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Abstract: This article describes a coherent Bayesian measure of evidence for precise or
sharp null hypotheses, the evidence value, or e-value, derived from the fully Bayesian
significance test (FBST), based solely on the posterior distribution of the parameters of
the statistical model. The method can be easily implemented using modern numerical
optimization and integration techniques. After illustrating its use on two nonstandard
applications (Hardy–Weinberg equilibrium and the Behrens–Fisher problem), we list
some of its properties and refer the interested reader to articles discussing further
applications and properties of the e-value.

In several applied fields, theoretical models derived from first principles are based on specific parameter
values or on functional relationships between them that must be empirically tested in order to validate
such models and their predictions. When the mentioned tests address hypotheses in which all or some
of the parameters must assume a specific set of values, they are called significance tests. These tests do
not apply to situations in which it is necessary to test hypotheses that are more general than those related
to specific parameter values: these hypotheses are called sharp hypotheses. The Full Bayesian Significance
Test (FBST) was firstly proposed by Pereira and Stern[1] mainly to test sharp hypotheses. Other than its
several interesting properties – discussed in Refs 2–4 – the procedure is completely based on posterior
distributions, thus avoiding complications such as the elimination of nuisance parameters or the necessity
to use prior distributions that assign positive probabilities to sets of zero Lebesgue measure.

Before proceeding with illustrative examples, let us first fix the notation in order to define sharp hypothe-
ses and the other concepts needed to describe how to compute the FBST evidence value, or simply e-value,
supporting a sharp hypothesis. We denote by X the vector of random variables to be observed in a given
experiment, and by𝒳 the sample space, that is, the set of all possible values the random vector may assume.
It is usually the case that 𝒳 ⊆ ℝn, where n ∈ ℕ is the sample size of the experiment. The lowercase x is
a specific sample point or simply referred to as the data observed from the experiment. In this article, we
assume that the random vector is modeled by a parametric statistical model, ℳ, defined as

ℳ = { f (𝐱 ∣ 𝜃) ∶ 𝐱 ∈ 𝒳 , 𝜃 ∈ Θ}
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in which f is a probability mass or density function from a specified model (e.g., Gaussian, Gamma,
Weibull) etc. and Θ ⊆ ℝk , k ∈ ℕ, is the parameter space (set of all values the parameter(s) may assume).
In this framework, we say the dimension of the parameter space is k, dim(Θ) = k.

Definition 1. A sharp hypothesis H is the statement 𝜃 ∈ ΘH in which ΘH ⊂ Θ, and the dimension of ΘH ,
dim(ΘH ) = h, is strictly smaller than the dimension k of Θ.

Thus, as an example, considering the linear regression model yi = 𝛽0 + 𝛽1xi + 𝜀i i = 1, … , n and 𝜀i i.i.d.
N(0, 𝜎2), hypotheses such as H ∶ 𝛽0 = 0 and H ∶ 𝛽0 + 𝛽1 = 1 are both sharp, although only the first defines
a significance test.

Following the Bayesian paradigm, let 𝜋(⋅) be a probability prior distribution over Θ, and L(⋅ ∣ 𝐱) the like-
lihood function derived from data x and model ℳ. In order to compute the evidence value or e-value that
supports a sharp hypothesis H based on the FBST, the most important entity is the posterior distribution
(see Posterior Distribution: Introduction) for 𝜃 given the sample x, here denoted g(𝜃 ∣ 𝐱):

g(𝜃 ∣ 𝐱) ∝ 𝜋(𝜃) ⋅ L(𝜃 ∣ 𝐱)

Even though the procedure may be used when the parameter space is discrete, we must emphasize that
it is when the posterior distribution over Θ is absolutely continuous that the FBST presents its most inter-
esting properties to test sharp hypotheses. To simplify notation, we denote ΘH by H in the sequel.

In order to guarantee that the e-value is invariant to reparameterizations, it is necessary to specify a
distribution on the parameter space called reference density, r(𝜃). With this density we obtain the rel-
ative surprise function, the ratio between the posterior density and the reference density, that is, s(𝜃) =
g(𝜃 ∣ 𝐱)∕r(𝜃) (see Good [5, p. 145–146] and Surprise Index). The surprise function guarantees the invari-
ance under reparameterizations of 𝜃, even when r(𝜃) is improper (see Stern [4, p. 253]). Thus, if r(𝜃) is
proportional to any given constant the surprise function will be, in practical terms, equivalent to the pos-
terior distribution. It is possible to compute the e-value using other reference densities such as neutral,
invariant, maximum-entropy, or noninformative distributions whenever they are available and/or desir-
able for the problem under analysis.

Definition 2. Given a sharp hypothesis H: 𝜃 ∈ ΘH , the tangent set of the hypothesis given data 𝐱 ∈ 𝒳 is

𝕋𝐱 = {𝜃 ∈ Θ ∶ s(𝜃) > s∗}

in which s∗ = sup𝜃∈𝐇s(𝜃).

Thus, the tangent set is the subset of the parameter space with points whose relative surprise, s(𝜃), is
larger than the relative surprise of any point in H, being tangential to H in this sense. The e-value favoring
a sharp hypothesis H is then defined as the posterior probability of the complementary set, regarding the
parameter space, of the tangent set, that is, Θ − 𝕋𝐱.

Definition 3. The Bayesian e-value supporting a sharp hypothesis H is

ev = 1 − P(𝜃 ∈ 𝕋𝐱 ∣ 𝐱) = 1 − ∫𝕋𝐱
dG𝐱(𝜃)

in which G𝐱 denotes the posterior distribution function of 𝜃, and the integral is of the Riemann–Stieltjes type.

Thus, the e-value considers that the posterior probability of all points of the parameter space whose
relative surprise is at most as large as its supremum over H is the Bayesian evidence supporting 𝐇. Given
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this, a large value of ev means that ΘH lies in a region of large posterior probability, implying that the data
strongly support the hypothesis. On the other hand, whenever ev is small, this means that ΘH is in a region
of the parameter space with low posterior probability, implying that the data is leading us to discredit H.
Nevertheless, ev is not evidence against a global alternative hypothesis 𝐀 ∶ 𝜃 ∉ Θ𝐇, which is not sharp.
Similarly, 1 − ev is not evidence supporting A, even though it is against H.

The procedure implied by Definitions 1–3 may be summarized by the following algorithm.

1. Specify the statistical model, the correspondent likelihood, and the prior distribution on Θ (see Prior
Distribution Elicitation; Bayesian Methods).

2. Specify the reference density, r(𝜃), and derive the relative surprise function, s(𝜃).
3. Optimization: compute s∗, the maximum value of s(𝜃) under the constraint 𝜃 ∈ 𝐇.
4. Integration: compute the posterior probability on the complement of the tangent set, Θ − 𝕋𝐱. This is

the e-value supporting H.

Some remarks, specially about steps 3 and 4, seem in order. In step 3, one should find the point of the
parameter space in 𝐇 that maximizes s(𝜃), that is, to solve a problem of constrained maximization. In
several applications it is not possible to find a closed-form solution for these problems, requiring the use
of numerical optimizers. Step 4 requires the integration of the posterior distribution on a subset of Θ, the
tangent set 𝕋𝐱, that can be highly complex. As in the previous step, since in many cases it is difficult to
find an explicit expression for 𝕋𝐱, the use of numerical techniques to compute the integral is the easiest
way to proceed. If it is possible to generate random samples from the posterior distribution, Monte Carlo
integration (see Bayesian Analysis and Markov Chain Monte Carlo Simulation) provides an accurate
estimate of ev. It is also possible to use approximation techniques, such as those proposed in Tierney and
Kadane[6], based on Laplace approximations. Refs 7, 8 show how to implement such approximations for
unit root and cointegration tests of time series. We now illustrate the computation of the e-value in some
applications.

Example 1. (Hardy–Weinberg equilibrium law). Consider a sample of n ∈ ℕ individuals of the same
species randomly drawn from their population. We represent by x1 and x3 the two homozygote sample
counts of a given genetic locus, and by x2 = n − x1 − x3 the heterozygotic individuals in the sample, such
that 𝐱 = (x1, x2, x3). In this trinomial model, the parameter space is the simplex:

Θ = {𝜃 = (𝜃1, 𝜃2, 𝜃3) ∈ ℝ3 ∶ 𝜃1 + 𝜃2 + 𝜃3 = 1, 𝜃i ≥ 0, i = 1, 2, 3}

where 𝜃i is the population relative frequency of individuals with genotype i = 1, 2, 3. The Hardy–Weinberg
law (HWL),[9], assumes that, under equilibrium, these frequencies are such that 𝜃3 = (1 −

√
𝜃1)2. Thus, the

hypothesis to test the HWL is 𝐇 ∶ Θ ∈ ΘH in which

ΘH = {𝜃 ∈ Θ ∶ 𝜃3 = (1 −
√
𝜃1)2}

defines a subset of the parameter space with zero Lebesgue measure. To keep this numerical illustration
as simple as possible, let us adopt as prior distribution over Θ the uniform distribution on the simplex,
that is, a Dirichlet density with its three parameters equal to one, and as reference density also the uniform
distribution on the simplex such that the surprise function is proportional to the likelihood

L(𝜃 ∣ 𝐱) ∝ 𝜃
x1
1 𝜃

x2
2 𝜃

x3
3

In this framework it is possible to find a closed-form solution to sup𝜃∈𝐇s(𝜃), and the computation of ev is
carried by Monte Carlo integration from independent vectors sampled from a Dirichlet distribution with
parameters x1 + 1, x2 + 1, and x3 + 1. Assuming, for instance, n = 20, x1 = 5, and x3 = 5, the estimated
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Table 1. E-values for the Behrens–Fisher problem with
different sample means m2

m2 evJ evu

100 0.00 0.00
101 0.08 0.07
102 0.53 0.50
103 0.89 0.87
104 0.98 0.98
105 1.00 1.00

e-value is 0.91. The problem of testing the Hardy–Weinberg equilibrium law using Bayes factors requires
the specification of a mixed prior on ΘH . Frequentist alternatives are the Chi-square goodness-of-fit test
(with continuity correction) and the asymptotic likelihood ratio test, both described in Lauretto et al.[10]

and references therein.

Example 2. (Behrens–Fisher problem). Two samples are observed from independent populations,
both with Gaussian distributions with unknown parameters, that is, sample 1 from N(𝜇1, 𝜎

2
1 ) and sample

2 from N(𝜇2, 𝜎
2
2 ). Thus,

Θ = {(𝜇1, 𝜎1, 𝜇2, 𝜎2) ∈ (ℝ ×ℝ+ ×ℝ ×ℝ+)}

and the hypothesis being tested is 𝐇 ∶ 𝜇1 = 𝜇2. Madruga et al.[11] computed the e-value for the
Behrens–Fisher problem adopting standard (independent) improper priors for the means, 𝜇1, 𝜇2, and
the precisions, 1∕𝜎2

1 , 1∕𝜎
2
2 . For the reference density they used Jeffreys’ prior density (see Jeffreys’ Prior

Distribution) and also the (improper) uniform density over Θ to compare the results.

They assumed a sample from population 1 with size, sample mean, and sample standard deviation,
respectively, of n1 = 16,m1 = 100, and s1 = 3 and a sample from population 2 with size n2 = 20, sample
standard deviation s2 = 3, and different values for the sample mean, m2. The results are displayed in Table 1,
where evJ denotes the e-value computed with Jeffrey’s prior as reference density, and evu the e-value com-
puted with the (improper) uniform on Θ. Frequentist alternatives to test the Behrens–Fisher hypothesis
are the asymptotic likelihood ratio test and the Welsh approximation of the t-test [12, p. 208–209].

An important practical problem that must be addressed in applications of the FBST is the search of a
threshold value below which one may reject H. In principle, one may use the sampling distribution of ev
to find this threshold value: this can be done because ev is formally a statistic whose distribution can be
derived from the adopted statistical model. If the likelihood and the posterior distribution satisfy certain
regularity conditions, mentioned in Schervish [13, p. 436], Diniz et al.[14] proved that, asymptotically, there
is a relationship between ev and p-values obtained from the likelihood ratio test used to test the same
hypotheses. This result provides an alternative way to compute, at least for large samples, a critical value
to ev to reject the hypothesis being tested.

In a recent review, Stern and Pereira[3], the authors discuss different ways to compute a threshold for
ev. Among these alternatives, we highlight the standardized e-value, which follows, asymptotically, the
uniform distribution on (0,1). See Borges and Stern[15] for more on the standardized version of ev.

Another alternative is to define the FBST as a Bayes test derived from a particular loss function (see
Utility Function) and the respective minimization of the posterior expected loss. Following this strategy,
Madruga et al.[16] showed that there are loss functions that result in the e-value as a Bayes estimator of
𝜙 = 𝕀H(𝜃), where 𝕀A(x) denotes the indicator function, being equal to 1 if x ∈ A, and 0 otherwise, x ∉ A.
Thus, the FBST is in fact a Bayes procedure in the formal sense as defined in Wald[17].
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Concluding Remarks

We have briefly defined and illustrated the use of the FBST e-value, or evidence value, which provides a
measure of statistical support of sharp hypotheses. The e-value has several desirable properties, of which
we underline:

1. it provides an intuitive and simple measure of support for the hypothesis in test, ideally, a probability
defined directly on the original parameter space;

2. it requires neither the elimination of nuisance parameters nor ad hoc artifices such as the assign-
ment of positive prior probabilities to zero measure sets and the setting of arbitrary initial belief ratios
between hypotheses;

3. it obeys the likelihood principle, that is, the information conveyed by the sample should be represented
by, and only by, the likelihood function[18];

4. it is invariant for alternative parameterizations;
5. it is an exact procedure, that is, it is not necessary to use of “large sample” asymptotic approximations

to compute the e-value;
6. it is a formal Bayes test, and as such, its critical values may be obtained from the adopted loss function;
7. it is a possibilistic support measure for sharp hypotheses, complying with the Onus Probandi juridical

principle (In Dubio Pro Reo rule);
8. it is a homogeneous computation calculus with the same two steps, constrained optimization and

integration of the posterior density.

The e-value has been used in several applied works done in the past two decades, of which we highlight
those on economics, biology and medicine, systems reliability, signal processing and detection of acous-
tic events, astronomy, and astrophysics. This list is far from exhaustive, but the interested reader may
consult reference Stern and Pereira[3] for an extensive catalog of applications and of theoretical articles
that discuss statistical and logical properties of the e-value. It is important to mention that, up to date, in
all the mentioned applications computing time was not a great burden whenever FBST was used. More
recently, Ly and Wagenmakers[19] examined some potential shortcomings of the e-value, while Kelter[20]

has critically reevaluated their article, replying to some of their conclusions.

Related Articles

Posterior Distribution: Introduction; Surprise Index; Prior Distribution Elicitation; Bayesian Meth-
ods; Bayesian Analysis and Markov Chain Monte Carlo Simulation; Jeffreys’ Prior Distribution;
Utility Function
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