• Power function when x > t, otherwise 0

• Avoids bad numerical condition of TPF (De Boor)

The Craft of Smoothing 1 33



B-splines and truncated power functions 1
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B-splines and truncated power functions 2
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B-spline summary

• B-splines are local functions, look like Gaussian

• B-splines are columns of basis matrix B

• Scaling and summing gives fitted values: µ = Bα

• The knots determine the B-spline basis

• Polynomial pieces make up B-splines, join at knots

• General patterns of knots are possible

• We consider only equal spacing

• Number of knots determines width and number of B-splines

The Craft of Smoothing 1 36

Wrap-up

• Polynomials essentially useless for complicated curve fit

• Local bases are better

• Gaussian bell curves: to get the idea

• B-splines are better

• B-splines are differences of truncated power functions

• But not ideal: problems with sparse data

• Next session: penalties

The Craft of Smoothing 1 37
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The Power of Penalties
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Session 2

The Power of the Penalty

The Craft of Smoothing 2

B-spline basis revisited

• Regression on local basis functions

• Each basis function is a B-spline

• In a column of a matrix B

• Weighted sum gives fit µ = Bα

• More B-splines: more detail in µ possible

The Craft of Smoothing 2 1



Illustrating the number of B-splines
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Smoothness and size of Basis

• More B-splines in basis: more detail is possible

• But it is not necessary!

• Perfectly smooth curves µ = Bα are possible

• It all depends on α

• P-spline idea: control smoothness of α

• Introduce a penalty on roughness of α

• While using a “rich” B-spline basis

The Craft of Smoothing 2 3



Smoothness with many B-splines

The Craft of Smoothing 2 4

How to measure roughness

• The coefficients determine roughness

• High roughness: α erratic

• Little roughness: smoothly varying α

• Simple numerical measure:

R =
n∑

j=2

(α j − α j−1)2

• Or RMS “change to neighbor”: r =
√

R/(n − 1)

The Craft of Smoothing 2 5



Roughness number illustrated

r = 0.29 r = 0.09

r = 0.08 r = 0.00

The Craft of Smoothing 2 6

Differences and matrices

• We are interested in ∆α j = α j − α j−1

• Special matrix makes life easy:

∆α = Dα; D =


−1 1 0 0

0 −1 1 0
0 0 −1 1


• D has n − 1 rows, n columns

The Craft of Smoothing 2 7



Roughness with a matrix

• Roughness measure R:

R = |∆α|2 = |Dα|2 = α′D′Dα

• Matrix D easily computed

• In S+/R: D <- diff(diag(n))

• So we have easy tool to express roughness

The Craft of Smoothing 2 8

Penalized least squares

• We set a double goal:

– good fit to the data: low S = |y − Bα|2

– smooth curve, i.e. low roughness: R = |Dα|2

• Balance of the two in one function (λ > 0):

Q = S + λR = |y − Bα|2 + λ|Dα|2

• Last term known as penalty

• User sets λ (for now, automatic choice later)

• Penalized least squares

The Craft of Smoothing 2 9



Penalized least squares solution

• Minimize

Q = S + λR = |y − Bα|2 + λ|Dα|2

= y′y − 2α′B′y + α′(B′B + λD′D)α

• Set derivative to α zero; result:

(B′B + λD′D)α = B′y⇒ α̂ = (B′B + λD′D)−1B′y

• Small modification of B′Bα = B′y

The Craft of Smoothing 2 10

The penalty in action

λ = 0.1; r = 0.12, s = 0.09 λ = 1.0; r = 0.08, s = 0.09

λ = 10.0; r = 0.05, s = 0.12 λ = 100.0; r = 0.02, s = 0.22

The Craft of Smoothing 2 11



The bias problem

• Increased λ gives smoother curve

• But also it tends to horizontal line

• This bias may prevent enough smoothness

• Solution: use higher order differences

The Craft of Smoothing 2 12

Second order differences

• First order: ∆α j = α j − α j−1

• Second order: ∆(∆α) = ∆2α

∆2α j = (α j − α j−1) − (α j−1 − α j−2) = α j − 2α j−1 + α j−2

• Matrix in S+/R: D <- diff(diag(n), diff = 2)

D2 =


1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1



The Craft of Smoothing 2 13



Second order penalty in action

λ = 0.1; r = 0.0709, s = 0.09 λ = 10.0; r = 0.0133, s = 0.10

λ = 1000.0; r = 0.0047, s = 0.15 λ = 10000.0; r = 0.0008, s = 0.21

The Craft of Smoothing 2 14

Higher order differences

• Third order

∆3α j = α j − 3α j−1 + 3α j−2 − α j−3

• Matrix

D3 =


−1 3 −3 1 0 0

0 −1 3 −3 1 0
0 0 −1 3 −3 1


• In S+/R: D <- diff(diag(n), diff = 3)

The Craft of Smoothing 2 15



Interpolation without a penalty

• Interpolation with B-splines

– fit B-splines by regression: ŷ = Bα̂
– compute B-splines at new x̃: B j(x̃), j = 1 . . . n
– µ(x̃) =

∑
j B j(x̃)α̂

• Works fine if you can estimate α

• Regression may fail with large gaps in x

• Then some B-splines have no support

• Singular system of equations

The Craft of Smoothing 2 16

Interpolation with a penalty

• Penalty let elements of α hold hands

• They bridge the gap(s) automatically!

The Craft of Smoothing 2 17



Extrapolation

• Extrapolation works the same

• Just choose the domain of x wide enough

• Take a generous number of (cubic) B-splines

• Penalty again bridges the gap

• Smooth fit and neat extrapolation automatically

• Interpolation (of coefficients): polynomial of degree 2d − 1

• Extrapolation (of coefficients): polynomial of degree d − 1

• With differences of order d in penalty

The Craft of Smoothing 2 18

Inter- and extrapolation with d = 1

The Craft of Smoothing 2 19



Inter- and extrapolation with d = 2

The Craft of Smoothing 2 20

Inter- and extrapolation with d = 3

The Craft of Smoothing 2 21



Limits of strong smoothing

• What happens when λ gets very large?

• Penalty term overwhelming in |y − Bα|2 + λ|Ddα|2

• Hence Ddα essentially zero

• Ddα = 0 if α j =
∑d−1

k=0 γk jk

• B-splines property: if α polynomial in j, Bα polynomial in x

• Thus fit ŷ approaches polynomial in x of degree d − 1

• It is the least squares polynomial that minimizes |y − Bα|2

The Craft of Smoothing 2 22

Conservation of moments

• Vector vk, with elements vik = xk
i , integer k

• In-product y′vk called k-th moment of y

• Think of classical “method of moments”

• Moment property of P-splines fit (µ = Bα)

• For 0 < k < d we always have y′vk = µ′vk (for any λ)

• “Conservation of moments”

• Usefulness will be become clear in density estimation

The Craft of Smoothing 2 23



Wrap-up

• Basis with many B-splines allows detail

• But smoothness depends on coefficients α in Bα

• Difference penalty on α to tune smoothness

• P-splines allow flexible interpolation and extrapolation

• In the limit we get a polynomial

• Moments are conserved (up to order d − 1)

• Next session: generalized linear smoothing

• Counts, binary data, gamma distribution (variance)

The Craft of Smoothing 2 24
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Session 3

Generalized Linear
Smoothing

The Craft of Smoothing 3

What you will get

• Applications of the generalized linear model 1

• Specifically: Poisson and binomial P-spline smoothing

• Difference penalty:

• Penalized maximum likelihood estimation

• Goodness-of-fit, effective dimension of model

• (Twice) standard error bands for the mean smooth

• Mean and variance smoothing in scatterplots

• S-PLUS/ R code
1Nelder and Wedderburn (1972, JRSS B)

The Craft of Smoothing 3 1



Poisson motivating example

• British coal mining data

• Response: accident counts (Poisson)

• Regressor: years 1851-1962 (m = 112)
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Generalized linear model: 3 components

1. Random component (Y):

• Identify probability distribution of response Y: E(Y) = µ
• e.g. Poisson (counts) or binomial (0/1)

• Independent observations in Y

2. Systematic component (η):

• Regressors expressed as linear predictor

• e.g. η = Bα or η = α0 + α1Year

3. Monotone link function (g):

• Links expectation to systematic component: e.g. log, sqrt, identity

• e.g. g(µ) = log(µ) = η = Bα

The Craft of Smoothing 3 3



Poisson regression example: polynomial basis

• Natural link: ln(µ) = Xα = α0 + α1Year

• Mean µ is expected value of a Poisson (mean=var, scale=1)

• Inverse link: µ = exp(α0 + α1Year), always positive
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The Normal model

• Transformed response?

– Attempt to coerce normal theory methods
– Objective: transform to normal/ constant variance
– Transformation may not give both!

• In general, GLMs use maximum likelihood methods

– Not restricted to normal responses
– Choice of link separate from response
– Link need not stabilize variance or produce normality
– Efficient estimation: use mean/variance relationship
– MLE α̂: approximately Normal, consistent...

• Normal, identity link just special GLM: OLS equivalent

The Craft of Smoothing 3 5



Poisson maximum likelihood estimation (MLE)

• Likelihood function with independent data

L =
m∏

i=1

e−µiµyi
i

yi!

• Maximize ln(L) = l, e.g.

l =
m∑

i=1

{yiln(µi) − µi − ln(yi!)}

• Make l function of α, substitute above with

ln(µi) = x′iα µi = exp(x′iα)

The Craft of Smoothing 3 6

Method of scoring/ Newton-Raphson

• Differentiate l(α) and set to zero (score):

0 =
dl
dα
=

dl
dµ

dµ
dη

dη
dα

• “Normal” equations: X′(y − µ) = 0 (nonlinear in α)

• Linearize and shuffle: 0 = dl
dα|αo +

d2l
dαdα′ |αo(α − αo)

• Expectation simplifies expression (specifically d2l
dαdα′ term)

• Solve the (iterative) expression for α

The Craft of Smoothing 3 7



Just a few (gory) details!

0 =
dl
dα
|αo +

d2l
dαdα′

|αo(α − αo)

= so +Ho(α − αo)

α = αo −H−1
o so

= αo + (X′WoX)−1so under expectation

= (X′WoX)−1X′Woẑ shuffle into IWLS form

The Craft of Smoothing 3 8

MLE leads to iterative weighted system/ solution

• IRWLS equations:

(X′ŴX)α̂ = X′Ŵẑ ⇒ α̂t+1 = (X′ŴtX)−1X′Ŵtẑt

• Starting values on working vector: ẑ0 = ln(y + 0.5)

• Ŵ, ẑ are simple functions of α̂

• e.g. Poisson (log link)

– Ŵ = diag{µ̂} = diag{exp(Xα̂)}
– ẑ = Ŵ−1(y − µ̂) + Xα̂

• Other GLM responses/links change Ŵ and ẑ

The Craft of Smoothing 3 9



Generalized (cubic) B-spline smoothing

• Now g(µ) = η = Bα
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Skeletal view of η̂ = Bα̂
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Penalty: generalized P-spline smoothing

• Maximize l, now subject to difference penalty on α

l? = l(α; B, y) −
1
2
λ|Ddα|

2

• Penalized system of equations:

B′(y − µ) = λD′dDdα

• Still nonlinear in α; apply method of scoring

• Penalized iterative solution:

α̂t+1 = (B′ŴtB + λD′dDd)−1B′Ŵtẑt

The Craft of Smoothing 3 12

Recall: the difference penalty

• |Ddα|2 = α′D′dDdα

• Regularization penalty: λ ≥ 0, continuous control

• First/second order difference penalty (d = 1, 2)

D1 =


−1 1 0 0 · · · 0 0 0

0 −1 1 0 · · · 0 0 0
... ... ...

0 0 0 0 · · · 0 −1 1


D2 =


1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
... ... ...
0 0 0 0 · · · 1 −2 1
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Poisson P-spline smoothing

• 20 segments, d=2, vary λwith log link: µ = exp(Bα)
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S-PLUS/ R code

fit1 <- ppoisson(Year, Count, 20, 3, 2, 0.0001, plot=F)

plot(Year, Count, ylab="Accident count", xlab=’Year’ )

lines(fit1$xgrid, fit1$ygrid, lwd=2)

text(1920, 5.5, ’lambda=0.0001’)

text(1920, 4.5, ’eff dim=19.7’)

The Craft of Smoothing 3 15



Twice standard error bands

• Sandwich estimator for

var(η̂) = var(Bα̂) = var(Hẑ)

= H

Ŵ︷︸︸︷
var(ẑ) H′

≈ B(B′ŴB + λD′dDd)−1B′︸                      ︷︷                      ︸
H

ŴB(B′ŴB + λD′dDd)−1B′

• se(η̂): sqrt of diagonal

• η̂ approximately Normal: (L, U) : η̂ ± 2 se(η̂)

• CI for µ: [g−1(L), g−1(U)]

The Craft of Smoothing 3 16

Coal mining smooth, twice s.e. bands
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Binomial P-spline smoothing

• Kyphosis data (m = 81)

• Post-operative deformity: presence (1) or absence (0)

• Regressor: Age (months)
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The Craft of Smoothing 3 18

Modified GLM ingredients

• g(µ) = ln π
1−π = Bα = η

• Response= binomial; link= logit

• Probability inside (0, 1) interval, smooth in Age

• µ = π =
exp(Bα)

1+exp(Bα)

• W = diag{π(1 − π)}

• z =W−1(y − π) + Bα

• Apply iterative solution

• Efficient parameter estimation
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Skeletal view of linear predictor

• B: cubic B-spline basis (10 segments), d = 2

• Kyphosis: skeletal view of −Bα̂
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P-spline smooth: 10 segments, d = 2, vary λ
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S-PLUS/ R code

pbinomial(Age, Kyphosis, 10, 3, 2, 0.0001, plot=T, se=T)

text(100, 0.9, ’lambda=0.0001’)

text(100, 0.8, ’eff dim=9.8’)

The Craft of Smoothing 3 22

Density smoothing: an important exploratory tool

• Previously, Poisson time series: now step into densities

• Idea: P-spline smooth density overlayed on histogram

• Density estimation as Poisson regression

• log(µ) = Bα

• Regressor: midpoints of (narrowly) binned histograms

• Response: (Poisson) counts in bins

• Coal mining accident data naturally occurs in bins

• Often need to process data with hist(x, breaks)
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Optimal density for coal mining accidents
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S-PLUS/ R code

• Cubic B-splines, nseg=20, pord=2, opt λ = 3.2

den.coal <- ppoisson(Year, Count, 20, 3, 2, lambda=3.2, plot=F)

plot(Year, Count)

lines(Year, Count, type=’h’)

lines(den.coal$xgrid, den.coal$ygrid, lwd=2)

The Craft of Smoothing 3 25



Old faithful geyser data

• Waiting time in minutes of eruptions

• Continous data between August 1-15, 1985 (m = 299)
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Trend and spread

• We concentrated on trend modelling

• With normal and non-normal (counts, binomial) data

• What about the spread around the trend?

• Data (xi, yi), trend model (xi, ŷi)

• Residuals ri = yi − ŷi

• How does variance of r change with x?
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Motorcycle residuals: non-constant variance
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Variance smoothing I

• Residuals ri from smoothing (or regression model)

• Their variance shows a smooth trend

• Assume normal distribution ri ∼ N(0, σ2
i )

• Combine P-splines and GLM idea for trend of σ2

• Log link: ln(σ2) = Bα = η

• Likelihood:

L(σ; r) =
m∏

i=1

1

σi
√

2π
exp(
−r2

i

2σ2
i

)
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Variance smoothing II

• Penalized log-likelihood (σ2
i = eηi)

l(σ2; ri) = −
1
2

m∑
i=1

(ηi + r2
i e−ηi) −

1
2
λ|Dα|2

• Likelihood equations, with V = diag(r2):

B′(1 − Ve−η) = λD′Dα

• Linearization leads to iterative P-spline smoothing:

α̃ = (B′B + λD′D)−1B′z̃

z = 1 − Ve−η + η

The Craft of Smoothing 3 30

Extensions and details

• Combined approach possible

• Smooth variance gives optimal weights for trend estimation

• New trend, new residuals, new smooth variance, ...

• Needs further research: stability and speed still unclear

• Note

– dev(r, λ) =
∑m

i=1(η̂i + r2
i e−η̂i)

– eff dim = trace(B′B(B′B + λD′D)−1)
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Motorcycle mean and variance
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Wrap-up

• Poisson and binomial smoothing

• Penalized maximum likelihood estimation

• P-splines useful for trend estimation in scatterplots

• But also for smoothing the variance

• Next, P-spline recipe and optimal smoothing

• Density estimation: P-spline Poisson smoothing

• Processing count data with narrow histogram bins
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Optimal Smoothing in Action

The Craft of Smoothing 4

What you will get

• Practical recipe for P-splines

• Cross-validation measures

• Standard error of prediction

• Optimal smoothing

• Effective dimension of P-spline model

• Limiting polynomials

• Standard error bands

• Density estimation using P-splines

The Craft of Smoothing 4 1



Practical recipe for P-splines

• Choose “too many” equally-spaced (cubic) B-splines

• Default penalty order d = 2 or d = 3

• Measure performance with cross-validation (CV)
or an information criterion (AIC, BIC)

• Vary λ’s on a logarithmic grid search

• Find minimum of performance criterion

• Report α̂, the P-spline coefficients,
which is compact form of the smooth

The Craft of Smoothing 4 2

Pnormal function in S-PLUS/R

par(mfrow=c(1,1))

x<-Motimp$V1

y<-Motimp$V2 pnormal(x, y, nseg=25,

bdeg=3, pord=2, lam=1, plot=T, se=T)
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General: cross-validation (CV)

• Data splitting (1 fit), for example:

– 2
3 model training

– 1
3 model testing/validation

• 10-fold CV (10 fits):

– leave out 10%, fit on remaining 90%
– test/validate on 10%
– cycle for all 10 partitions

• Leave-one-out (m fits*):

– same idea as 10-fold
– just leaving out a single observation
– test/validate one observation at at time

The Craft of Smoothing 4 4

CV summary measure

• Standard error of prediction (CVSEP)

• Leave-one-out CVSEP: ŷ−i is predicted value at ith point
using the trained model without the ith point

CVSEP =

√√
1
m

m∑
i=1

(yi − ŷ−i)2

The Craft of Smoothing 4 5



Cross-validation

• Straightforward recipe is expensive

– Fix λ, remove ith observation
– Fit model (−i)
– Predict at i location using model (−i)
– Cycle through all i
– Summarize with CVSEP
– Repeat for λ along a grid search
– Seek λ corresponding to minimum CVSEP

The Craft of Smoothing 4 6

Penalized hat matrix

• Instead use hat matrix H (not a projection matrix)

ŷ = Bα̂λ
= B(B′B + λD′dDd)−1B′︸                   ︷︷                   ︸

H(λ)

y

= H(λ) y

• H(λ) turns y into ŷ

The Craft of Smoothing 4 7



Computational relief for cross-validation

• Use H(λ) to get at CVSEP with one fit

• It is well known that:

yi − ŷ−i =
yi − ŷi

1 − hii

• hii = b′i(B
′B + λD′dDd)−1bi , where b′i is ith row of B

• Only ŷ and diag(H) needed; both can be computed quickly

• Cross-validation with little extra work

• Now minimize CVSEP as λ (not the knot number) varies

The Craft of Smoothing 4 8

Motorcycle helmet: (nseg=25, pord=2, vary λ)
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Optimal seeking function, based on CVSEP
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CVSEP vs. log(λ), by penalty order

log(lambda)

C
VS

EP

-3 -2 -1 0 1

23
.5

24
.0

24
.5

d=3
d=2
d=1

The Craft of Smoothing 4 11



Aside: B-spline CV for motorcycle data
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Aside: optimal B-spline fit using CVSEP
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(Effective) dimension: linear regression

• Recall standard linear regression: ŷ = Xα̂ = Hy

• Property trace(H) = p, where p = ncol(X)

H = X(X′X)−1X′

• Thus the trace of hat matrix provides dimension

• For general smoothers, we have ŷ = Sy

• Trace(S) approximates dimension of fit

• Result can be used with P-splines

The Craft of Smoothing 4 14

Effective dimension (ED): P-splines

• P-spline hat matrix: H(λ) = B(B′B + λD′dDd)−1B′

• Effective dimension: ED(λ)= trace{H(λ)}

• More efficient to compute (n vs. m):

trace{B′B(B′B + λD′dDd)−1
}

• Invariant to cyclical permutations, trace(ABC)=trace(CAB)

• One-to-one relationship between effective dimension and λ

• As λ gets large, then effective dimension goes to d

The Craft of Smoothing 4 15



Effective dimension for motorcycle data
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Motorcycle: ED vs. log(λ), by penalty order
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Polynomial limit: λ = 106, pord=1,2,3,4
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Confidence builder: cubic polynomial + noise
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Insight: polynomial limit

• Suppose (y, x) truly linear

• Follows B-spline parameters: α j = a + bj

∆α = α j+1 − α j

= a + b( j + 1) − (a + bj) = b

• Thus ∆2α = b − b = 0

• Recall: large λweighs (dth order) penalty, not RSS

• Consequence: min Q as λ→∞,
smooth goes toward polynomial d − 1

The Craft of Smoothing 4 20

Standard errors

• Sandwich estimator

var(ŷ) = var(Hy)

= H

σ2I︷︸︸︷
var(y) H′

≈ σ2 B(B′B + λD′dDd)−1B′︸                   ︷︷                   ︸
H

B(B′B + λD′dDd)−1B′

• Use sqrt of diagonal, α̂ approx. normal, ŷ ± 2se(ŷ)

• Again, effective model dimension: tr(H)

• Variance estimate

σ̂2 =
|y − ŷ|2

m − tr(H)
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Optimal P-spline fit with twice se bands
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GLM optimal smoothing: choice of λ

• Leave-one-out CV is less direct and approximate

• Alternatively use cost-complexity information criterion

• AIC(λ) = deviance(y;λ) + 2 effective dimension(λ)

• Compromise: fidelity + roughness

• Choose λ to minimize AIC

• Other information criteria exist
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Coal mining optimal smooth, 20 segments
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Kyphosis optimal smooth, twice s.e. bands
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Details: deviance

• Log-likelihood difference (×2): current vs. ”perfect” model

• Deviance = 0, when all µ̂ = y

• Deviance:

– Normal: 1
σ2

∑m
i=1
(
yi − µ̂i

)2
– Poisson: 2

∑m
i=1 yi ln

(yi
µi

)
– Binomial: 2

∑m
i=1

(
yi ln

[yi
µ̂i

]
+ (1 − yi) ln

[1−yi
1−µ̂i

])

The Craft of Smoothing 4 26

A closer look at Poisson deviance

• Likelihood: L =
∏m

i=1
exp(−µi)µ

yi
i

(yi!)

• Log L

lµ =
m∑

i=1

(µi − yi ln(µi) − yi!)

• “Perfect” µ = y:

ly =

m∑
i=1

(yi − yi ln(yi) − yi!)

• Deviance: 2(lµ − ly)

• Function of α: ln(µ) = Bα and µ = exp(Bα)
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Details: effective dimension (ED)

• Approximate model dimension: trace{Ĥ(λ)}

η̂ = Bα̂ = B(B′ŴB + λD′dDd)−1B′Ŵ︸                          ︷︷                          ︸
Ĥ(λ)

ẑ

• Smooths current working vector ẑ into a linear predictor η̂

• Converged Ŵ, ẑ

• Cyclical permutations okay for trace computations:

ED(λ) = trace{B′ŴB(B′ŴB + λD′dDd)−1
}

• Advantage: n × n rather than m ×m
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Density smoothing: an important exploratory tool

• Previously, Poisson time series: now step into densities

• Idea: P-spline smooth density overlayed on histogram

• Density estimation as Poisson regression

• log(µ) = Bα

• Regressor: midpoints of (narrowly) binned histograms

• Response: (Poisson) counts in bins

• Often need to process data with hist(x, breaks)
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Old faithful geyser data

• Duration in minutes of eruptions (not waiting time)

• Continuous data between August 1-15, 1985 (m = 299)
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Digit preference at 2 and 4 minutes

• Heaps of data at 2 and 4 minutes

• Explanation: these recorded at dark

• Digit preference, rounded estimates

• Opportunity to interpolate with P-splines

• Leave out these bins (not set them to zero)
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Geyser: density interpolation
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S-PLUS/ R code

Breaks <- seq(from=min(Duration), to=max(Duration), length=101)

ghist <- hist(Duration, breaks=Breaks, plot=F)

Counts <- ghist$counts

nBreaks <- length(Breaks)

mids <- Breaks[-nBreaks] + diff(Breaks)/2

pden <- ppoisson(x=mids, y=Counts, 20, 3, 2, 0.001, plot=F)

width <- mean(diff(Breaks)); adj <- width*sum(Counts)

plot(mids, Counts/adj, type=’h’)

lines(pden$xgrid, pden$ygrid/adj )
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Optimal density for geyser data: 100 and 200 bins
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Beauty of P-spline densities

• Density constrained positive by inverse link: µ = exp(Bα)

• As λ gets large, then limit:

– Normal (pord=3), exponential (pord=2)

• No boundary effects

• Specialized limits encouraged

• Mean and variance conserved from histogram to density

• Compact result: density compressed in α̂
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Confidence builders

• Randomly generate m = 100 Normal(0, 1) variates

• Process data: histograms with 20 or 100 bins

• Also vary the limits of the histogram: e.g. ±4, 5, 6

• Use P-splines: nseg=20 and pord=3

• Optimize density using AIC: expect large λ

• Now repeat exercise, random exponentials, pord=2
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Histograms of Normals

Z midpoints

C
ou

nt
s

-4 -2 0 2 4

0
5

10
15

20 bins

Z midpoints

C
ou

nt
s

-4 -2 0 2 4

0
1

2
3

4
5

6

100 bins

The Craft of Smoothing 4 37



Optimal densities
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Optimal densities for different limits
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Histograms of exponential data
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Optimal densities
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P-spline conservation of moments

• Histogram with m bins and ci counts

• Fitted µ̂i at each midpoint xi

• Penalty of order d

• For d = 1:
∑m

i=1 ci =
∑m

i=1 µ̂i (proper density)

• For d = 2 also holds
∑m

i=1 xici =
∑m

i=1 xiµ̂i (same mean)

• For d = 3 also holds
∑m

i=1 x2
i ci =

∑m
i=1 x2

i µ̂i (same variance)

• True for any λ ≥ 0
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The influence of boundaries

• Example: observations that cannot be negative

• Left boundary of density at zero

• Choose domain of B-splines with left boundary at zero too

• If not: histogram bins below zero with no counts

• Smoother does his best to fit

• Result: AIC indicates light smoothing

• (Boundary problem familiar in kernel smoothing)

The Craft of Smoothing 4 43



Specialized limits for suicide treatment study

log(lambda)

AI
C

-2 0 2 4

78
80

82
84

86

Treatment length

C
ou

nt
s

0 200 400 600 800

0
2

4
6

8

100 bins

limits: (0,800)

log(lambda)

AI
C

-4 -2 0 2

80
90

10
0

11
0

12
0

13
0

Treatment length

C
ou

nt
s

-200 0 200 400 600 800

0
2

4
6

8
10

100 bins

limits: (-200, 800)

The Craft of Smoothing 4 44

Hidalgo stamp thickness: many modes

• Measure approximately 500 stamps with micrometer

• Tendency (human) to pick rounded measurements

• AIC indicates light smoothing as optimal

• Digit preference? Modes concentrate at multiples of 0.01
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Optimal Hidalgo P-spline density
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Wrap-up

• Practical recipe for P-splines, using CVSEP

• Effective dimensions,limiting polynomials, se bands

• P-splines very effective for density smoothing

• Limits, boundaries are respected, mean/ var conserved

• AIC indicates right amount of smoothing

• Next, extensions to generalized additive models

• P-spline varying coefficient models

• Some P-spline extensions into 2-D smoothing
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Session 5

Multidimensional Modelling
with P-splines
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What you will get

• Extensions into generalized additive models

• Extensions into varying coefficient models

• 2-D smoothing using tensor product B-splines

• Double penalization: rows and columns of B-splines
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Generalized additive models

• One-dimensional smooth model: η = f (x)

• Two-dimensional smooth model: η = f (x1, x2)

• General f : any interaction between x1 and x2 allowed

• Complex: two-dimensional smoothing

• Compromise: (generalized) additive model: η = f1(x1) +
f2(x2)

• Both f1 and f2 smooth (Hastie and Tibshirani, 1990)

• Higher dimensions straightforward
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Kyphosis: Additive predictor, P(Y=1)
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Backfitting for GAM estimation

• Assume linear model: E(y) = µ = f1(x1) + f2(x2)

• Assume: approximations f̃1 and f̃2 available

• Compute partial residuals r1 = y − f̃2(x2)

• Smooth scatterplot of (x1, r1) to get better f̃1

• Compute partial residuals r2 = y − f̃1(x1)

• Smooth scatterplot of (x2, r2) to get better f̃2

• Repeat to convergence

The Craft of Smoothing 5 4

More on backfitting

• Start with f̃1 = 0 and f̃2 = 0

• Generalized residuals and weights for non-normal data:

• Any smoother can be used

• Convergence can be proved, but may take many iterations

• Convergence criteria should be strict
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A recent problem with backfitting

• Backfitting (in S-PLUS) is de-facto GAM standard

• Heavily used in air pollution epidemiology

• Smooth term for time trend

• Parametric or smooth terms for temperature, fined dust, ...

• Used by several groups/studies in Europe, US, Canada

• Spring 2002, Johns Hopkins discovers incomplete
convergence

• Upheaval in the press, all computations redone

The Craft of Smoothing 5 6

PGAM: GAM with P-splines

• Use B-splines: η = f1(x1) + f2(x2) = B1α1 + B2α2

• Combine B1 and B2 to matrix, α1 and α2 to vector:

η = [B1 : B2]
[
α1

α2

]
= Bα

• Difference penalties on α1, α2, in block-diagonal matrix

• Penalized GLM as before: no backfitting
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P-GAM fitting

• Maximize:

l∗ = l(α; B, y) −
1
2
λ1|Dd1α1|

2
−

1
2
λ2|Dd2α2|

2

• Iterative solution:

α̂t+1 = (B′ŴtB + P)−1B′Ŵtẑ?t

where

P =
[
λ1D′d1Dd1 0

0 λ2D′d2Dd2

]
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PGAM advantages

• No backfitting call needed, directly fit

• Fast computation

• Equations moderate size, Compact result (α∗)

• Explicit computation of hat matrix: fast CV, eff dim, AIC

• Easy standard errors

• No iterations, no convergence criteria to set
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Features of P-spline GAMs

• Eff dim = trace(Ĥ) =trace(B(B′ŴB + P)−1B′Ŵ)

• AIC = deviance(y; α̂) + 2 trace(Ĥ)

• Standard error of jth smooth

B j(B′ŴB + P)−1B′ŴB(B′ŴB + P)−1B′j

• GLM diagnostics accessible

• Easy combination with additional linear regressors/factors

• Example: [B1 : B2 : X] (no penalty on X coeffs)
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Three regressor kyphosis GAM
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• Top: smoothing splines, df=3 each

• Bottom: cubic P-splines, d = 3, eff dim=(3, 7.2, 3)
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Kyphosis grid search: top 5 performers

d = 2 d = 3
AIC γ1 γ2 γ3 AIC γ1 γ2 γ3

59.249 -1 -4 1 58.173 4 -4 4
59.273 -1 -4 0 58.173 3 -4 4
59.324 -1 -4 2 58.173 4 -4 3
59.334 -1 -4 3 58.174 3 -4 3
59.335 -1 -4 4 58.175 2 -4 4

• Age, Number, Start

• γ = log10(λ) : −4, −3, · · · , 3, 4

• 93
× 2 models

• Polynomial limits

The Craft of Smoothing 5 12

Varying coefficient models (VCM)

• Motivating example:
price of IBM hard drives vs. size (GB)

• Monthly samples: Feb 1999 − Jan 2000
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Combine months: one model

• VCMs allow coefficients to vary smoothly (interact) with
another variable t (say, time or space)

µ = x(t) f (t)

=


x1 0 · · · 0
0 x2 · · · 0
... ...
0 0 · · · xm




f1
f2
...
fm


= diag{x}

f (t)︷︸︸︷
Bα

= Uα

• U = diag{x}B, B-spline index is t
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Estimation for VCMs

• Effective regressors for VCM: U = diag{x}B

• Simple: only rows of B change

• Estimation reduces to (generalized linear) smoothing with U

• Normal (minimize):

Q = |y −Uα|2 + λ|Dα|2

α̂ = (U′U + λD′D)−1U′y

• Poisson/Binomial (maximize):

l∗ = l(α; U, y) −
1
2
λ|Ddα|

2

α̂t+1 = (U′ŴtU + λD′D)−1U′Ŵtẑt
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Smooth slopes on month index
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P-spline VCMs

• Can imagine more VCM terms in (now linear) η

• Plays into hands of P-GAM structure:
the B j replaced with U j in penalized likelihood

• Mixing and matching U’s and B’s

• Useful for months with missing data

• Useful for month with one observation

• Extrapolation to future months possible
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Non-normal example: U.S. polio counts

• Monthly counts: 1970 − 1987 (m = 216)

• Assume Poisson response: g(µ) = log(µ) = η

• Consider varying (semi) annual harmonics

log(µi) = f0(i)︸︷︷︸
Bα0

+

2∑
k=1

sin(kωi) f1k︸︷︷︸
Bα1

+ cos(kωi) f2k︸︷︷︸
Bα2



• ω = 2π/12, i is month index

• η = [B0|U1|U2] · [α′0|α
′

1|α
′

2]′
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Polio varying coefficients (nseg=10, pord=2)
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Polio sine and cosine components
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Software
www.stat.lsu.edu/bmarx

S-PLUS: function that works with existing gam()

p.model1 <- gam( Kyphosis ˜ Number +

glass(Age, ps.intervals=10,

degree=3, order=3, lambda=1) +

glass(Start, ps.intervals=15, degree=2,

order=1, lambda=.01, varying.index=Age),

family=binomial(link=logit),

data=kyphosis, na.action=na.omit )

• Several defaults, list output, plot.glass()

• M code available for several common models
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Two-dimensional smoothing with P-splines

• Two steps towards “smooth” surface

• First

– Use tensor product B-splines: T jk(x, y) = B j(x)B̆k(y)
– Equally spaced knots on 2D grid
– Matrix of coefficients A = [α jk]

– Purposely overfit: make “too wiggly”

• Second

– Regularize: ensure further smoothness

– Add penalties on tensor product coefficients

– Difference penalties on rows/columns of A
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Examples of tensor products surfaces
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Surface building block
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Egg carton: portion of tensor product basis (n × n̆)
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Unknown coefficient matrix: An×n̆=[α jk]
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Implementation

• Model contains matrix of coefficients A

• Transform to vector: β = vec(A)

• Kronecker product of bases

T = B1 ⊗ B2

• T is of dimension m × (nn̆)
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Two-dimensional penalized estimation

• Objective function

QP = RSS + Row Penalty + Column Penalty

= RSS + λ1

n∑
j=1

A j•D′dDdA′j• + λ2

n̆∑
k=1

A′
•kD

′

d̆
Dd̆A•k

= |z − Tβ|2 + λ1|P1β|
2 + λ2|P2β|

2.

• Penalize rows of A with Dd

• Penalize columns of A with Dd̆

• Number of equations is nn̆
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Visualization of strong penalty
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Strong column penalty
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Strong row penalty

The Craft of Smoothing 5 28

Details of row and column penalties

• Must also carefully arrange (“stack”) penalties

• Block diagonal to break (e.g. row to row) linkages:

– P1 = D ⊗ In̆

– P2 = In ⊗D

For example:

[
1 0
0 1

]
⊗D =



−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
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Tensor product coefficient estimation

• Results in explicit solution:

β̂ = (T′T + λ1P′1P1 + λ2P′2P2)−1T′z

• Surface fitted values expressed in vector: ẑ = Tβ̂

• In practice usually use higher order penalty

The Craft of Smoothing 5 30

The recipe

• Use a generous number of equally-spaced tensor product

• For computational efficiency, try to keep nn̆ < 1000

• Use penalty order d = 2 or 3

• Measure performance with CV or (A)IC

• Vary (λ1, λ2) on a logarithmic grid search

• Find minimum of performance criterion

• Report β̂, the P-spline coefficients:

– a compact form of the estimated coefficient surface
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The ethanol data

• Nitrogen oxides in motor exhaust: NOx (z)

• Compression ratio, C (x), equivalence ratio, E (y)
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PGAM fit for ethanol data
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PGAM components for ethanol data
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2D smoothing of ethanol data

• Tensor products of cubic B-splines

• Dimension: 64 (8 by 8)

• Fit computed on 400 points

• Time: 0.5 sec (M, Pentium 150 MHz)

• Residuals (SD) reduced to 60%, compared to GAM
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Tensor P-spline fit to ethanol data
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Another 2D application

• Printed circuit board

• Clamping causes warping (approx. 0.5 mm)

• Laser inspection of deformation

• Input: 1127 observations

• Cubic P-spline tensor products: 13 by 13

• Interpolation at 1600 points

• Time: 1.7 sec (M 6, Pentium III 1 GHz)
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Printed circuit board data
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Higher dimensions

• Triple (or higher) tensor products possible

• Difference penalty for each dimension

• Many equations: n3 (n4)

• Reduce number of B-splines

• Data generally sparse in more dimensions

• Much detail dubious

• (Cajo ter Braak did a project in 3D)
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Wrap-up

• Extensions to generalized additive modelling

• Varying coefficient models

• 2-D P-spline smoothing

• Next: P-splines in perspective

• Details on P-spline connections with mixed models

• Bayesian connections
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Session 6

P-splines in Perspective

The Craft of Smoothing 6

What did you learn?

• Regression on local basis functions (B-splines)

• Penalty to (further) tune smoothness

• Standard errors, limits, interpolation, extrapolation

• Generalized linear smoothing

• Applications: scatterplots, (time) series, densities

• Optimal smoothing: cross-validation, AIC

• All you need for one-dimensional problems

• And a good dose of multi-dimensional smoothing
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What else?

• Other interpretations of the penalty

• A Bayesian interpretation

• Mixed model interpretations

• Computation for alternative interpretations

• The effect of autocorrelation

• Comparison to other smoothers

The Craft of Smoothing 6 2

Alternative interpretations of penalties

• Consider penalized least squares : minimize

Q = |y − Bα|2 + λ|Dα|2

• The penalty is rather useful

• But it seems to come out of the blue

• Can we connect it to established models?

• Yes: Bayes, mixed models
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Introducing variances

• Rewrite the penalized least squares goal:

Q =
|y − Bα|2

σ2 +
|Dα|2

τ2

• Variance σ2 of noise e in y = Bα + e

• Variance τ2 of Dα

• First term: log of density of y, conditional on α

• Second term: log of (prior) density of Dα

The Craft of Smoothing 6 4

Bayesian simulation

• We look for posterior distributions of α, σ2, τ2

• Gibbs sampling

• “Draw” α conditional on σ2 and τ2

• “Draw” σ2 and τ2, conditional on α

• These are relatively simple subproblems

• Repeat many times, summarize results
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Sketch of Bayesian P-splines MCMC steps

% Preparations

BB = B’ * B;

By = B’ * y;

% Update alpha

C = chol(BB / sig2 + P / tau2);

a = C \ (C’ \ (By) /sig2); % solve system

a = C’ \ randn(n, 1) + a; % Gibbs with right covariance

% Update sigmaˆ2, the observation variance

d1 = y’ * y - 2 * a’ * By + a’ * BB * a;

sig2 = d1 / chi2(1);

% Update tauˆ2, the mixing variance

e = D * a;

d2 = e’ * e;

tau2 = d2 / chi2(1);

The Craft of Smoothing 6 6

Example of Bayesian P-splines
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Pros and cons of Bayesian P-splines

• You fit P-spline thousand of times: much work

• All uncertainties quantified

• This not the case with optimizing AIC, CV

• Theory applies to non-normal smoothing too

• But simulations (of α) are much harder

• Metropolis-Hastings: problems with acceptance rates

• More on this: Lang et al.: papers, program BayesX
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Mixed model

• See penalty as log of “mixing” distribution of Dα

• This is not natural, but very practical

• Mixed model software is good at estimating variance

• Dα has degenerate distribution, rewrite the model

• Introduce “fixed” part X and “random” part Z

• y = Bα = Xβ + Za, with Z = BD′(DD′)−1

• And X containing powers of x up to d − 1

• Now a well behaved: independent components
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Mixed model for P-splines in S-PLUS

# Based on work by Matt Wand

# Compute fixed (X) and mixed (Z) basis

B = bbase(x, 0, 1, 10, 3)

n = dim(B)[2]

d = 2;

D = diff(diag(n), differences = d)

Q = solve(D %*% t(D), D);

X = outer(x, 0:(d - 1), ’ˆ’);

Z = B %*% t(Q)

# Fit mixed model

lmf = lme(y ˜ X - 1, random = pdIdent(˜ Z - 1))

beta.fix <- lmf$coef$fixed

beta.mix <- unlist(lmf$coef$random)
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Example of P-spline fit with mixed model
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EM-type algorithm for P-spline mixed model

• Deviance

−2l = m log σ + n log τ + |y − Bα|2/σ2 + |Dα|2/τ2

• ML solution (λ = σ2/τ2)

(B′B + λD′D)α̂ = B′y

• One can prove (ED is effective dimension):

E(|y − Bα̂|2) = (m − ED)σ2; E(|Dα̂|2) = EDτ2

• Use these to estimate σ̂2 and τ̂2 from fit

• Refit with λ = σ2/τ2, repeat
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Example of P-spline fit with EM
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Cross-validation and autocorrelation

• Cross-validation finds optimal prediction

• For each (left-out) data point

• Using the rest

• CV exploits colored noise

• To improve prediction

• Result a rather wiggly “trend”

• Bayesian and mixed models also assume uncorrelated errors!

• Here we show effect on cross-validation

The Craft of Smoothing 6 14

Wood surface: correlated noise
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Breaking the correlation

• Use only every second (fifth, tenth, k-th) observation

• Weaker serial correlation over longer distance

• Use kλ for smoothing all data

• To restore balance of residuals and penalty

• Refinement: combine k blocks of every k-th obs.
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Every second observation
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Every fifth observation
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Other smoothers

• Kernels, weighted average

• Local likelihood regression

• Smoothing splines

• Adaptive-knots B-splines

• Wavelets

• “Consumer score card” in handout
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Kernel density estimation

• Sum of (gaussian) kernels, centered at data x

• Kernel width determines amount of smoothing
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Kernel-weighted average

• Data x and y.

• Weighted average:

f̂ (u) =
∑

i

w(u − xi)yi

• Weights: Gaussian or similar shape

• Kernel width determines amount of smoothing
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Problems of kernel smoothers

• Heavy computation (sum over all data)

• Expensive cross-validation, no effective dimension

• Boundary problems (when domain of x restricted)

• Variance increased (density estimation)

• No compact result

• No building block for GAM

• Useless for penalized signal regression

The Craft of Smoothing 6 22

Local likelihood regression

• Compute weighted regression of y on x

• Fit linear or quadratic curve on interval

• Use kernel weights

• Keep curve fit in middle of interval

• Shift and repeat

• Fits in GLM framework for non-normal data

• Classic application: Savitzky-Golay smoother (1964)
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Problems of local likelihood

• Heavy computation

• Expensive cross-validation

• No effective dimension

• No compact result

• No building block for GAM

• Useless for penalized signal regression
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Smoothing splines

• Assume continuous function f (x)

• Minimize ∑
i

[yi − f (xi)]2 + λ

∫
[ f ′′(x)]2dx

• Continuous roughness penalty

• Result: piecewise cubic f

• Jumps in f ′′′ at data points

• Large system of equations but banded
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Problems of smoothing splines

• Fast computation only with specialized software

• Fast cross-validation needs very special software

• Effective dimension needs very special software

• No compact result

• Inefficient building block for GAM
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Adaptive-knots B-splines

• P-splines use equally spaced knots

• Penalty tunes smoothness

• Alternative 1: only change number of B-splines

• Discrete control not enough

• Problems with gaps (along x) in data

• Alternative 2: find optimal non-uniform knot spacing

• Complex non-linear problem
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Wavelets

• Basis functions of different widths in hierarchy

• Increasing detail: basis size doubles at each deeper level

• One basis function at first level

• Two at second level, four at third level, ...

• All have same shape, but width halved at each level

• Rich variety of basis functions
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Problems of wavelets

• Only for equally spaced x

• Power of 2 for number of observations

• No missing data allowed

• No GLM, effective dimension

• Cross-validation misty

• Not very compact result
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The “other” P-splines

• We use B-splines and difference penalties

• Ruppert, Wand and Carroll do it differently

• Truncated power functions as “random” part

• A polynomial “fixed” part

• Knots on quantiles of x (not equally spaced)

• Mixed model approach (equivalent to ridge penalty)

• See “Splines, Knot and Penalties” on the CD for critique
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The End

P-splines are a good for you

Happy Smoothing!
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Consumer score card for smoothers

This score card is reproduced from our paper in Statistical Science (1996).

Aspect KS KSB LR LRB SS SSB RSF RSA PS
Speed of fitting — + — + — + + + +
Speed of optimization — + — + — + — — +
Boundary effects — — + + + + + + +
Sparse designs — — — — + + — + +
Semi parametric models — — — — + — + + +
Non-normal data + + + + + + + + +
Easy implementation + — + — + — + — +
Parametric limit — — + + + + + + +
Specialized limits — — — — + + — — +
Variance inflation — — + + + + + + +
Adaptive flexibility possible + + + + + + — + +
Adaptive flexibility available — — — — — — — + —
Compact result — — — — — — + + +
Conservation of moments — — + + + + + + +
Easy standard errors — — + + — + + + +

Consumer test of smoothing methods. The abbreviations stand for

KS kernel smoother

KSB kernel smoother with binning

LR local regression

LRB local regression with binning

SS smoothing splines

SSB smoothing splines with band solver

RSF regression splines with fixed knots

RSA regression splines with adaptive knots

PS P-splines

The row “Adaptive flexibility available” means that a software implementation
is readily available.


