
What is Cox’s proportional 
hazards model?
Robert Tibshirani gives an overview of one of David Cox’s most widely applied ideas, 
for which he was awarded the International Prize in Statistics in 2017

The proportional hazards model developed 
by David Cox14 is widely used for a type 

of problem known as survival analysis. Such 
problems concern estimating the time until 
a particular event occurs, such as the death 
of a patient being treated for a disease, or the 
failure of an engine part in a vehicle.

Cox’s 1972 paper, which sets out his idea, 
is one of the most cited statistics papers of all 
time. The aim of this article is to explain the 
proportional hazards model, which as we will see 
is closely related to the Kaplan–Meier survival 
curve, from another path-breaking paper.36

Censored survival data
Our focus here is on the analysis of data with a 
special kind of outcome variable: the time until 
an event occurs.

For example, suppose that we have 
conducted a 10-year medical study, in which 
patients have been treated for cancer. We 
would like to fit a model to predict patient 
survival time, using features such as their 
health information at the start of the study, 
or the type of treatment they received. At 
first pass, this may sound like a regression 
problem. But there is an important 
complication: hopefully some or many of the 
patients have survived until the end of the 
study. Such a patient’s survival time is said 
to be censored: we know that it is at least 
10 years, but we do not know its true value. 
We do not want to discard this subset of 
surviving patients, as the fact that they have 
survived at least 10 years amounts to valuable 
information. However, it is not clear how to 
make use of this information.

Though the phrase “survival analysis” 
suggests a medical study, the applications of 
survival analysis extend beyond medicine. For 
example, an automobile company may want to 
model the time until failure of an engine part. 
The company might collect data on engine 
parts over some time period, in order to model 
each part’s failure as a function of the age of 

the vehicle, number of miles driven and other 
factors. However, presumably not all parts will 
have failed by the end of this time period; for 
such parts, the time to failure is censored.

For each engine part, or patient in a medical 
study, we suppose that there is a true survival 
time T, as well as a true censoring time C. (The 
survival time is also known as the failure time 
or the event time.) The survival time represents 
the time at which the event of interest occurs: 
for instance, the time at which the engine 
part fails or the patient dies. By contrast, the 
censoring time is the time at which censoring 
occurs: for example, the time at which a patient 
drops out of the study or the study ends.

For each part or patient, we observe either 
the survival time T or the censoring time C. 
Specifically, we observe the random variable

Y = min(T, C)

In other words, if the event occurs before 
censoring (i.e., T ≤ C) then we observe the 
true survival time T; however, if censoring 
occurs before the event (T > C) then we observe 
the censoring time. We also observe a status 
indicator δ, with δ = 1 if T ≤ C and 0 if T > C. 
Thus, δ = 1 if we observe the true survival time, 
and δ = 0 if we instead observe the censoring 

time. Finally, our data consists of n (Y, δ) pairs 
for each part or patient in our study, which we 
denote by (y1, δ1), … , (yn, δn).

The Kaplan–Meier survival curve
The first natural step in a survival analysis is 
to summarise the survival times yi. We might 
start by computing the median survival time. 
But how do we do this: what do we do with 
the censored observations? The Kaplan–Meier 
estimator gives a nice solution. We line up 
the observations (say, patients) in time order, 
and focus on the times t1 < t2 < … < tK at which 
an event occurred. At time t1, we compute the 
number of patients n1 still alive and the number 
who died at t1, say d1. Then the probability that 
a patient survives past t1 is just (n1 − d1)/n1.

Similarly, at the next event time, t2, suppose 
there are n2 patients alive and in the study 
just before that time and d2 who died. Then 
the probability that a patient survives past t2, 
given that they were alive just before time t2, is 
(n2 – d2)/n2. To be clear, the fact that someone 
has survived to t2 is itself informative, which 
is why we ask “What is the probability you 
will survive past t2, given you have survived 
to t2?” and not just “What is the probability 
you will survive past t2?” We continue in this 
way, computing a series of probabilities, each 
one analogous to the probability of a runner 
successfully jumping over a hurdle, given that 
they have not fallen down before that point. 
The Kaplan–Meier survival curve computes the 
product of these probabilities, reflecting the fact 
that to survive past time t, the patient must clear 
all hurdles up to and including that at time t.

Figure 1 shows a Kaplan–Meier survival 
curve (with 95% confidence bands) for a set 
of 50 patients. The median survival time – the 
time at which the survival probability equals 
0.5 – is about 13 years in this example. The red 
dots indicate the times at which a patient died.

Cox’s model
Moving beyond a simple summary, suppose 

Figure 1: Kaplan–Meier survival curve (with 95% 
confidence bands) for a set of 50 patients. Red dots 
indicate the times at which a patient died. 
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that we have predictor variables measured 
on each observation (e.g., age, health status, 
biomarkers). We would like to carry out a 
regression analysis to assess the effects of 
each predictor; if one of the predictors is one 
of two drugs, we would like to use regression 
to compare the two drugs while adjusting for 
confounder factors.

Cox’s model is based on a quantity known 
as the hazard function h(t | x). This is the 
probability that an individual with predictors 
x will die at time t, given that the individual 
is alive just before t. Cox’s regression model 
starts with an assumption of proportional 
hazards: h(t | x) = h0(t)exp(xβ). This says that 
the hazard for an individual with predictors 
x is the product of a baseline hazard h0(t) 
(corresponding to x = 0) and a factor that 
depends on x and the regression parameters β.

To estimate β, Cox invented a partial 
likelihood: it uses the same “product in time” 
construction as in the Kaplan–Meier method, 
computing the probability under the model of 
surviving past each event time tk as a product 
of conditional probabilities. This is a function 
of the unknown regression parameters β, and 
this function is maximised (with a numerical 
optimiser) to yield the partial maximum 
likelihood estimates β̂. Furthermore, this 
elegant construction does not require 
specification of the baseline hazard h0(t), 
making the method flexible and robust.

With Cox’s proportional hazards model 
we obtain all of the things that we enjoy 
in regression analysis, such as parameter 
estimates, standard errors and confidence 
intervals. But there is much more: it provides 
a natural way of modelling time-dependent 
covariates, where a patient characteristic 
(such as blood pressure) is measured not once 
at the beginning of a study but many times 
over the course of a study. And it can deal 
with other forms of censoring such as left and 
interval censoring. The method has also been 
generalised to handle high-dimensional data, 
incorporating sparsity penalties such as the 
lasso.37,38 And there are even deep learning 
versions of Cox’s method.39

The impact of this method on many 
fields, especially medical sciences, has been 
enormous; it surely will continue to grow in 
importance in the future. 
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On Sir David Cox’s publications
Mario Cortina Borja, Julian Stander, and Giovanni Sebastiani 
analyse some of the tens of thousands of citations for the hundreds 
of papers produced by David Cox in a publishing career that 
spanned more than 70 years
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Sir David Cox’s publishing career was 
remarkable for the extent and influence 

of its contributions, as well as for its duration; 
his works have been published continually 
from 1947 to 2021. David’s website at Nuffield 
College, Oxford, lists 385 publications 
(bit.ly/3M9eIB4) and we shall refer to this 
collection as N385. These numbers are 
impressive on their own, but we should also 
remember and celebrate David’s unfailing 
kindness to generations of statisticians and 
other scientists, of which there are many 
accounts in this issue of Significance. Here 
we examine in more detail the extent and 
influence of David’s work by focusing on 
trends in the number of references or mentions 
of his works in scientific publications. We 
will pay particular attention to his paper on 
“Regression models and life-tables”,14 which 
we will refer to as Cox (1972).

Data
The publications in N385 comprise 302 
peer-reviewed articles, 23 books, and 60 
entries classified as chapters in edited books, 
entries in encyclopaedias, proceedings, 
conference proceedings, reports, or lectures. 
(Publications are numbered from 1 to 384 
on the website, but there are two entries 
with the number 191.) This publication list 
is incomplete as it does not include, for 
example, David’s many contributions to 
the discussions of Royal Statistical Society 
read papers. His peer-reviewed output 
appeared in 104 different journals. There 
were 56 papers in the Journal of the Royal 
Statistical Society (JRSS; 35, 13, 7, and 1 in 
Series B, A, C, and D, respectively), 60 in 
Biometrika, and 24 in International Statistical 
Institute publications.

We also analysed data from two sources: 
Web of Science (WoS), which claims to be “the 
world’s most trusted publisher-independent 
global citation database”, and PubMed (PM), 
which “comprises more than 33 million 

citations for biomedical literature from 
MEDLINE, life science journals, and online 
books”. These data were downloaded between 
5 and 21 February 2022. 

For each year after publication, we obtained 
information on citations from WoS, where the 
number of citations of one of David’s outputs 
is the number of WoS papers listing the output 
as a reference. Similarly, PM yielded data on 
mentions, that is, the number of PM papers 
containing text referring to the output. A 
paper that contributes a mention does not 
necessarily contribute a citation. Below we 
consider mentions of Cox (1972), identified 
by searching on {“Cox regression” OR “Cox’s 
regression” OR “Cox proportional hazard*” OR 
“Cox’s proportional hazard*”}. 

Trends in citations
WoS returned 74,406 citations for papers 
in N385. Figure 1 shows the cumulative 
number of citations for David’s eight most 
cited papers. The two most cited papers, 
Cox (1972) and the Box–Cox (1964) paper 
on the analysis of transformations,12 were 
published in JRSS Series B. These are followed 
by two papers with several co-authors in the 
British Journal of Cancer on the design and 
analysis of randomised clinical trials,40,41 
and David’s (1975) Biometrika paper in 
which partial likelihood is defined.15 This list 
concludes with three more Series B articles: 
a pivotal paper defining logistic regression 
for binary sequences in 1958;5 a 1987 paper 
with Nancy Reid on parameter orthogonality 
and approximate conditional inference;18 and 
a 1968 work with E. Joyce Snell proposing 
a general definition of residuals for linear 
models.42 The sharp increase in the last five 
years of citations of David’s (1958) analysis of 
binary sequences paper is driven by references 
made in areas including bioinformatics, 
machine learning, remote sensing, and 
neuroscience where logistic regression is 
mostly used as a classification method.
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