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Jian-Qiao Zhu' 2, Joakim Sundh?®, Jake Spicerl, Nick Chater*, and Adam N. Sanborn'

! Department of Psychology, University of Warwick
2 Department of Computer Science, Princeton University
3 Department of Psychology, Uppsala University
4 Warwick Business School, University of Warwick

Normative models of decision-making that optimally transform noisy (sensory) information into categorical
decisions qualitatively mismatch human behavior. Indeed, leading computational models have only achieved
high empirical corroboration by adding task-specific assumptions that deviate from normative principles. In
response, we offer a Bayesian approach that implicitly produces a posterior distribution of possible answers
(hypotheses) in response to sensory information. But we assume that the brain has no direct access to this
posterior, but can only sample hypotheses according to their posterior probabilities. Accordingly, we argue
that the primary problem of normative concern in decision-making is integrating stochastic hypotheses, rather
than stochastic sensory information, to make categorical decisions. This implies that human response
variability arises mainly from posterior sampling rather than sensory noise. Because human hypothesis
generation is serially correlated, hypothesis samples will be autocorrelated. Guided by this new problem
formulation, we develop a new process, the Autocorrelated Bayesian Sampler (ABS), which grounds
autocorrelated hypothesis generation in a sophisticated sampling algorithm. The ABS provides a single
mechanism that qualitatively explains many empirical effects of probability judgments, estimates,
confidence intervals, choice, confidence judgments, response times, and their relationships. Our analysis
demonstrates the unifying power of a perspective shift in the exploration of normative models. It also
exemplifies the proposal that the “Bayesian brain” operates using samples not probabilities, and that
variability in human behavior may primarily reflect computational rather than sensory noise.

Keywords: behavioral science, sampling, Bayesian models of cognition, normative model, rational analysis

Human judgment and decision-making has been studied using
a wide variety of measures. Participants are asked to provide
probability judgments (e.g., Costello & Watts, 2014; Dasgupta
et al., 2017; Fox & Rottenstreich, 2003; Sloman et al., 2004; Zhu
et al., 2020), estimates of physical quantities (e.g., Gilden et al.,
1995; Jazayeri & Movshon, 2007) with associated confidence
intervals (e.g., Juslin et al., 2007; Juslin & Olsson, 1997), choices
(e.g., Fehr & Rangel, 2011; Tversky & Kahneman, 1974; Usher &
McClelland, 2004; Wyart & Koechlin, 2016) with their associated
responses times (e.g., Blurton et al., 2020; Krajbich & Rangel,
2011; Ratcliff & Rouder, 1998; Ratcliff & Starns, 2009) and
confidence judgments (e.g., Baranski & Petrusic, 1998; Juslin
et al., 2007; Li & Ma, 2020; Pleskac & Busemeyer, 2010). Yet

while each measurement has been subject to an enormous amount
of empirical and modeling work in psychology, a unified theoret-
ical framework that can provide an integrated account of human
performance across all six measures (i.e., probability judgments,
estimates, confidence intervals, choices, confidence judgments,
and response times [RT]) is currently lacking.

Theorists have taken steps toward a unified model from two
starting points, normative and descriptive. Existing normative mod-
els are elegant, parsimonious and are easily extendable to all six
measures. But these models fail to provide a satisfactory account of
many important qualitative effects observed in the empirical data.
By contrast, various descriptive models, which systematically devi-
ate from normative assumptions, capture the empirical effects both
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qualitatively and quantitatively for up to three of these six measures,
but no single model makes predictions across all measures.

Here, we develop a simple and consistent computational process
that can account for a surprising variety of qualitative findings across
all six measures. To achieve this goal, we build on a strong normative
foundation for all six measures, rooted in a sampling approximation
to Bayesian inference. This approach also implies a radical shift in
viewpoint concerning the nature of the decision-making process and
the origin of variability in human behavior. In the perceptual decision-
making literature, existing normative models generally operate on
noisy sensory information and evaluate the relative probability that this
noisy information is generated by the different hypotheses (corre-
sponding to choice options; e.g., Green & Swets, 1966; Ratcliff &
Rouder, 1998). We argue, by contrast, that noise in perceptual
decision-making arises primarily not through uncertainty about
sensory information, but because of the inherently stochastic
nature of the cognitive process that underpins Bayesian inference.

Our starting point is that exact Bayesian computations are
generally intractable; and hence that a Bayesian brain can, at
best, only approximate these computations. One of the most widely
used approaches to such approximation in statistics and machine
learning assumes that the brain draws samples from posterior
probabilities, which is often very much easier than calculating
those probabilities exactly. Inspired by this approach, many the-
orists in the Bayesian tradition have argued that the cognitive
processes thus operate over these samples, rather than representa-
tions of probabilities (Dasgupta et al., 2017; Griffiths et al., 2012;
Lieder et al., 2018; Sanborn & Chater, 2016; Vul et al., 2014; Zhu
et al., 2020). But this process of sampling will inevitably be
noisy—different samples will be drawn on different occasions.
Thus, in this type of model, the main source of variability does not
arise from sensory noise, but from computational noise caused by
the process of sampling. In other words, instead of evaluating
evidence from the sensory system or memory, we propose that the
cognitive system operates on stochastically generated hypotheses.

Our aim in this article is to outline a general process that can be
applied to a wide variety of measures and tasks, when equipped with a
task-specific representation. Our focus is to show that this process
provides a unified framework which captures a wide range of qualita-
tive phenomena across measures and tasks, rather than to produce a
comprehensive quantitative model of a particular task. The article is
structured as follows. First, we review the traditional probabilistic view
of normative decision-making and note its limitations in explaining
psychological data. Then we propose an alternative sampling-based
approximation approach to alleviate the computational burden associ-
ated with the normative models, which in turn suggests a shift in the
target problem of normative concern from accumulating sensory data
to integrating stochastic hypotheses. We next demonstrate the unifying
power of this perspective shift by applying this rational process model,
which we call the Autocorrelated Bayesian Sampler (ABS), to the six
behavioral measures, emphasizing on qualitative predictions of the
model. Finally, we show how to use the ABS framework to create
complete cognitive models after exploring the general judgement
and decision-making process in detail.

Overview of Probabilistic Decision-Making

The idea that human decision-making process is an optimal,
perhaps Bayesian, process is attractive in the light of its potential

justification as the end-state of evolution and/or learning (Bogacz
et al., 2006; Drugowitsch et al., 2019; Gold & Shadlen, 2002;
Green & Swets, 1966; Hawkins & Heathcote, 2021; Moran, 2015;
Pleskac & Busemeyer, 2010; Ratcliff & Rouder, 1998; Tickle
et al.,, 2023). There are many task-specific Bayesian models in
psychology; but in the area of cognitive and perceptual decision-
making, they are often elaborations of the general decision process of
signal detection theory (SDT), which describes how sensory evidence
can be transformed into optimal behavior (Green & Swets, 1966).

To illustrate our discussion, we shall consider the following trial
in a perceptual task as a running example: a cloud of 24 dots briefly
appears on-screen (this is the stimulus, 5).! Participants might be
asked to report the probability that the number of dots falls within a
certain window (a, probability judgments). They may also be asked
to estimate the exact number of dots (b, estimates) or to provide a
confidence interval for the estimate (c, confidence interval). Alter-
natively, participants could be asked to decide whether the number
of dots was greater or smaller than some predefined boundary
(d, choices) and the experimenter might record the elapsed times
for making such choices (e, RT), for example, by asking participants
whether there were greater than 25 dots on the screen. The partici-
pant may also be asked to rate their confidence in their choices
(f, confidence in the decision).

Importantly, while numerosity judgment provides a concrete
illustration, and one that connects naturally to existing models
such as SDT, the general approach applies quite broadly. For a
wide range of tasks, the six behaviors above can be collected and
modeled. So, for example, participants might be asked memory-
based questions about how much their last grocery bill was (e.g.,
“Your last grocery bill exceeded £150. What is the probability that
this proposition is correct?”), or even asking participants about one-
off future events such as how many years they expect to live. Thus,
while we use the numerosity example in Figure 1 because it is simple
and straightforward to relate to SDT, our approach applies to a wide
range of cognitive and perceptual tasks, as we will see below.

More formally, in the SDT, we wish to choose between option A
and B, based on a total of T units of sensory input (sy, S2, ..., S7)
typically assumed to be accumulated over time. Assuming that both
options are equally likely a priori (i.e., P(A) = P(B)), the key variable
is the summed log-likelihood ratio over the evidence from each
individual unit of sensory input:

L(T) = ZIOgP(sAB)’ M

where P(s,]A) is the likelihood of sensory evidence s, when option
A is the correct choice (similarly for P(s,|B)). The probability of
choosing A over B should be a function of the summed log-
likelihood ratios. Provided with imperfect evidence (e.g., detecting
a ship on a noisy radar image), SDT is a principled way to filter out
irrelevant sensory noise to pick out the useful signal (e.g., whether
the image contains ship). The approach can be applied in many areas
of psychology, including memory, perception, and reasoning

! We will only occasionally touch on the large and distinct literature on
risky decision-making based on verbally or numerically problems in the
fields of judgment and decision-making and behavioral economics (e.g.,
Tversky & Kahneman, 1974), which has largely developed as a separate
tradition.
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Figure 1

Lllustrations of the Variety of Behavioral Measures for a Single Task

Sensory stimulus

The number of dots exceeds 25. What is the probability

that this proposition is correct?

How many dots appeared onscreen?
Give the smallest interval which you are 60% certain

Asking people a question

Behaviour

Probability Judgments

Estimates
Confidence Intervals

includes the number of dots appeared onscreen?

Strue = 24

Is the number of dots greater than 25?
How confident are you that your answer is correct?

Note.

Choices & Response Times
Confidence Judgments

After the presentation of sensory stimulus, people can be asked a wide range of questions

and their responses lead to corresponding behavioral measures.

(Kellen et al., 2021; McCarley & Benjamin, 2013; Rotello, 2018;
Trippas et al., 2018).

SDT, however, makes no explicit commitment on the time course
of how evidence is generated and/or collected, and so makes no
predictions for response time. This issue can be addressed with a
dynamic extension of SDT: the sequential probability ratio test
(SPRT), which postulates that the stream of sensory evidence arrives
steadily and sequentially over time (Bogacz et al., 2006; Edwards,
1965; Laming, 1968). To deal optimally with the incoming sensory
evidence in, for example, binary choice, the evidence should be
continuously integrated into the log-likelihood ratio between the
two options until a fixed threshold is reached, and RT are predicted
to depend on the amount of evidence accumulated before the
threshold is reached. More formally, the log-likelihood ratio for
choosing option A over B is recursively updated after the arrival of
each new piece of sensory evidence (s7):

P(srlA)
P(sr|B)’

L(T)=L(T-1) + log 2)

Once the log-likelihood ratio reaches a threshold (assuming sym-
metric thresholds: L(T) > 6 or L(T) > —9), the evidence accumula-
tion process stops and the response depends on whether the positive
or negative threshold is reached. Increasing the magnitude of the
threshold () produces a slower but more accurate response as more
sensory evidence, on average, is accumulated before either threshold
is reached. The SPRT is optimal in the sense that the expected
amount of evidence (i.e., T) is minimized for any fixed probability of
deciding incorrectly (Wald & Wolfowitz, 1948). In other words,
following the SPRT allows for the fastest response time for a
particular error rate. Because the sensory inputs are assumed to
be independent of one another, the SPRT is a random walk model
whose starting point is L(0) = 0 and with two absorbing states: —9
and d (see Figure 2A).

While intuitive and simple, the framework of the SPRT also
makes decisions that take time, as people do, which is an advantage
over SDT in modeling empirical data. Indeed, the SPRT can produce
human-like speed—accuracy tradeoffs: requiring faster decisions
reduces accuracy, while requiring more accurate decisions reduces
speed. This is captured in the model by assuming that people control
the magnitude of the thresholds to suit their objectives. In response
to an experimental emphasis on speed (accuracy), people are
assumed to decrease (increase) the decision threshold; the model’s
guarantee of optimal performance implies that these two measures
will trade off against one another.

Unfortunately, the SPRT does not easily explain other psycho-
logical relationships between choice and RT. In binary choice, for
example, the SPRT predicts identical response time distributions for
choosing either of the two options (assuming an unbiased starting
point, L(0) = 0, and symmetric thresholds), contradicting the
empirical observation that mean RTs differ for correct and incorrect
decisions (Ratcliff & Rouder, 1998; Stone, 1960). This is far from
the only issue: Table 1 summarizes several qualitative effects of
choice, response time, and confidence, the majority of which cannot
be accommodated by the SPRT.

These stylized facts have been used to motivate descriptive
models, including the family of models known as drift diffusion
models (DDMs), that relax the normative SPRT framework to better
describe human data, specifically regarding three key measures:
choice, response time, and confidence. While such approaches have
been highly successful, our focus here remains on approaches
closely tied to normative depictions of behavior, though we return
to DDMs and other common descriptive models below.

A Representation for Producing Estimates and
Confidence Intervals

The categorical-hypotheses representations used in SPRT can
produce choice, response time, and confidence measures, but are not
fine-grained enough to produce probability judgments (e.g., judge
the probability that the number of dots was greater than 25),
estimates (e.g., how many dots are there on the screen), or confi-
dence intervals (e.g., placing a 95% confidence interval around the
estimate). What is needed is an extension of the hypothesis space
beyond the categorical hypotheses used when making a choice. In
principle, within a Bayesian framework, this is straightforward,
although the resulting model looks very different. Instead of simply
using two categorical hypotheses (e.g., whether there are more than
25 dots on the screen), the model can instead represent the fine-
grained hypotheses relevant for estimates (e.g., with a hypothesis
corresponding to each of exact number of dots on the screen). With
such a representation, estimates and confidence intervals can simply
be a function (e.g., the mean and quantiles respectively) of this
distribution. The probabilities of categorical hypotheses used to
produce choices, confidence judgments, and RT can be calculated
simply by summing up the posterior probability of the fine-grained
hypotheses that are consistent with each choice (e.g., summing the
probability of all the hypotheses in which the number of dots is more
than 25).
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Figure 2

Schematic Illustrations of the Computational Mechanisms and Potential Behavioral Outputs of the SPRT (A) and the ABS (B)
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A typical trial of a numerosity task is visualized in which 24 dots are briefly presented on-screen as the stimulus. The SPRT draws sequential samples

from the noisy sensory representation (e.g., corrupted images), while the ABS draws autocorrelated samples of hypotheses (e.g., numbers of dots). SPRT =
sequential probability ratio test; ABS = Autocorrelated Bayesian Sampler; RT = response times. See the online article for the color version of this figure.

This representational change, however, does not allow a probabi-
listic model to account for many of the empirical effects found with
estimates and confidence intervals. For estimates, anchoring effects
demonstrate a dependence on preceding choices even when the
choice question that provides an “anchor” transparently contains
no information (Tversky & Kahneman, 1974). Moreover, in the
empirical data, estimated confidence intervals are typically far too
narrow and are strikingly different depending on whether participants
produce or evaluate them (Juslin et al., 2007). In addition, a long line
of empirical work shows that probability judgments are systemati-
cally biased and incoherent (e.g., subadditivity, conjunction fallacies,
partition dependence), which seems to argue against all purely
probabilistic models (e.g., Dasgupta et al., 2017; Tentori et al.,
2013; Tversky & Kahneman, 1983; Tversky & Koehler, 1994;
Zhu et al., 2020).

Exact probabilistic models also show fundamental mismatches
with the results of recent investigations into the source of noise in
human judgment and decision-making. While probabilistic models
assume a noise-free inference process using precise probabilities,
there is growing empirical evidence suggesting that much, or even
most, variability in decision-making in fact arises from “computa-
tional noise” (i.e., variability in precision and approximation used to
perform inference) rather than “sensory noise” (i.e., variability in
relevant sensory features) or “decision noise” (i.e., variability associ-
ated with action selection; Drugowitsch et al., 2016; Findling &
Wyart, 2021; Stengard & van den Berg, 2019; Wyart & Koechlin,
2016). Clearly, then, there are problems with the descriptive adequacy
of all probabilistic models, including SDT and the SPRT, which may
stem from the psychologically implausible assumption of exact
calculation of probabilities and the lack of mechanism to account
for the stochasticity in the inference process. In the next section, we

propose how to address these fundamental problems, before evaluat-
ing how far the proposed solution produces a better qualitative match
to a wide range of regularities in human behavior.

A Sampling-Based Approximation Perspective
for Rational Decision-Making

Assuming imprecise probabilities does not necessarily mean aban-
doning probabilistic models. While exact Bayesian computation is
often out of reach for real-world computational mechanisms, including
the human brain (Anderson, 1991; Aragones et al., 2005; Kwisthout et
al., 2011), computer scientists and statisticians have devised a number
of sophisticated, general-purpose approximations for producing useful
answers with a more reasonable amount of computational time and
effort. It is therefore interesting to explore whether the brain has hit on
similar solutions. One major family of general-purpose approxima-
tions in computer science and statistics is based on sampling.’

Following the Bayesian approach, we propose that people solve
cognitive tasks by building an internal model and posterior distri-
bution over fine-grained hypotheses, which can support the re-
sponses for all of the aforementioned six behavioral measures.
But, because the exact representation of the posterior probabilities
of hypotheses is typically computationally intractable, we further
hypothesize that the posterior probability distribution is not com-
puted exactly, but is approximated by drawing representative

2We do not further consider other general-purpose approximation
algorithms, such as variational inference, in which a simpler distribution
is used to approximate a more complex one, and the statistical distances
between the two distributions are minimized by optimization algorithms.
Such algorithms provide an alternative source of explanations for human
behavior (Gershman & Beck, 2017; Sanborn, 2017).
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AUTOCORRELATED BAYESIAN SAMPLER 7

samples from the posterior. Sampling-based approximations to the
posterior are appealing as a psychological mechanism because (a)
some sampling algorithms (e.g., Markov Chain Monte Carlo
[MCMC]; Brooks et al., 2011) need only local knowledge of the
target posterior distribution and can represent only one or a few
hypotheses at a time, lending these algorithms psychological plau-
sibility (Anderson, 1991; Sanborn et al., 2010), (b) sampling algo-
rithms show much of the same behavioral variability and deviations
from ideal probabilistic inference as observed in people across a
range of domains (Dasgupta et al., 2017; Griffiths et al., 2012;
Lieder et al., 2018; Sanborn & Chater, 2016; Vul et al., 2014; Zhu,
Newall, et al., 2022), and (c) the variability of sampling algorithms
has been found to match neural variability in the cortex (Fiser et al.,
2010; Haefner et al., 2016; Hoyer & Hyvérinen, 2003). These
observations suggest that the sampling-based explanations can
connect with all three of Marr’s (1982) celebrated explanatory
levels: computational (through implementing Bayesian inference),
algorithmic (via a tractable computational mechanism), and imple-
mentational (through potentially mapping on to neural activity).

Taking a sampling-based approximation perspective to model
choices suggests decision-making should be conceptualized as the
problem of integrating a sequence of stochastic hypotheses into
categorical decisions. The key distinction with other probabilistic
models such as SDT and the SPRT is that we specifically define the
“evidence” as samples of hypotheses, abstracting away from noisy
sensory percepts or memory traces used in previous models, includ-
ing computational-level models (see Figure 2B). This implies that it
is computational noise in the inference process that is the primary
source of variability in behavior.

The Autocorrelated Bayesian Sampler

Here we outline a rational process for producing probability
judgments, estimates, confidence intervals, choices, confidence
judgments, and RT based on a sampling approximation of the
posterior probability of fine-grained hypotheses, which we call
the ABS. Our key theoretical contribution is to create links between
the sampling process and each of the six behavioral measures. This
is possible because samples of the fine-grained hypotheses contain
all of the relevant information to produce these (and indeed many
other) aspects of behaviors.

Continuing our numerosity example (see Figures 1 and 2), the
ABS produces behavior based on the posterior probability of the
hypotheses, P(h|s), which is calculated using Bayes rule:

P(s|h)P(h)

Plhls) = =

3)
where h is a hypothesis, s is a stimulus, P(s|4) is the likelihood of a
stimulus given a hypothesis, P(h) is the prior probability of a
hypothesis,” and P(s) is the overall probability of observing the
stimuli across all possible hypotheses included in the internal model.
In the numerosity task, for example, the hypothesis space reflects all
possible numbers of dots that may have appeared on-screen, while
the posterior distribution could be represented as a Gaussian distri-
bution with mean equal to 24—the true number of dots. The
variance of the distribution may stem from all kinds of uncertainties
including, for example, perceptual noise and/or uncertainties asso-
ciated with the processing of information.

This general framework applies far beyond numerosity, of course.
For example, it can be applied to intuitive physics when / is a complete
object trajectory and s is the initial movement of an object (e.g.,
Battaglia et al., 2013; Hamrick et al., 2015; Sanborn et al., 2013),
language production when # is the next word in a sentence and s are the
preceding words (e.g., Chater & Manning, 2006; Levy et al., 2008),
and common-sense reasoning about other minds when / is a social goal
of other agents and s is a sequence of actions performed by those agents
(e.g., Baker et al., 2008, 2009). Similarly, Bayesian models have also
been successfully implemented in explaining effects in other areas of
psychology such as vision (e.g., Yuille & Kersten, 2006), motor control
(Kording & Wolpert, 2004), causal reasoning (e.g., Abbott & Griffiths,
2011; Bramley et al., 2017), reading (Norris, 2006), and learning
(e.g., Courville & Daw, 2007; Gershman et al., 2010).

Next, a set of hypotheses is sampled from the fine-grained
posterior distribution, and these samples directly and straightfor-
wardly support all six of our measures (Figure 2B). Probability
judgments are based on the relative proportion of the samples (e.g.,
the number of samples with numerosities greater than 25). Estimates
are based on a summary statistic of the samples (e.g., the mean
sampled numerosity or the value of the most recent sample). Confi-
dence intervals are based on the quantiles of the samples (e.g.,
ordering five samples and using the numerosities of the second
and fourth sample as the bounds of a 60% confidence interval).
Choices are based on the preponderance of the samples (e.g.,
depending on whether more than half the samples have numerosities
greater than 25). Confidence judgments are (like probability judg-
ments) based on the relative proportion of the samples that agree with
the choice. RT are a function of the number of samples drawn (e.g.,
assuming that on average drawing four samples takes longer
than three).

To generate concrete predictions from the model, and assess the
match with human behavior, we need to outline three further aspects
of the model: the choices of sampling algorithm, prior on responses,
and stopping rule, to which we now turn.

The Sampling Algorithm

We assume that the mind conducts sampling-based approximations
by drawing samples of hypotheses in proportion to the posterior
probabilities associated with each hypothesis (e.g., Chater et al., 2020;
Dasguptaetal., 2017; Griffiths et al., 2012; Vul etal., 2014; Zhu et al.,
2020). Rather than reviewing the extensive literature on sampling
algorithms in statistics and computer science (see Andrieu et al., 2003,
for an overview), we focus on algorithms that have been previously
shown to match human behavior in some area of psychology.

The simplest sampling algorithm is direct sampling, in which
independent and identically distributed (i.i.d.) samples are drawn
(e.g., Vul et al., 2014). However, a lot must be known about the
target distribution to draw i.i.d. samples: people need (at least

3 Note that this prior reflects the prior knowledge of the hypothesis space
and therefore should be amenable to feedback and experimental instructions
about the hypothesis space. For the running numerosity example, the
experimenter could explicitly inform participants, or they could learn
through experiences, that the numbers of dots appearing on-screen across
trials are uniformly distributed in the range of [21, 30]. Indeed, previous work
has shown that participants can quickly acquire an accurate prior from
feedback in a numerosity task (Sanborn & Beierholm, 2016). In this case, for
simplicity, we should use a uniform distribution as the prior for hypotheses.
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implicitly) to know the posterior probability of every hypothesis,
which fails to alleviate the computational intractability problem that
motivates the need for sampling-based approximations. Another
difficulty for direct sampling is descriptive. Human hypothesis
generation is not a process of drawing independent samples, as
direct sampling requires. Instead, what comes to mind now depends
on what came to mind in the past (Dasgupta et al., 2017; Gilden
et al., 1995; Zhu, Ledn-Villagra, et al., 2022).

In light of this, researchers have recently started to explore a family
of more sophisticated sampling algorithms called MCMC (Robert &
Casella, 2004). MCMC algorithms explore the hypothesis space
using only local knowledge about the probability distribution, greatly
reducing the knowledge required to generate samples. The key idea of
MCMC is that, in its simplest form, it represents only a single
hypothesis at a time, and probabilistically transitions between hypoth-
eses in proportion to their posterior probabilities. The local transitions
induce a serial dependence between samples, akin to the local
transitions in human hypothesis generation (Bramley et al., 2017;
Frinken et al., 2021).

In our own work, we have found that an extension of MCMC,
named MC?, provides a close match to the dynamics of repeated
human judgment, capturing the observed long-range autocorrela-
tions between estimates, as well as the heavy-tailed distribution of
absolute differences between successive estimates (Spicer et al.,
2022b; Zhu et al., 2019, 2021; Zhu, Ledén-Villagra, et al., 2022). We
therefore use MC? as the sampling algorithm in the present model,
though the specific mechanics of this algorithm beyond dependen-
cies between samples are not necessary for almost all of the
behaviors targeted here (see Appendix A, for algorithmic details).
In other words, with the exception of explaining the cross-trial
autocorrelation results which requires quantitative characterizations
of the dependence in samples, the key condition for a sampler to
reproduce the qualitative model behaviors (e.g., comparing average
model behaviors between experimental conditions) is simply that
sampling is local and autocorrelated. Thus, most model predictions
can be replicated using many other MCMC sampling algorithms,
including the widely used Random Walk Metropolis algorithm, so
long as samples are positively correlated across time.

Using dependent samples influenced our choice for how the ABS
produces estimates. In past work, estimates have been based on the
most recently generated sample or by averaging over samples
(Lieder et al., 2018; Vul et al., 2014). While the mean of a set of
independent samples is clearly a better estimate of the underlying
mean than a single sample, with dependent samples, earlier samples
are more likely to be biased by the starting point than later samples.
For this reason, we chose to use the most recent sample as our
estimate. However, these two approaches do not predict qualita-
tively different behavior in aggregate (see Appendix E, for details).*

Producing confidence intervals, however, requires more than a
single sample, and instead can reflect statistics of the entire set of
samples: for example, the 2.5% and 97.5% quantiles of the samples
can represent a 95% confidence interval of the target distribution.
This approach can only be applied directly for large samples. With
small samples, we produce more fine-grained intervals by following
Juslin et al. (2007) and use linear interpolation to fill in the gap
between the two quantiles of the samples.

We also assume that sampling takes time. For simplicity, we model
the time necessary to produce N samples as a Poisson process: while
time taken to produce a new sample is random, the samples are

generated at a constant rate (A samples per sec). In a Poisson process,
the waiting time between samples is exponentially distributed, and the
time necessary to generate N samples follows an Erlang distribution:

f(¢) ~Erlang(N, A). ()]

The mean and variance of RT for a sample size of N are E[f] = % and
V(] = % respectively. Using a Poisson process allows us to more
closely link our approach to existing models such as the Poisson
random walk (PRW) model (Blurton et al., 2020; discussed below),
though the results in this article would be qualitatively the same under
a wide variety of assumptions of how long it takes to generate each
additional sample. This is because many empirical results only require
assuming the samples were generated sequentially and generating
more samples typically takes more time. Exponential waiting times
are assumed here to explain the shape of RT distributions, particularly
the observation that the RT for probability judgments (which we
assume to have been produced using a fixed number of samples) are
positively skewed (see Appendix F).?

The Bayesian Monte Carlo Prior on Responses

Samples of the fine-grained hypotheses generated from our
sampling algorithm can be readily used to make a choice. In our
numerosity example, if asked to decide whether the number of dots
that appeared on-screen is greater than 25, the hypothesis space
should be partitioned into two subspaces with 25 on the boundary
line. Samples that indicate greater than 25 dots or not support
the corresponding hypotheses. In other words, evidence is directly
translated from the samples, here taking one of two values. And also,
unlike the evidence used in SPRT, there is no inherent uncertainty
about which alternative each sample supports. For the numerosity
example, the generated sample can denote any number of dots in the
hypothesis space, but it can only support one alternative in deci-
sions: if the sample was 23, it only supports the hypothesis that there
were less than 25 dots on screen. Similarly for M-alternative choices
(M > 2), the hypothesis space can be partitioned into M subspaces
with hypothesis samples from each subspace supporting the corre-
sponding alternative.

These samples implicitly carry information about the probability
that each choice alternative is correct. For example, when asked
about the probability that the number of dots is greater than 25, the
relative frequency of evidence in favor of, rather than against, the
event should inform the probability estimate. But, as explored in
Zhu et al. (2020), people should not directly use the relative
frequency of the hypotheses as a probability estimate. This is
especially true when sample sizes are small because the relative
frequency tends to be extreme. Indeed, a single sample would lead to
a probability estimate of either O or 1. This problem can be solved by

4 People often use round numbers when making estimates, and indeed
typically focus on so-called prominent numbers (Converse & Dennis, 2018).
There is evidence that round numbers are used to communicate confidence in
the estimate (Jerez-Fernandez et al., 2014; Welsh et al., 2011) and round
number use is reduced when responses are made on a continuous scale
(Honda et al., 2022). Future work could explore adding a rounding mecha-
nism for this purpose.

5 Nondecision time, as is commonly used in models of response time,
would be necessary to include to quantitatively reproduce empirical RT
distributions, but it is not needed to produce the qualitative effects we
evaluate below.
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incorporating a prior on responses to temper the relative frequency
in the estimates of the probability that each choice alternative is
correct, an approach that in statistics is called Bayesian Monte Carlo
(Gelman et al., 2013; Rasmussen & Ghahramani, 2002).°

The Bayesian Sampler model of Zhu et al. (2020) used a fixed
prior on responses, and for mathematical simplicity, this was chosen
to be a Beta distribution, because this is the conjugate prior for
probability estimates. The Beta distribution is bounded by 0 and 1,
and has two parameters, o and o, which determine its shape: when
both parameters exceed 1, the Beta distribution is unimodal with a
peak in the middle of the range (i.e., at an“jr';]_2); when both
parameters equal 1, it is uniform; and when both parameters are
less than 1, it is bimodal with peaks at both 0 and 1. Most critically,
using the Beta distribution as the prior enables evidence to act as
pseudocounts in the parameters. For S(A) pieces of evidence of event
A, S(—A) of event not-A, and a Beta(o,o,) prior, people will have a
posterior distribution for probability estimates that is distributed
according to Beta(og + S(A), o; + S(—A)). The Bayesian Sampler
model used the expected value of this posterior distribution as its
probability estimate, which is also simple to calculate:

P(A) _ (%) + S(A) (%) + S(A)
T+ SA) Foy +SEA) T N+ oo’

&)

where N = S(A) + S(—A) denotes the total number of samples that
were generated and translated into evidence. Both the prior parame-
ters (which affect o, 1) and the sampling process (which affects
S(A) and N) affect the expected value. As the prior parameters are
defined to be nonnegative (i.e., o, a; > 0), the Bayesian Sampler’s
estimated probabilities tend to avoid extreme values and regress to
the mean of the prior (i.e., ap/(atg + ap)).

Here, we generalize the prior on responses used in the original
Bayesian Sampler in two ways. The first is to make it multivariate: in
many situations, people can be asked to judge a multivariate event
where the hypothesis space should be partitioned into many sub-
spaces. For example, when asked “what is the probability that the
hottest day of the week will be Sunday?,” there are seven options to
consider (“Sunday hottest,” “Monday hottest,” and so on). In this
case, the Dirichlet distribution, a multivariate generalization of the
Beta distribution, is the natural conjugate prior. For an M-variate
Dirichlet prior, Dir(at), with o¢ = (oo, a1y, ... , 037_1), people report the
mean posterior distribution as their probability estimate:

N _ oy + S(A)
AR = ©

This view of probability estimates implies an indifference point
(when the underlying probability and the estimated probability
matches) that depends on the number of alternatives (see Figure 3A).

The second way in which we generalize the prior on responses of
the Bayesian Sampler is to allow it to adapt to experience (e.g., the
trial history in an experiment). In Bayesian data analysis, when no
prior information is available, a default prior is typically recom-
mended (Gelman et al., 2013). However, for many real-world
applications and especially for everyday cognitive tasks, historical
data (e.g., past experiences of the same task, data from previous
similar tasks or from observing others’ performing the task) are
available which can help people can construct an appropriate prior.
For example, if repeatedly choosing between the same two

alternatives, historical choice data should provide useful informa-
tion such as the base rate, which in turn can help construct a prior on
responses to guide future decisions. How to construct an adaptive
prior based on historical data is a topic of debate in statistics and
computer science because it is difficult to determine how much to
generalize previous experience to new situations (Chen et al., 2000;
Diaconis & Ylvisaker, 1979; Ibrahim et al., 2015).7 For simplicity,
we assume that people only use information from the immediately
previous trial to develop their adaptive prior for the present trial: in
binary choice, a noninformative, uniform prior (Beta(1,1)) is
adjusted to favor the option the feedback indicated was correct,
thus becoming either Beta(2,1) or Beta(1,2).

The adaptive prior on responses, in conjunction with the gener-
ated samples, then determines the model’s estimated probability of a
categorical alternative being correct. This estimated probability is
used both as the model’s probability estimate and its confidence
judgment in whether a choice is correct.® The equivalence between
the two is not unique to our model—it has been previously posited as
the Bayesian Confidence Hypothesis (Kepecs & Mainen, 2012;
Mamassian, 2016; Pouget et al., 2016), and has attracted both
support (Calder-Travis et al., 2020) and criticism (Li & Ma, 2020).

The Stopping Rule

Any model of judgment or decision that depends on the sequential
accumulation of evidence needs a rule determining at what point to
stop collecting evidence and make a decision. When to stop drawing
samples should depend on both the costs (e.g., metabolic, opportu-
nity, etc.) of sampling as well as the task-specific benefits of
additional samples for providing a good response.

For probability judgments, estimates, and confidence intervals, in
the absence of a clear alternative stopping rule, we make the simplest
possible assumption: that a fixed number of samples are drawn to
answer each question (though we revisit this pointin Appendix F). A
fixed number of samples will allow the model to produce indifferent
probability judgments (e.g., judging a binary event to have a
probability of 0.5) as is often observed in the human data,” and

® The Bayesian Monte Carlo prior on responses is different from the prior
on hypothesis in Equation 3. Specifically, the Bayesian Monte Carlo prior
should capture full or partial information about the frequencies of the relevant
behavioral outcomes in past trials. Consider again the binary choice in the
numerosity example where people were asked to judge whether the number
of dots is greater than 25. In this case, the prior on responses should reflect, to
some extent, prior belief in different probabilities that each response is
correct; and this prior knowledge could be acquired through feedback of
correctly choosing greater-than-25 and of correctly choosing the alternative
less-or-equal-than-25. An additional difference is that when knowledge of
the probabilities is precise, even if there is uncertainty in the hypotheses, the
effect of the Bayesian Monte Carlo prior reduces. Thus, in Equation 5, as the
sample size, N, approaches infinity then P(A) tends to P(A).

7 Incorporating historical information into new situations is known as
power prior in the statistics literature, which is also closely related to the ideas
of metalearning (or learning-to-learn) and hierarchical Bayesian modeling.

8 Confidence judgments are often made on various ordinal rather than
probability scales, though analyses of confidence judgments often just
assume that they are monotonically related (Li & Ma, 2020; Shekhar &
Rahnev, 2021a), as we do here. For comparability across different ordinal
scales we present all of the model predictions on the probability scale rather
than specifying those relationships.

® A reanalysis of the four probability judgment experiments presented in
Sundh et al. (2021) shows that participants produced indifferent probability
judgments (i.e., exactly 50 on a 0-100 scale) on about 6% of trials.
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Figure 3
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Relationship Between the Underlying Probabilities of Event A and the Average Probability Judgments of A Predicted by the ABS
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2. While uniform Dirichlet priors were used in the simulation, the indifferent points are always located at (1/M, 1/M) for symmetric Dirichlet priors. (B) As
produced by the ABS, the empirical indifference points between mean probability judgments and objective probabilities are related to the inverse of the number
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(1990), and were inferred from the regression in Attneave (1953). ABS = Autocorrelated Bayesian Sampler. See the online article for the color version of this

figure.

fits with the even distribution across reaction times observed in our
own experiments (see Figure F1 in Appendix F).

However, for making decisions, rather than probability judgments,
a fixed sample is likely to be too simple. If the samples so far leave
the evidence finely balanced regarding which decision to make, then
it is likely that more data will be collected. While it is possible in
principle to derive an optimal stopping rule for the sampling process
in this model, unlike with the SPRT, the optimal rule is not
analytically tractable and can instead only be computed using
dynamic programming (see Appendix C). So, again for simplicity,
we use a well-known heuristic stopping rule instead: the max-minus-
next rule, which counts the difference in evidence between the top
two hypotheses, and terminates the sampling process whenever the
accumulated difference exceeds a threshold. This simple heuristic
stopping rule has also been shown to approach the performance of an
optimal SPRT even in multi-alternative settings (Dragalin et al.,
1999, 2000). For binary choices, this reduces to just the difference in
the number of samples in favor of each alternative, which has been
proposed in past work (Hamrick et al., 2015; Vul et al., 2014). The
decision-making panels of Figure 2B demonstrates the max-minus-
next stopping rule with a threshold value of 2.

While the choice of stopping rule does not change how samples
are used to produce the different measures, it does influence the
content of the samples and the variability of the sample size and
hence responses times. So, for example, in our model, while the RT
for a probability judgment which is assumed to have a fixed sample
sizes will follow an Erlang distribution (see Appendix F, for further
justification), RT for a choice (which assumes optional stopping)
will follow a mixture of Erlang distributions (see Appendix B, for
details).

Explaining Key Empirical Targets in Probability
Judgments, Estimates, Confidence Intervals, Choices,
Confidence Judgments, and RT

We now demonstrate the explanatory power of the ABS. We focus
on behavioral results that deviate from the Bayesian ideal embodied
in models like the SPRT (see Table 1), simulating these using a

consistent set of parameters (detailed in Appendix A). To facilitate
understanding of the active ingredients of the model, we also show
results from three restricted variants of the full ABS model. The no-
prior variant removes the adaptive prior (this is equivalent to fixing
the prior to Beta(0,0)) while keeping the remaining components. The
direct-sampling variant uses independent samples instead of the
autocorrelated samples while keeping the remaining components.
The fixed-sample-size variant always uses a fixed number of samples
(N =5) to form behaviors for both judgments and behaviors.

Biases in Probability Judgments

The wide range of systematic biases in probability judgments are
perhaps the most direct evidence against purely normative probabi-
listic models as the basis for a descriptive psychological account.
We find that the prior on responses and local nature of the sampling
algorithm of the ABS (which help to reduce the computational
burden of the model by reusing old and useful computations and
using only local knowledge of the posterior distribution respec-
tively) suffice to produce many of these biases. Note that in the ABS,
there are no biases in the underlying posterior probabilities; biases
arise solely from the algorithmic process by which the posterior is
sampled and judgments and decisions are generated.

Using prior knowledge to temper the probability estimates was
the basis of the Bayesian Sampler model (Zhu et al., 2020). The ABS
works in the same way, except that it uses autocorrelated, rather than
independent, samples.'” As shown in Figure 3A, the prior in the

' The autocorrelation of the samples does not qualitatively alter the
overall model predictions for probability judgments (with the exception
of implicit subadditivity and implicit superadditivity, discussed below)
because autocorrelated sample sizes can be corrected to produce the effective
sample size of independent samples using the following equation: N =
oy N = where p, is the degree of autocorrelation at lag ¢. For the parameters
we used in the simulations, the effective sample size is on average 16.80% of
the autocorrelated sample size (95% CI [16.40%, 17.21%]). In addition, in
the studies we refer to, there is very rarely any feedback. Without feedback,
we assume the ABS prior does not change from trial to trial, making it
identical to the fixed prior of the Bayesian Sampler for binary events.
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Bayesian Sampler produces a linear bias toward conservative
judgments (Zhu et al., 2020) where people avoid the extremes in
their probability judgments (Erev et al., 1994; Fiedler, 1991;
Peterson & Beach, 1967). This type of conservatism captures the
results of a series of probabilistic identities investigated by Costello,
Watts, and colleagues (Costello et al., 2018; Costello & Watts, 2014,
2018), which were constructed by adding and subtracting various
mean judgments across combinations of events. While all these
identities would equal zero if participants reported coherent proba-
bilities (on average), mean judgments were zero for some identities
and substantially different from zero for others. The results from the
entire set of identities, including conditional probability judgments
of dependent events, were well fit by the Bayesian Sampler’s linear
conservatism bias (Zhu et al., 2020). As the average behavior of the
ABS is approximated by the Bayesian Sampler especially when the
effects of local sampling are not strong (e.g., where there are random
initializations of the local sampler), the ABS will produce these
results as well.

The sample size and prior on responses of the ABS can be
dissociated by examining the mean—variance relationship in proba-
bility judgments. When probability judgments are based on sampled
outcomes, the relationship between the mean probability estimates
and the variance of the estimates will follow an inverse U-shaped
(“rainbow-shaped”) curve (see Figure 4A). The prior on responses
then constrains the range of possible probability estimates that an
agent can produce, thereby lowering the relative variance and pulling
the curve both inward and downward (see Figure 4B). For example,
for a binary event with a uniform prior, if a single sample is drawn,
probability judgments will be either 0.33 or 0.67, and total variance
will be relatively lower than for the pure proportions of sampled
outcomes (taking now account of the prior on responses).

Figure 4
Mean-Variance Relationships in Probability Judgments
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Overall, the Bayesian Sampler predicts a shrinkage of the mean—
variance curve for probability judgments, and this was empirically
validated in four experiments (Sundh et al., 2021). For the same
reasons as the Bayesian Sampler, the ABS model predicts this
shrinkage of the mean-variance curve as well (see Figure 4B).

Moreover, explicit subadditivity in probability judgments also
occurs as a direct consequence of using the prior on responses.
Explicit subadditivity is when the estimated probability of an event
(Ao) is lower than the sum of estimated probabilities for events
(A1, Ay, ..., Ayp) where Ag is the disjunction of those M’' mutually
exclusive events. That is:

P(Ag) < P(A}) + P(Ay) +---+ P(Ay). 7

where probability theory requires that these should be equal. An
explicit subadditivity bias has generally been observed in between-
participant designs in which participants were asked explicitly to
judge the probability of each of the M’ events and their disjunction,
Ay, so that a total of M’ + 1 probability estimates were recorded
(e.g., Tversky & Koehler, 1994). According to the sampling
account, for each query, because participants do not know the
full range of questions to be asked, they will treat the event to be
judged as a binary event; that is, participants will sample instances
and noninstances of that event (i.e., A, vs. not-A,,), thus requiring a
Beta prior on responses. The resulting estimate of each P(A4,,) will
therefore be inflated by regression to the mean. The regression-to-
mean effect then applies multiple times on aggregate to the right-
hand side of Equation 7 and only once to the left-hand-side,
predicting a subadditivity bias for low probability events.

As a corollary, the greater the number of disjunctive hypotheses,
the more probability judgments will be queried on the right-hand-side

B Model predictions
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Note. (A) Empirical results based on the four experiments of Zhu et al. (2020) and Sundh et al. (2021), showing inverted

U-shaped relationships between means and variances of probability estimates, such that extreme probability estimates (very
near O or 1) are ruled out. Solid curves are the mixed-effect regression models fitted on individual-level probability estimates.
(B) Analytic approximations of the mean-variance relationship predicted by the ABS. The model predicts an inverted-U shape,
with stronger priors on responses moving the curve inward and more samples moving the curves downward. ABS =
Autocorrelated Bayesian Sampler. See the online article for the color version of this figure.
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of Equation 7, which should lead to a greater degree of subadditivity
bias. For M’ component hypotheses, the predicted difference between
the sum of the M’ probability estimates and the probability estimate
of the disjunction can be derived as follows:

M
N (o)) N (0]
=3 |-———P(4,) + - P(4y) +
Z |:N+ 2(10 ( m) N+ 2(10:| |:N+ Z(XO ( 0) N+2(X0

where the assumptions were fixed sample size (V) and symmetric
prior on responses, Beta(oy, o). Indeed, the empirical findings
suggest a positive relationship between M" and the degree of explicit
subadditivity bias, and the Bayesian Sampler correctly captures the
relationship (see Figure 5). Moreover, when the probability of the
disjunction of M’ mutually exclusive events was exactly 1 (so that
one of the disjunctive hypotheses must be true by logic), participants
were sometimes asked to only judge the probabilities of M’ compo-
nent hypotheses but not their disjunction. In this case, model
predictions can be analytically approximated as (M — 2) Nfg% under
the same assumption as before. This prediction also matches the
empirical pattern known as the binary complementarity: on average,
no subadditivity bias was observed for mutually exhaustive events
when M’ = 2 (Tversky & Koehler, 1994). The ABS model inherits
these predictions from the Bayesian Sampler.

Similarly, this regression-to-mean effect predicts the conjunction
fallacy (Costello & Watts, 2017; Zhu et al., 2020). The conjunction

Figure 5

Bias in Explicit Subadditivity, Computed as the Sum of the Probability
Estimates of Each Component Hypothesis Minus the Probability
Estimates of Their Disjunction, Increases as the Number of
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Note. This empirical effect is captured by the Bayesian Sampler (solid
line). The sample sizes were set at N = 5, and the prior on responses was
Beta(1,1). See the online article for the color version of this figure.

fallacy arises where the estimated probability for a conjunctive event
is greater than that for its constituent events P(AjnA;) > P(A,),
whereas probability theory requires the probability of conjunctive
events to be less or equal with their constituents, Ap and A (Tversky
& Kahneman, 1983). The conjunction fallacy occurs in the Bayesian
Sampler when the regression-to-mean applies more to the conjunc-
tive event than to the constituent events. Specifically, it is assumed
that fewer samples of the more-complex conjunctive events can be
generated or tallied in a fixed amount of time; and the prior thus
produces a greater regression-to-mean effect for smaller sizes (see
Equation 6). This allows the Bayesian Sampler to predict above-
chance levels of conjunction fallacies when the conjunction and
constituent event both have low probability (Zhu et al., 2020), as is
often the case in experiments (Costello & Watts, 2017). The ABS
model also inherits this prediction from the Bayesian Sampler.

In contrast with the explicit judgments of M’ + 1 probabilities
above, both subadditivity and its opposite effect, superadditivity,
have been observed in so-called implicit experimental designs. In
implicit designs, only two probability judgments are made: one
for the unpacked descriptor (e.g., “baby bottles and other bottles
made of glass”) and one for the simple disjunctive descriptor
(e.g., “bottles made of glass™; Dasgupta et al., 2017; Sloman et al.,
2004). Unpacking to typical examples (e.g., a baby bottle in
the category of bottles made of glass) leads to subadditivity:
P(Ay) < P(AJUA,U --- UAy), whereas unpacking to atypical
examples (e.g., a shampoo bottle in the category of bottles made
of glass) leads to superadditivity: P(Ag) > P(A;UALU -+ UAy)
(Dasgupta et al., 2017; Sloman et al., 2004). Again, since Ay was
unpacked into M mutually exclusive events (Ag=A; UA, U ... UAyy),
probability theory requires the two probability estimates to be equal.
Previous work with autocorrelated sampling models (Dasgupta et al.,
2017; Sanborn & Chater, 2016) accounted for this effect by assuming
that the descriptor influenced the local sampler’s starting point: typical
unpacking initializes the sampler in a high probability region of the
hypothesis space, while atypical unpacking initializes it in a low
probability region. As a result, the proportion of hypotheses supporting
the event’s occurrence will be highest for typical unpacking, interme-
diate for the simple disjunctive descriptor (assuming it results in a
random starting point), and lowest for atypical unpacking. We believe
that the ABS will inherit this prediction because it produces auto-
correlated samples, though we do not reproduce it here because
auxiliary assumptions about the locations and probabilities of hypoth-
eses are needed to do so. This explanation of implicit subadditivity and
superadditivity depends on local sampling. They cannot be predicted
by the Bayesian Sampler model (Zhu et al., 2020; see a similar
argument against a “regressive model” in Tversky & Koehler, 1994),
which assumes independent sampling.

Interestingly, people’s probability estimates are also found to
exhibit so-called “partition dependence.” That is, they regress to ﬁ
where M is the number of alternatives that people are encouraged to
consider (see Figure 3B, for a summary; Attneave, 1953; Bardolet
et al., 2011; Fox & Rottenstreich, 2003; Varey et al., 1990). For
example, asking “what is the probability that Sunday will be hotter
than any other day next week?” encouraged participants to treat
the event as binary, and their estimates were observed to be biased
toward %, while asking, “what is the probability that the hottest
day of the week will be Sunday?,” encouraged participants to
consider seven possible outcomes, and estimates were observed
to be biased toward % (Fox & Rottenstreich, 2003). In ABS, framing
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the probability query as judging an M-variant event invokes a
Dirichlet prior with M parameters, Dir(ay, oy, ... , 1), Which for
a binary event reduces to a Beta prior, Beta(og, o). Partition
dependence effects can be explained by assuming that people have no
a priori reason to believe one event occurs more often than another
event: oy = o = -+ = oy and so probability estimates are predicted
to be biased toward +'w = % (see Figure 3A). In the ABS, the

m=0

impact of this noninformative prior should be more pronounced in
situations where people are less knowledgeable about the probability
estimation task or less confident in a learning context (reflecting fewer
samples), matching the empirical results (See et al., 2006).

Choice Accuracy and RT

The Bayesian Monte Carlo process for choice and RT correctly
predicts four key relationships between choice and RT. First, and in
common with many other evidence accumulation models, the ABS
predicts a trade-off between accuracy and speed where increasing
decision thresholds lead to, on average, more evidence being
accumulated (and thus higher accuracy) as well as longer RT.
This trade-off between accuracy and speed has been widely docu-
mented in the literature (Garrett, 1922; Johnson, 1939; Pachella,
1974; Ratcliff & Rouder, 1998; Wickelgren, 1977).

Second, unlike many models, the ABS predicts that correct and
incorrect responses have unequal average RT. The empirical result
is that, when accuracy is emphasized (or in difficult tasks), errors
are usually slower than correct responses. By contrast, when speed
is emphasized (or in easy tasks), errors are usually faster (Luce,
1986; Ratcliff et al., 2003; Ratcliff & Rouder, 1998; Swensson,
1972). This empirical pattern is surprisingly difficult to match for
models that accumulate relative evidence to symmetric bounds:
these models predict that the response time distributions for correct
responses and errors will always be the same, regardless of choice
accuracy (Link & Heath, 1975; Vickers, 1979). To produce slow
errors, the usual route is to add variability to the strength of the
“signal,” or the drift rate in DDMs (Ratcliff & Rouder, 1998).
While both strong signals and weak signals will produce equal
mean RT, weak signals are both more error-prone and slower. So,
with an equal mixture of strong and weak signals, there will be
more slow errors and more fast correct responses.

The ABS produces slow errors in a different way. Instead of
adding cross-trial variation to the signal strength, or independent
within-trial variation to the signal strength (Diederich & Oswald,
2016), slow errors result from the local sampling algorithm produc-
ing autocorrelated samples. For example, if the sampling algorithm
begins far above the decision boundary (e.g., the red subspace in the
posterior of hypotheses illustrated in Figure 2B), then the initial
samples will almost all favor the correct response, while if the
sampling algorithm begins far below the decision boundary (e.g.,
the blue subspace in the posterior of hypotheses) then the proportion
of correct samples will almost all favor the incorrect response. Slow
errors also require optional stopping, because with a fixed stopping
rule the response distribution is itself fixed. This can be seen in the
simulation in Figure 6B: both autocorrelation and optional stopping
(i.e., the no prior variant) are needed to produce errors that are on-
average slower than correct responses.

Fast errors, often found in easy tasks, are produced in a different
way. The usual route to producing fast errors is to assume variability

in the starting point of the evidence accumulation process (Laming,
1968; Ratcliff & Rouder, 1998; Ratcliff et al., 2003). In the ABS,
the adaptive prior on responses is assumed to change in response to
the outcomes of the preceding trial. This encourages repeating past
successes, but also introduces cross-trial variability in the starting
point of the accumulator. This is because the accumulator will be
biased toward whichever response was correct on the last trial, and
assuming that (as is usual in experiments) the correct response
randomly varies between trials, it will sometimes be closer to the
correct threshold and sometimes closer to the error threshold. For
those latter trials, the amount of evidence required to reach the error
threshold is reduced, leading to a shortened mean RT for errors. As
with slow errors, optional stopping is also necessary: only with both
the adaptive prior on responses and optional stopping (i.e., the direct
sampling variant) do fast errors appear in the simulation in Figure 6D.

The differences between the simulations of the “difficult-accuracy”
condition (Figure 6B) and the “easy-speed” condition (Figure 6D)
track the conditions in which slow errors and fast errors are found.
We assume that: (a) greater emphasis on accuracy causes the
threshold to be higher, and consequentially more pieces of evidence
are needed to terminate the sampling algorithms, and (b) easier
stimuli makes the evidence more homogenous (e.g., samples are
more likely to point to the same response).'! As a result, the “casy-
speed” condition involves integration over homogenous but smaller
amounts of evidence than in the “difficult-accuracy” condition. In
other words, the starting point of the accumulator has more influ-
ence, while the degree of autocorrelation has less influence, on
determining the predicted behavior in the “easy-speed” condition
than in the “difficult-accuracy.” Across Figure 6B, D, only the full
ABS model matches the empirical observations that slow errors are
more common in the “difficult-accuracy” condition, while fast errors
are more common in the “easy-speed” condition.

As in other models (e.g., Blurton et al., 2020), the assumptions of
an exponential waiting time between consecutive samples and the
optional stopping rule correctly reproduce many distributional prop-
erties of RTs including that (a) there tends to be one mode in the
distribution and (b) distributions with higher means are more posi-
tively skewed. Further regularities in the shapes of RT distributions
were stressed by Ratcliff et al. (2015) using quantile—quantile (Q-Q)
plots (see Figure 7A). Plotting the quantiles of RT from one difficulty
condition against the quantiles from another difficulty condition, the
empirical Q—Q plots reveals near-linear relationships and a fan shape:
increasing task difficulty has its greatest impact on the tails of the
distribution with the near linearity suggesting similar RT distribution
shapes across difficulty conditions. As shown in Figure 7B, the ABS
captures the fan shape and near-linear regularity. The direct-sampling
variant shows results that are closer to linear, as would be expected if
the autocorrelation in samples causes the upper tails in RT distribu-
tions to spread out even more in harder tasks. Also of interest is the
fixed-sample-size variant, because it always collects the same number
of samples for all difficulty levels, produces identical quantiles

' A reduction in trial difficulty can arise due to a less variable posterior of
hypotheses (e.g., people are more certain about the number of dots), or because
the decision boundary that partitions the hypothesis space is at one extreme
(e.g., people are asked to judge whether the number of dots are less than 1,000
while only 24 dots appeared on-screen), or both. Both factors contribute to
an increase in the proportion of samples that support the correct response.
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Figure 6
Slow and Fast Errors

A Empirical data
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B Simulations of the difficult-accuracy condition where slow errors are typically observed
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Note. (A)Empirical choice outcomes and response-time distributions in the difficult-accuracy condition. (B) Simulated choice outcomes and RT distributions
in the difficult-accuracy condition. RTs were fitted with Gamma distributions with the best-fitting distribution shown as solid lines for correct (in blue) and error
(in red) responses. Overlaid dots and their horizontal error bars denote mean RTs and 95% confidence intervals respectively. Similarly, (C) and (D) are
respectively empirical data and model simulations for the easy-speed condition. Across the different variants, only the full ABS model reproduces both slow
and fast errors in the correct experimental conditions. All predicted RT distributions were unimodal and positively skewed. The full model also correctly
reproduces an RT distribution that becomes more positively skewed and spreads out with an increase in the decision threshold. Empirical data were adapted
from “Modeling Regularities in Response Time and Accuracy Data With the Diffusion Model,” by R. Ratcliff, P. L. Smith, and G. McKoon, 2015, Current
Directions in Psychological Science, 24(6), 458-470 (https://doi.org/10.1177/0963721415596228). Copyright 2015 by Sage Publications. Adapted with
permission. ABS = Autocorrelated Bayesian Sampler; RT = response times. See the online article for the color version of this figure.

between RTs from one level of difficulty and those from another, and
thus does not match the empirical data.

Confidence in Decisions

From a Bayesian perspective, it is natural to map decision
confidence onto the posterior probability that the decision is correct,

Figure 7

a mapping which has been called the Bayesian Confidence Hypoth-
esis (Kepecs & Mainen, 2012; Mamassian, 2016; Pouget et al.,
2016). For the SPRT, posterior probability is updated as sensory
samples are observed, and its posterior probability at the time of
choice is simple: it is the posterior probability when the threshold is
reached, because as evidence collection stops once this occurs (see
Figure 2A confidence). The SPRT thus predicts that decision

Sample Quantile—Quantile Plots of Response-Times Distributions for Different Levels of Task Difficulty
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Note. (A) An example Q-Q plot of empirical RT distributions adapted from “Modeling Regularities in Response Time and Accuracy Data
With the Diffusion Model,” by R. Ratcliff, P. L. Smith, and G. McKoon, 2015, Current Directions in Psychological Science, 24(6), 458-470
(https://doi.org/10.1177/0963721415596228). Copyright 2015 by Sage Publications. Adapted with permission. One difficulty level was
selected to compute its quantiles and then quantiles of the other four difficulty levels were plotted against the first condition. The rank of a
condition depends on its mean RTs. (B) Q—Q plots of RT distributions produced by the ABS model and its variants. ABS = Autocorrelated
Bayesian Sampler; RT = response times. See the online article for the color version of this figure.
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confidence is determined only by the threshold values, because the
threshold captures the amount of evidence favoring one hypothesis
or the other. Given that the threshold value is fixed prior to, and
independent of, the characteristics of a particular trial, this means
that confidence will be the same for all trials on which the same
hypothesis is chosen.'?

Unlike the SPRT, the ABS does not have direct access to the
posterior probability that a response is correct (i.e., its confidence).
Instead it needs to estimate this probability given a set of samples (see
Figure 2B confidence). Fortunately, the form of the adaptive prior on
responses (a Beta distribution in the case of binary choice) makes this
estimate easy to update as samples are sequentially generated. At the
start of the trial, the adaptive prior on responses reflects the prior belief
in different probabilities that each response is correct. Using the binary
choice example, assume a prior for choice A of Beta(i, j) (and a prior
for choice B of Beta(j, i)). When coming to a decision, samples in
favor of each response, S(A) and S(B), are sequentially collected until
the decision process is terminated by the stopping rule. The confidence
after N samples (i.e., N = S(A) + S(B)) is then

A .
Coan=M,inA

N+i+j

S(B) +j .
Confzp = ——,inB. 8
BN i ®

The max-minus-next heuristic stopping rule terminates the sam-
pling algorithm when the quantity of evidence favoring one choice
exceeds a threshold, A =i+ S(A) — (j + S(B))| > 0. The final
decision confidence can then be rewritten as follows:

i+j+N+A

Conf, =1 —Confy = /T2 T2
onta MBS+ +N)

,if A was chosen, )

where the confidence judgments predicted by the ABS are decided
by both the threshold values (A) and the amount of evidence
accumulated (IV; this is the same as the number of samples generated
because evidence is directly mapped from hypothesis samples; for
example, a sample of 27 dots will be converted into a piece of
evidence for the proposition that the number of dots is greater than
25): the greater the number of samples generated before a decision is
reached, the lower the confidence in that decision. This is because
the ABS embodies a prior over the strength of signal in the Bayesian
Monte Carlo process, and the longer the sampling process continues,
the more likely the signal is weak, and so that the posterior
probability that the decision is correct correspondingly decreases.
This is in contrast to the SPRT: in the SPRT, confidence is unaffected
by additional sampling because confidence is determined by a fixed
decision threshold.

The decreasing decision confidence of the ABS with an increasing
number of samples allows it to capture four key empirical phenomena
which are not accommodated by the SPRT described above: the
positive relationship between confidence and the discriminability of
the stimuli (Baranski & Petrusic, 1998; Vickers, 1979; Vickers &
Packer, 1982, Figure 8A), the “resolution of confidence” effect
(Ariely et al.,, 2000; Baranski & Petrusic, 1998; Garrett, 1922;
Vickers, 1979; Vickers & Packer, 1982, Figure 8B), so-called
“metacognitive inefficiency” (Shekhar & Rahnev, 2021a, 2021b,
Figure 8C), and the complex relationship between RT and confidence
(Baranski & Petrusic, 1998; Vickers & Packer, 1982, Figure 8D).

The first of these effects, the positive relationship between confi-
dence and stimulus discriminability, follows from variation in the
strength of the signal in the ABS. More discriminable stimuli will
result in more homogenous evidence supporting one alternative (i.e.,
samples will more consistently support one response alternative over
the other), and because decision confidence is a transformation of the
proportion of samples that support the chosen response, more dis-
criminable stimuli will on average produce higher confidence judg-
ments (see Equation 8). Conversely, on more difficult trials, the
evidence will be more heterogeneous and so the ABS predicts lower
average decision confidence. Figure 8A shows this qualitative effect
arising in ABS model simulations, in which confidence is expressed
on a probability scale which is ordinally related to the scale with
which the empirical data were collected. This pattern is produced by
all model variants (see Table 2).

Second, average confidence ratings tend to be higher for correct
responses than for incorrect responses (e.g., Ariely et al., 2000;
Baranski & Petrusic, 1998; Vickers, 1979, 2014; Vickers & Packer,
1982). This so-called “resolution-of-confidence” effect also holds
true even if stimulus difficulty is held constant (Baranski & Petrusic,
1998) and even if choice and confidence are simultaneously elicited
from participants (Kiani et al., 2014; Ratcliff & Starns, 2009; Van
Zandt, 2000). Once again, the SPRT cannot properly explain this
effect given that its thresholds are fixed prior to, and independently
from, the characteristics of particular trials (e.g., it is constant across
all trials or randomly drawn from a fixed distribution). However, if
we assume that people have the correct generative model of the task
(i.e., the probability of generating a sample that supports the correct
alternative is the largest among all other alternatives), the ABS
predicts that correct responses will on average be made with higher
confidence. This is tied to the explanation for slower errors above:
autocorrelations cause errors to be slower on average, and slower
responses produce lower confidence judgments (see Equation 9).
Therefore, the ABS predicts a resolution-of-confidence effect in
experimental conditions that produce slow errors (see Figure 8B).
As this effect requires both optional stopping and autocorrelated
samples, as also are required to produce slow errors, only the full
model and the no prior variant produce it (see Table 2).

Third, studies have shown that the metacognitive judgments in
confidence ratings generally carry less information about the accu-
racy of a decision than would be predicted by a purely normative
account like the SPRT. Thus, there seems to be a systematic deficit
in “metacognitive efficiency” (Shekhar & Rahnev, 2021a, b). To
give an intuition, imagine a participant is asked to make a decision
whether to respond A or B to a stimulus. The participant’s ability to
discriminate between the alternatives (i.e., d’) can be calculated, based
on SDT, by using the percentage of A stimuli that are correctly
identified (i.e., hits) and the percentage of B stimuli that are incorrectly

12 While this characterizes an SPRT that stops at the threshold (e.g., as
discussed in Pleskac & Busemeyer, 2010; Vickers, 1979), there are variants
that would make different predictions. For example, the boundaries do not
necessarily have to be symmetric, or they could collapse. Also, it is possible
that the SPRT’s confidence would reflect not just the threshold but the
posterior probability of all the sensory samples that were observed before
stopping, with confidence then being greater than or equal to the threshold
confidence. All these variants would produce variable posterior probabilities
and hence variable confidence judgments. However, none of these variants
would produce estimates, confidence intervals, or other judgments that are
generated by the ABS, but which are beyond the scope of the SPRT.
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Figure 8
ABS Simulations Showing Effects of Confidence in Decisions
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(A) Positive relationship between stimulus discriminability and average confidence. (B) Resolution of confidence in which average confidence is higher for

correct responses than for incorrect responses. Empirical data replotted from Vickers and Packer (1982). (C) Degree of metacognitive efficiency showing extreme
confidence ratings are less informative about the accuracy of a choice. (D) Negative (cross-trials) relationship between confidence and RT and positive (cross-
conditions) relationship between confidence and RT. Each dot denotes a level of difficulty. Empirical data adapted from Vickers and Packer (1982). Error bars denote
95% confidence intervals of the model simulations. Panels A, B, and D adapted from “Effects of Alternating Set for Speed or Accuracy on Response Time, Accuracy
and Confidence in a Unidimensional Discrimination Task,” by D. Vickers and J. Packer, 1982, Acta Psychologica, 50(2), 179-197 (https://doi.org/10.1016/0001-
6918(82)90006-3). Copyright 1982 by Elsevier. Adapted with permission. Panel C adapted from *“The Nature of Metacognitive Inefficiency in Perceptual Decision
Making,” by M. Shekhar and D. Rahnev, 2021a, Psychological Review, 128(1), 45-70 (https://doi.org/10.1037/rev0000249). Copyright 2021 by the American
Psychological Association. Adapted with permission. ABS = Autocorrelated Bayesian Sampler. See the online article for the color version of this figure.

identified as A stimuli (i.e., false alarms). This standard d’ measure can
also be extended to metacognition by choosing a confidence criterion
and recalculating the hit and false alarm rates from confidence
judgments that exceed this criterion to produce a meta_d'.'> SDT
predicts that d” equals meta_d’ for any confidence criterion and so
predicts that metacognitive judgments are always efficient (while
the SPRT predicts constant confidence judgments and so cannot be
evaluated using this measure). By contrast, a value of meta_d'/d" < 1
would indicate that information available for the decision is lost in

13 Informativeness of choices and confidence ratings are measured as stimulus
sensitivity d" and meta_d' respectively (Fleming & Lau, 2014; Maniscalco &
Lau, 2012). More specifically, d’' = d)_'(hit rate) — d)_l(false alarm rate) where
c|>’1 is the inverse of the cumulative Gaussian distribution. meta_d’ is calculated
in the same manner but with the hit rate and the false alarm rate tallied according
to a criterion value that partitions confidence ratings. More specifically, the hit rate
is the proportion of trials in which participants reported high confidence given a
correct response, whereas the false alarm rate is the proportion of trials in which
participants reported high confidence given an incorrect response; and the
confidence criterion value determines whether a confidence judgment is consid-
ered high or low.
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Table 2
Which Models Reproduce the Key Empirical Targets
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Autocorrelated Bayesian Sampler

Bayesian sampler No prior Direct sampling Fixed sample  Full
Behavioral measures Empirical effects SPRT (Zhu et al., 2020)  variant variant size variant  model
Probability judgments Conservatism and probabilistic identities N/A v X v v v
Mean-variance relationship N/A v X v v v
Explicit subadditivity N/A v X v v v
Conjunction fallacy N/A v X v v v
Implicit subadditivity in typical unpacking N/A X v X v v
Implicit superadditivity in atypical N/A X v X v v
unpacking
Partition dependence N/A v X v v v
Decisions affecting later ~ Anchoring N/A N/A v X v v
responses
Repulsion N/A N/A v v X v
Accuracy and response Speed—accuracy trade-off v N/A v v v v
times
Slow errors X N/A v X X v
Fast errors X N/A X v X v
Near-linear relationship of RT quantiles v N/A v v X v
with a fan shape
Confidence in decisions Positive relationship between confidence v N/A v v 4 v
and stimulus discriminability
Resolution of confidence X N/A v X X v
Metacognitive inefficiency X N/A v v v v
Negative (cross-trials) relationship X N/A v v X v
between confidence and RT
Positive (cross-conditions) relationship v N/A v v v v
between confidence and RT
Confidence intervals Strong overconfidence in self-produced N/A N/A v v v v
confidence intervals
Little or no overconfidence in evaluation N/A N/A v v v v
of confidence intervals
Cross-trial autocorrelation Large long-range autocorrelation in N/A N/A v X v v
in RT and estimates estimation time series
Lesser long-range autocorrelation in RT X N/A v X X v

time series

Note.
sequential probability ratio test; RT = response times.

part or in whole when making confidence judgments. Empirically,
metacognition has been found to be inefficient, and moreover meta_d’
decreases relative to d’ as the confidence criterion increases, meaning
that higher confidence ratings are less informative than lower confi-
dence ratings (Shekhar & Rahnev, 2021a, 2021b). Metacognitive
inefficiency has been explained by adding additional noise to confi-
dence judgments (Shekhar & Rahnev, 2021a).

While it would be straightforward to add noise to the ABS
confidence judgments, surprisingly this additional noise is not
necessary to produce such metacognitive inefficiency; in fact, there
are multiple routes for the ABS to produce this effect already offered
in the current specification. A first route derives from more informed
decisions based on larger numbers of samples being overall less
confident decisions. For example, imagine using a stopping rule
with A = 2 and a symmetric Beta(1l,1) prior on responses. If a
decision is made based on only a total of two samples, then both
will have to be in favor of the chosen response and confidence will
be 75% (i.e., plugging these values in Equation 8: %—ié =75%).
However, if a decision is made based on a total of 100 samples then
only 51 can have supported the chosen alternative (because the
stopping rule requires A = 51 — 49 = 2) and confidence will be

N/A denotes that the model is nonapplicable to the empirical effect because it does not produce the relevant behavioral measure. SPRT =

about 51% (i.e., plugging these values in Equation 8: 15010112 ~51%).

Thus, with optional stopping, lower confidence decisions will be
based on more samples (and so have longer RTs) and hence will be
more informative (see Equation 9). A second route derives from
basing confidence judgments on discrete samples of hypothesis
counts rather than the Gaussian distributed sensory evidence assumed
by SDT; this applies even if samples are independent, a fixed number
of samples are generated, and no prior is used (see Appendix D).
Therefore, the ABS predicts decreasing metacognitive efficiency for
more extreme confidence judgments not only for the full model (see
Figure 8C), but also for all its variants (see Table 2).

Finally, confidence is empirically observed to systematically vary
with RTs, with positive (cross-condition) and negative (cross-trial)
relationships between confidence and RTs (see Figure 8D). When
people are forced to respond more quickly in a particular experi-
mental condition, their confidence reduces, which is in line with the
standard speed—accuracy trade-off, assuming the confidence posi-
tively covaries with accuracy (Irwin et al., 1956; Vickers & Packer,
1982). Both the SPRT and the ABS can capture the positive (cross-
condition) relationship simply by varying the threshold according to
experimental conditions: emphasizing accuracy moves the threshold
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further away from the starting point of the accumulator (and vice
versa in the speed condition). Higher threshold values in the SPRT
lead to more extreme final log odds and therefore higher confidence
readouts. Higher threshold values in the ABS (i.e., larger A)
naturally lead to higher confidence as shown in Equation 9.

However, within a condition, people are more confident in
decisions they reach quickly—intuitively, the “easy” trials are
decided quickly and with high confidence (Baranski & Petrusic,
1998; Vickers & Packer, 1982). As noted above, the SPRT cannot
explain this because the strength of evidence at which a decision is
made depends only on the threshold, which is determined prior to,
and hence independently from, the characteristics of any particular
trial. The ABS can explain this negative (cross-trial) relationship
because earlier termination (for a fixed threshold A) implies that
there will be a higher proportion of evidence supporting the chosen
alternative. As a result, the ABS predicts that within a condition,
faster decisions will be given with higher confidence.

Confidence Intervals

So far, we have considered confidence in decisions. But confi-
dence reports can also be elicited for estimates by asking for
confidence intervals. Commonly a participant is given a probability
first and then asked to produce an interval (by giving upper and
lower bounds) that correspond to the probability (e.g., “give the
smallest interval which you are 60% certain to include the number of
dots which appeared onscreen: between __ and ____ dots”).
However, this procedure can also be reversed: participants can be
shown an interval of some quantity of interest and then asked to
evaluate the probability that the stimulus falls within that interval
(e.g., “what is the probability that the number of dots which
appeared onscreen falls in the range of 23 to 257”; Juslin &
Persson, 2002).

In the ABS, confidence interval production and evaluation both
are driven by very similar mechanisms to those underlying the naive
intuitive statistician model of Juslin et al. (2007). Taking a set of
samples, a confidence interval can be produced by using the lower
and upper bounds of the sample coverage (i.e., empirical quantiles of
the samples) as the lower and upper bounds of the confidence
interval. When the values of the quantiles are not explicitly repre-
sented in the sample (e.g., deriving a 93% CI based on 5 samples),
linear interpolation was assumed to fill in the gap between the
samples (Juslin et al., 2007). This mechanism correctly predicts the
considerable overconfidence in interval production found empiri-
cally (see Figure 9A, dots; Juslin et al., 2003, 2007). This is because
for small sample sizes, the empirical quantile of the sample will have
a shorter range than the confidence interval from the posterior
because distributional tails tend to be underrepresented within a
few samples. Therefore, the proportion generated from the sample
will be too small, producing an overconfident interval in our
simulations (see Figure 9B, dots). One might then question why
interval production overconfidence is not corrected in the same
manner described for probability judgments above where useful
prior knowledge is incorporated—this lack of correction for confi-
dence interval production is what was “naive” about the naive
intuitive statistician model. Corrections for intervals, however,
depend on the functional form of the distribution, so that a general
correction process is difficult to establish in the ABS. While the
standard computation of a confidence interval assumes a Gaussian

distribution, for unknown distributions confidence intervals are
usually produced by bootstrapping. For the purposes of producing
the confidence interval for a sample, as opposed to producing the
confidence interval for a mean, bootstrapping is essentially what the
ABS does.

In contrast to confidence interval production, confidence interval
evaluation shows very different empirical results: here there is little
to no overconfidence with only a small degree of conservatism at
the extremes of subjective probability (see Figure 9A, squares;
Juslin et al., 2003). This arises in the ABS (see Figure 9B, squares),
using the simplest possible assumption (and following Juslin et al.,
2007) that people answer this question by generating samples
and calculating the proportion that fall within the provided interval.
As noted by Juslin et al. (2007), this proportion is an unbiased
estimator, and hence shows good calibration."*

Decisions Affecting Later Estimates

Besides eliciting confidence judgments after choices, experimen-
ters have often asked participants to provide separate secondary
responses to the same stimulus. One example is the decision—
estimation task where people first choose, say, whether the number
of dots which appeared on-screen was greater or smaller than 25, and
then are asked, immediately following the choice, to estimate the
number of dots. In this setting, an estimate can be influenced by the
preceding choice (e.g., Jazayeri & Movshon, 2007; Tversky &
Kahneman, 1974). In cognitive judgments, estimates have often
been observed to be pulled toward a preceding arbitrary value—the
well-known phenomenon as the anchoring bias (Epley & Gilovich,
2006; Tversky & Kahneman, 1974). For example, in the famous
study of Tversky and Kahneman (1974), participants were first
asked to choose whether the percentage of African countries in the
United Nations was higher or lower than a value (A*), and then give
an estimate of that percentage. The comparison value used in the
choice, 1*, was seen to be generated randomly and so should have
been irrelevant to the distribution of hypotheses (and thus irrelevant
to the estimate too), but estimates were biased toward h*.

However, in an almost identical paradigm of decision—estimation
tasks, perceptual judgments showed the opposite effect: estimates of
aspects such as dot orientation or direction of motion have been
observed to be pushed away from i* (Jazayeri & Movshon, 2007;
Luu & Stocker, 2018; Zamboni et al., 2016). The phenomenon is
better known as the repulsion eftect found in perceptual tasks.

Existing models of anchoring cannot predict the repulsion effect
and vice versa. This is because they only predict one direction of
bias (e.g., Jazayeri & Movshon, 2007; Luu & Stocker, 2018; Strack
& Mussweiler, 1997; Tversky & Kahneman, 1974), and thus fail to
capture the co-occurrence of anchoring and repulsion. While this
would be tenable if anchoring and repulsion were each specific to
their respective (cognitive or perceptual) domains, a recent empiri-
cal investigation suggests otherwise (Spicer et al., 2022a). In this
work, we noted that the location of the comparison value, nF,
relative to the distribution of hypotheses has not typically been
the same across cognitive and perceptual paradigms. Indeed, it was

!4 There is only slight overconfidence predicted by the naive intuitive
statistican model when the internal generative model does not perfectly
describe the data generating process (Juslin et al., 2007), and the ABS would
show the same effect with an imperfect model of the data generating process.
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Figure 9
Generating and Evaluating Confidence Intervals
A Empirical data
1.0 .
—=— Probability judgment 7
0.9 ) ’
® Interval production ’
0.8 - -~ Calibration ’
07
g 06 .
5 o0s
g o
& 04

0.3
0.2
0.1
0.0

00 0.1 02 03 04 05 06 0.7 08 09 1.0
Subjective probability

B Model predictions
1r
—=— Probability judgment
e |Interval production
08l Calibration
_S 061
€
o
Q
g
o 041 e o
°
021
0 R R R R ;
0 0.2 0.4 0.6 0.8 1

Subjective probability

Note. (A) Empirical data for interval evaluation (i.e., probability judgment) and interval production, adapted
from “Calibration, Additivity, and Source Independence of Probability Judgments in General Knowledge and
Sensory Discrimination Tasks,” by P. Juslin, A. Winman, and H. Olsson, 2003, Organizational Behavior and
Human Decision Processes, 92(1-2), 34-51 (https://doi.org/10.1016/S0749-5978(03)00063-3). Copyright 2003
by Elsevier. Adapted with permission. Interval evaluations were relatively well calibrated while substantial
overconfidence was observed in interval production. The dashed line illustrates perfect calibration. (B) ABS
predictions of confidence interval production and evaluation: strong overconfidence in interval production (dots)
and no overconfidence in interval evaluation (squares). The horizontal axis indicates either the requested interval
coverage (production) or the judged probability of the interval (evaluation), while the vertical axis indicates the
empirical proportion of events covered by the interval. ABS = Autocorrelated Bayesian Sampler.

found empirically that the relative location of 1™ determines whether
the subsequent estimates will be pulled toward or pushed away in
both cognitive and perceptual tasks. Specifically, estimates of the
stimulus value are drawn toward values of /* which are distant from
the true value of the stimulus (replicating the anchoring effect) but
pushed away from values of #* which are near to this true value
(replicating the repulsion effect; Spicer et al., 2022a). This finding is
consistent with a common general-purpose algorithm underlying
decision-making in both cognition and perception.

The anchoring effect, the repulsion effect, and their dependence
on the relative position of 4™ are captured by the ABS assuming that
the set of samples generated to make the choice is then reused to
produce the estimate rather than expending further cognitive re-
sources on generating new samples, thus creating a link between
these responses. Each effect is then attributable to one of the core
components of the model when making the initial choice: anchoring
is produced by the autocorrelated sampling algorithm, and repulsion
by the optional stopping rule. To explain anchoring, the ABS
follows the approach of Lieder et al. (2018) and assumes that local
sampling algorithm uses 4™ as an initial hypothesis. For a small
number of iterations, the local sampler will then be biased toward the
initial hypothesis. Anchoring is then produced in our simulations for
the full model and all variants except the direct sampling variant (see
Figure 10 and Table 2).

To explain repulsion, we first note that in the ABS h* effectively
partitions the hypothesis space into two binary response regions. The
sampling algorithm is adaptively terminated when a sufficient number
of samples support one alternative over the other, with the amount
determined by the threshold parameter (i.e., A). This adaptive
stopping rule produces a repulsion bias if the estimate is also based

on the same set of samples (Zhu et al., 2019), because the sampling
process will terminate only when the weight of evidence favors one
hypothesis rather than when the evidence is finely balanced: In effect,
optional stopping for choice biases the subsequent estimate away
from indifference (i.e., the decision boundary). Thus, repulsion is
produced by the full model and all of the variants except for the fixed
sample size variant (see Figure 10 and Table 2), and a larger sample
size for the initial decision would reduce both anchoring and repulsion
effects.

Cross-Trial Autocorrelations in Estimates and RTs

Substantial cross-trial autocorrelations are an important, and often
unexplained, aspect of human behavior. For example, long-range
dependencies in estimates and in RTs known as 1/fnoise have been
observed in many cognitive and perceptual tasks and can explain
more variance in behavior than the experimental manipulations
(Gilden, 2001; Gilden et al., 1995; Wagenmakers et al., 2004).15
In these tasks, participants were instructed to repeatedly estimate
fixed physical quantities (e.g., a 1-s temporal interval or a 1-in.
spatial interval) or to repeatedly choose between two options. The
statistical features of the time series produced by participants were
analyzed in the frequency domain, with the high-frequency com-
ponents corresponding to trials that are close together, whereas

'3 1/f noise goes under various names in different literatures (e.g., pink
noise and flicker noise). Besides cognition, diverse complex processes have
also been found to exhibit this type of long-range dependence. For
example, magnetoencephalography and electroencephalogram data from
human brains, and indeed classical music, all exhibit 1/f-like fluctuations
(Linkenkaer-Hansen et al., 2001; Novikov et al., 1997).
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Figure 10
Anchoring and Repulsion Effects
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(A) Experimental data on the decision-estimation task. For the region of correct hypotheses in the range of [21, 30], the estimates were pushed away

from a nearby comparison value (25.5) used in the preceding decision task (blue bars), while pulled toward a far-off comparison value (75.5; red bars). The data
was replotted from Spicer et al. (2022a). (B) Simulating the ABS (right), its direct sampling variant (left), and fixed sample size variant (middle) on decision-
estimation tasks. The full ABS model predicts both anchoring (for far-away target stimuli; red bars) and repulsion effects (for close-by target stimuli; blue bars),
whereas the direct-sampling variant only predicts the repulsion effect and the fixed-sample-size variant only predicts the anchoring bias. Target Gaussian
distributions for sampling with means in the range of [21, 30] were shown in black solid lines, which were vertically rescaled by a factor of 1/4 to aid
visualization. ABS = Autocorrelated Bayesian Sampler. See the online article for the color version of this figure.

low-frequency components correspond to trials that are well sepa-
rated. The power of each of these components for explaining the time
series are then calculated (using a spectral density analysis; Gilden,
2001; Gilden et al., 1995; Sheu & Ratcliff, 1995). Standard statistical
processes show different relationships between frequency and power:
in a random walk power falls off with 1/f* noise (i.e., a slope of —2 in
log-log power spectra), whereas white noise (also called independent
sampling or direct sampling) has a flat power spectrum (i.e., 1/f° noise
and a slope of 0). In a time-series containing long-range serial
dependence, as is typical in human data, power spectra typically
have a slope between —1.5 and —0.5, and are thus categorized as 1/f
noise. The long-range autocorrelations in 1/f noise are not straight-
forward to produce, generally requiring complex processes to do so
(Gardner, 1978).

Further complicating the picture, while time-series of estimates
have long-range autocorrelations that are classed as 1/f noise
(Gilden, 2001; Gilden et al., 1995; Wagenmakers et al., 2004;
Zhu et al., 2021), RT time series fluctuate as 1/f noise but with a
log-log slope that is shallower than that of estimates (Van Orden
et al., 2003; Wagenmakers et al., 2004). As shown in Figure 11, the
ABS qualitatively reproduces the observed autocorrelations in time
series of RTs and estimates. The cross-trial autocorrelation in
estimates is predicted by the cross-trial carryover of the sampler’s
location in the autocorrelated MC? algorithm (Zhu et al., 2018; Zhu,
Ledn-Villagr, et al., 2022): the initial location of the sampler for the
present trial is the last sample for the preceding trial. In comparison,
the RT time series is predicted to be less autocorrelated because
samples generated by the MC> are accumulated to a threshold to
produce the RT; this is a nonlinear transformation of autocorrelated
samples which “whitens” the power spectrum. Simulations of the
full model demonstrate both these effects, and as the effects are
driven by the MC? algorithm it occurs for all variants except for the
direct sampling variant (see Figure 11 and Table 2).

Summary

Using a consistent set of parameter values, we have shown that
the ABS qualitatively captures empirical results and relationships

observed across probability judgments, estimates, confidence inter-
vals, choices, confidence judgments, and RT (see Table 2). The wide
range of predicted behaviors is based on an internal probabilistic
model using a fine-grained set of hypotheses. The process of inferring
the posterior probability of the hypotheses is governed by Bayes’ rule
and approximated using an autocorrelated sampling algorithm. While
the autocorrelation in the sampling algorithm is motivated to make the
sampling process computationally efficient, it turns out to be crucial
for explaining many empirical effects such as slow errors, anchoring,
and cross-trial autocorrelations. Assuming each sample generated
is costly, turning these samples into choices relies on an optional
stopping rule that trades the benefits of larger samples against the
cost of sampling. In turn, the optional stopping rule helps explain
empirical effects such as the repulsion effect, the resolution of
confidence, and metacognitive inefficiency. The probabilistic
model also learns from trial history, using the adaptive prior.
This prior helps explain effects such as conservatism, the con-
junction fallacy, partition dependence, and fast errors. As shown
in Table 2, all components are necessary to explain the full range
of behavior. The ability of this model to account for such a wide
assortment of human behavior, as we discuss further below, is
evidence for this rational process: that people generate samples
from a probabilistic representation and then make simple and
sensible use of the samples to produce behavior.

Comparison With Competing Models

There are many models that can produce at least a subset of the
empirical effects that the ABS does, and many were briefly men-
tioned in the text above. Here we compare the ABS first to other
models of probability judgments and then to drift-diffusion models
of choice, response time, and confidence.

Models of Probability Judgments

Intensive modeling efforts have also been directed at explaining
human probabilistic judgments, spurred on by the identification of
biases, particularly those summarized in Table 1, demonstrating that



AUTOCORRELATED BAYESIAN SAMPLER 21

Figure 11
Power Spectra for Time Series of Estimates and RT
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Note. Dashed lines denote power spectra by a simulated participant with
solid lines showing the average. RT time series are colored in red, whereas
time series of estimates are in blue. (Left) The direct sampling variant
predicts independent estimates and RTs and thus exhibits a flat line (i.e., the
power spectrum of white noise). (Right) The ABS model predicts auto-
correlations in estimates and RTs with the latter displaying flatter slopes than
the former (i.e., the power spectra of 1/f noise). ABS = Autocorrelated
Bayesian Sampler; RT = response times. See the online article for the color
version of this figure.

people’s judgments systematically deviate from the rules of proba-
bility theory (e.g., Costello & Watts, 2014; Dasgupta et al., 2017;
Hilbert, 2012; Nilsson et al., 2009; Peterson & Beach, 1967;
Tversky & Koehler, 1994; Zhu et al., 2020). Many models have
assumed that probability judgments follow a deterministic process,
albeit one that violates the rules of probability theory. For example,
one type of model, geared toward accounting for conjunction falla-
cies, assumes that probability estimates of conjunctions are the
weighted average of the probabilities of their constituent events,
which produces above-chance conjunction fallacy rates and can
reproduce several probabilistic identities (Fantino et al., 1997;
Nilsson et al., 2009, 2016). However, these models require additional
mechanisms to match the empirically observed combination of
above-chance and below-chance rates of conjunction fallacies that
the ABS can produce (Fisk & Pidgeon, 1996; Nilsson et al., 2009).

A different type of deterministic approach, at least in the way it has
been implemented to explain conjunction fallacies, is based on
quantum probability. Here probabilities are based on projections of
event subspaces. If the events are compatible, probability judgments
are indistinguishable from classical probability theory, but if the
events are incompatible then interference produces probability judg-
ments that deviate from classical probability theory. These deviations
are such that conjunction and disjunction fallacies will occur at rates
above chance, and in this way, quantum probability can produce both
above-chance and below-chance conjunction fallacies depending on
how the events are represented (Busemeyer et al., 2011). Quantum
probability has explained a wide range of probabilistic biases, includ-
ing some not covered here (Pothos & Busemeyer, 2022). However,
there are also probabilistic identities that quantum probability cannot

reproduce, that are predicted by sampling-based models, including the
ABS (Costello & Watts, 2018; Zhu et al., 2020).

A third deterministic approach is support theory, which was
developed to explain subadditivity biases. The core assumption
of support theory is that the probability of event descriptions is
evaluated rather than the probability of the events themselves and
does not incorporate the probabilities of events that are not imme-
diately available (e.g., those not mentioned in the descriptor of
events). This approach elegantly explains both a range of implicit
subadditivity results, as well as explaining why subadditivity does
not occur for mutually exclusive binary events. However, it does not
produce the later finding that an atypical unpacking of events
produces implicit superadditivity (Sloman et al., 2004), and requires
additional mechanism such as an “ignorance prior” which pulls
probability judgments toward indifference between the available
responses (Fox & Rottenstreich, 2003). These different mechanisms
have echoes in the ABS. In the ABS, a hypothesis is “available” only
if it has been sampled, and the event description influences the
starting point of the local sampler. Further, the prior on responses is
a principled version of the ignorance prior, one that is uncertain
about the underlying probabilities because often only a small
number of samples is available.

Recent approaches have rejected purely deterministic approaches
and explored the alternative possibility that stochastic mechanisms
explain the biases in probability judgments. For example, simple
unbiased response noise has been shown to produce subadditivity
(Bearden et al., 2007; Brenner, 2003). However, unbiased response
noise alone does not explain why subadditivity still occurs for
median judgments. A more promising alternative is to consider
corruptive noise in memory or evidence accumulation, which can
produce stronger biases (e.g., Costello & Watts, 2014; Erev et al.,
1994; Hilbert, 2012). In a leading stochastic model, Probability
Theory plus Noise (PT+N), people are assumed to first draw
independent samples from a probabilistic representation, and unbi-
ased “counting noise” is added to individual samples to reflect
an error-prone cognitive system (Costello & Watts, 2014). This
counting noise pulls probability judgments toward indifference and
allows the PT+N to capture empirical results such as explicit
subadditivity, the conjunction fallacy, and a wide range of probabi-
listic identities (Costello et al., 2018; Costello & Watts, 2014, 2017,
2018). The PT+N has impressive empirical coverages, although it
has recently been argued that it does not fully reproduce all the
mean-variance relationship in probability judgments (Sundh et al.,
2021): while it will produce the inverted U-shaped relationship
between the mean and variance of judgments, the curve will not be
pulled inward eliminating extreme (near O or 1) probability judg-
ments as is observed in the empirical data and as the ABS predicts.
This mean—variance relationship also stands as a challenge to
deterministic models because it is not easily produced by simply
adding response noise to a deterministic model.

Drift-Diffusion Models

One important family of models that deserves more extensive
discussion is the family of DDMs (Drugowitsch et al., 2012; Gold &
Shadlen, 2007; Krajbich & Rangel, 2011; Ratcliff, 1978; Ratcliff
et al., 2016). While there are many members of this family, they all
describe decision-making as a stochastic process similar to that of a
biased random walk (or a biased diffusion process, in continuous
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time) in which the path of the accumulator is, on average, biased by
the drift rate (Bogacz et al., 2006; Ratcliff & McKoon, 2008). For
binary choices, this is determined by the difference in the evidence
signals supporting the two alternatives. In line with the stopping rule
of the SPRT, the threshold reached in the DDM decides the choice
and the time taken to do so the response time. However, unlike the
static summation process of log-likelihood ratios in the SPRT, the
accumulator in the DDM also diffuses because the accumulator is
corrupted by noise (typically white noise). In perceptual tasks, the
drift rate is related to which choice is objectively correct (Ratcliff &
McKoon, 2008), whereas in high-level cognitive tasks where people
are choosing their preferred option the drift rate is assumed to be
related to the relative appeal of the alternatives (Krajbich et al.,
2010; Krajbich & Rangel, 2011).

There are generally strong theoretical links between these models
and the normative framework of the SPRT: in the continuous limit,
the SPRT converges on the DDM and the drift rate and the
corruptive noise in the DDM can jointly mimic the calculation of
likelihood ratios in the SPRT (Bogacz et al., 2006). However,
implementing an optimal statistical decision test in the form of
the DDM also generates a number of useful theoretical and empirical
insights that were not originally part of the SPRT. First, the
psychologically implausible assumption that people are required
to have global knowledge of the generative model of the task to
calculate the exact likelihoods (e.g., P(s,|A) or P(s,|B)) is implicitly
relaxed by the DDM because the drift rate and diffusion noise are
free parameters that are recovered from fitting to behavioral data.
Thus, the DDM does not need to calculate with the exact cumulative
differences in evidence as supposed by the SPRT, greatly improving
the DDM’s computational plausibility, given that the exact likeli-
hood ratios are almost always impractical to compute in real time
except in simple toy problems.

Second, extensions of the DDM can also account for empirical
features such as those noted above which are not accounted for by
the SPRT. For example, slow and fast errors (Ratcliff & Rouder,
1998; Townsend & Ashby, 1983) can be produced by further
assuming that model parameters are variable across trials
(Laming, 1968; Ratcliff, 1981; Ratcliff & Rouder, 1998; Rouder,
1996). In particular, varying the drift rates trial-by-trial generates
slow errors, while varying the starting point of the accumulator
predicts fast errors (Laming, 1968; Ratcliff & Rouder, 1998). The
ABS model works in a similar fashion, as autocorrelation acts like
variability in drift rates and a biased prior of evidence acts like
variability in the starting point of the accumulator.

Moreover, the benefits of using the DDM instead of the SPRT
also apply to explaining confidence judgments. The SPRT predicts
the confidence ratings to be identical between correct and incorrect
responses because, for a fixed symmetric threshold, there will
always be the same level of evidence difference accumulated
favoring the selected option,'® and the probability that the chosen
option is correct is simply read out from the final state of the
accumulator. As outlined above, such predictions are contradicted
by empirical data in which choice accuracy and confidence are
positively related (Baranski & Petrusic, 1998; Dougherty, 2001;
Vickers, 1979; Yeung & Summerfield, 2014). To reconcile the
confidence data with the SPRT, one kind of DDM introduced
another assumption in which the same drift-diffusion process con-
tinues to run for a period of times after the choice has been made but
before the confidence judgments (Pleskac & Busemeyer, 2010). As

the accumulator has a bias toward the correct choice, this continued
accumulation after the choice and before the confidence judgment,
no longer bounded by the fixed threshold of the decision, will drive
the confidence ratings toward supporting the correct choice. Hence,
with this additional assumption, this DDM can correctly predict that
people should report higher confidence in correct responses than in
errors, and moreover that the resolution of confidence effect grows
with the delay between choosing and reporting confidence. How-
ever, since the temporal structure supposed by this assumption is
that confidence occurs after the choice, this DDM cannot explain
why the relationship between choice accuracy and confidence also
appears when confidence judgments are given simultaneously with a
decision (e.g., Kiani et al., 2014; Li & Ma, 2020). In explaining
these data, researchers have assumed that confidence decreases with
response time (Calder-Travis et al., 2020; Kiani et al., 2014), and as
is predicted by the ABS.

Alternative versions of the DDM, such as the RTCON model,
have been developed to capture no-choice confidence rating
(Ratcliff & Starns, 2009). RTCON assumes that each confidence
rating has an independent diffusion process and the first diffusion
process to reach the threshold determines the confidence rating. So,
for seven confidence ratings, there are seven diffusion processes
racing to the threshold. RTCON captures many key empirical
relationships between confidence and RT (Ratcliff & Starns,
2009), but appears to have difficulty capturing the interaction
between confidence and choice when these judgments are made
sequentially (Pleskac & Busemeyer, 2010). The approach of
RTCON has been generalized to continuous-response paradigms
in which there are an infinite number of potential responses: the
circular diffusion model (Smith, 2016) and the spatially continuous
diffusion model (Ratcliff, 2018). The two models have recently been
integrated into a unified framework where geometric similarity
among response options is represented (Kvam & Turner, 2021).

Overall, the family of models encapsulated by the DDM success-
fully describe behavior in tasks far different from the perceptual tasks
for which it was initially developed (Bogacz et al., 2006; Ratcliff et
al., 2016), including tasks in which there is little to no perceptual
noise, such as value-based decisions (Busemeyer & Townsend, 1993;
Milosavljevic et al., 2010; Usher & McClelland, 2004) and recogni-
tion memory tasks (Ratcliff et al., 2004, 2011; Starns & Ratcliff,
2014). Because of its strong normative underpinnings in the SPRT,
and its psychologically plausible assumptions, the DDM has
been widely used in psychology, economics, and neuroscience
(Drugowitsch et al., 2012; Fehr & Rangel, 2011; Ratcliff &
Smith, 2015; Ratcliff et al., 2016). Indeed, the DDM has become
the default framework in many areas of decision-making research.
That being said, the broader scope of behavioral responses including
choice, RT, confidence, and estimates captured by the ABS have not
yet been united within a single implementation of the DDM. This is
partly because the task representation needed for choice is different
than that needed for estimates or confidence intervals (crucially, the
DDM represents an accumulated value—a summary statistics of the
sample—but does not retain the sample itself). Thus, while the ABS
and the DDM share similar descriptive capabilities, the ABS arguably
has the advantage in terms of parsimony given the breadth of behavior
covered within its single framework, capturing relationships, such as

!¢ Regardless of trial-by-trial variability in drift-rates and/or starting
points.
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the combination of anchoring and repulsion effects described above,
not explained by current DDM approaches.

Toward Complete Task-Specific Models

The ABS so far has explained the generic judgment and decision-
making process. But how this might be applied to specific tasks?
Fortunately, we can relate our approach to existing models in the
literature that take quite a similar approach to that taken here, and
indeed have helped inspire our work. Here we describe two suc-
cessful existing models, Nosofsky and Palmeri’s (1997) exemplar-
based random-walk (EBRW) model and Blurton et al. (2020) visual
attention model, and we outline how using the ABS would involve
only minor modifications (such as adding autocorrelations) to them.
Thus, we can view these existing models as complete task-specific
models in the ABS framework.

The EBRW operates in a hypothesis space of exemplars which
represent categories (Nosofsky & Palmeri, 1997). This representa-
tional assumption is inherited from the generalized context model
where each individual exemplar is situated as a point in a multidi-
mensional psychological space, and similarity between exemplars
decreases with the distance between points in the space (Nosofsky,
1984; Shepard, 1987). Building on this representation, EBRW
further assumes that exemplars are retrieved sequentially as in a
random walk process, predicting the time course of categorization
and recognition decision-making (Nosofsky & Palmeri, 1997).
Similar ideas can be found in the PRW model of visual attention
(Blurton et al., 2020; Bundesen, 1990). In this model, a series of
tentative categories (i.e., hypotheses) is proposed and accumulated
until one category has accrued enough samples more than any other
category (Blurton et al., 2020). The generation of tentative catego-
ries is governed by the theory of visual attention (Bundesen, 1990).

Across the two models, there is a common mechanism that
integrates over hypotheses for response selection. While neither
model was originally motivated from normative principles, they can
both be seen as special cases within our framework in which
decisions are driven by samples of hypotheses (see Appendix B,
for detailed comparisons), but with the addition of features such as
autocorrelated samples. More specifically, the exemplar-based
representation of hypotheses of the EBRW can be adopted by
the ABS when modeling categorization tasks, suggesting how
the ABS could be applied to explain the effects of similarity and
practice in categorization and RT, which have been captured by the
EBRW. When combined with a Bayesian theory of visual attention,
the ABS could also be generalized to account for human eye
movement and object localization. In addition, the correspondence
between the PRW and the direct sampling variant of the ABS
provides a bridging condition that allows the ABS to account for
detailed fits in response time distributions. Furthermore, adding
autocorrelations and an adaptive prior to both the EBRW and PRW
models generalizes these models to capture a wider range of
empirical effects such as those found in confidence judgments.
This demonstrates how the ABS can be applied to, and work well in,
specific tasks.

Discussion

The ABS is a step toward a unified rational process of human
behavior. Through our analysis, we have identified two key ideas

that are necessary for such a unified framework: probabilistic
models and approximate inference. Approximate inference via
accumulating hypothesis samples means that the ABS views
response time in a different way from most existing approaches,
as primarily determined by the time required to mentally sample
hypotheses, rather than to accumulate more sensory data. We
discuss this further below, pointing to possible reconciliations
regarding these views of the role of time as well as possible
reconciliations between diffusion processes (and noisy probability
judgment models) and the ABS. Next, we explore how the ABS
could be extended both to multialternative tasks and how complex
probabilistic representations could be incorporated. Finally, we
discuss and comment on the extent to which the ABS has a rational,
Bayesian, basis, and the prospect of quantitatively fitting the model
to psychological data.

Contrasting Views on the Role of Time

The existing dominant view on the role of time in decision-
making is to collect and integrate sensory evidence. In the binary
choice example, the likelihood ratio between the two alternatives is
represented exactly at any moment and the odds of the correct
response are constantly updated in light of new sensory evidence or
newly retrieved memories. This view has been adopted by many
models including SDT, the SPRT, and by and large DDM
approaches.

By contrast, the ABS takes a very different view on the role of
time because it sees perception and cognition as emerging from
probabilistic representations and computations. Instead of coding a
single value of the sensory input, people are assumed to implicitly
encode multiple values of the sensory input with their subjective
uncertainty about those values. But this posterior is difficult to
represent exactly for virtually all cognitive tasks; thus, approxima-
tion is needed to access it. The passage of time is then viewed as
being used for generating more samples from the posterior to refine
this approximation. Thus, time matters because it allows the
computational process of sampling the posterior to unfold, not
because additional sensory data must be accumulated. In the limit,
the gradual refinement of the posterior belief should lead to a
convergence to the optimal choice.

These contrasting perspectives were also studied in more detail in
Lengyel et al. (2015) which presents empirical evidence supporting
the view of posterior approximation. It is, however, important to
note that the two views on the role of time are not mutually
exclusive. One possible reconciliation could be that the brain first
conducts evidence integration, and then a posterior based on the
sensory evidence can be approximated with sampling, or these
processes could be overlapping. Further analyzing the aspects of
the two views on the role of time may be an important topic for
future research.

Diffusion, Noise, and Sampling

While we have contrasted other models and the ABS, there are
also potential links between these approaches. Considering stochas-
tic models of probability judgments, it may be possible to extend a
sampling model with noisy counting, such as the PT+N, to explain
the vast majority of the effects that we explored above. In our
previous work, we have shown that the PT+N and the Bayesian
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Sampler models can mimic one another’s predictions of average
probability judgments (Zhu et al., 2020). Building on this, it is
possible to envision generalizing the PT+N in the same way we
generalized the Bayesian Sampler to the ABS. First, rather than
using independent samples, the PT+N could instead use a local,
autocorrelated sampler such as MCMC or MC®. Indeed, Costello
and Watts (2018) have begun to explore this possibility by intro-
ducing a type of autocorrelation or carry-over effect allowing earlier
samples to influence later probability judgments. Second, when
making decisions, PT+N could also use optional stopping rather
than a fixed number of samples to account for RT data. This could be
a promising alternative to the ABS, although more work is required
to develop this rough sketch into a formal model and determine how
well it reproduces human data.

For diffusion models, an interesting starting point is the recent
interest in continuous diffusion models (Kvam, 2019; Kvam &
Busemeyer, 2020; Kvam et al., 2022; Ratcliff, 2018). The main
focus of the continuous diffusion models was to describe the
cognitive processes underlying tasks that involve continuous re-
sponses such as orientation estimation (Ratcliff, 2018) and pricing
(Kvam & Busemeyer, 2020). The accumulator is typically depicted
in a two-dimensional space. Without any bias in starting point, the
accumulator initializes in state [0, 0] (i.e., the origin). The amount of
evidence accumulated is described as the distance from the origin,
and there is a directional bias toward the option that is most favored
at that moment. A continuous absorbing threshold (e.g., a semicircle
whose center is the origin) defines the space of possible trajectories;
when the threshold is reached, the diffusion process is terminated
and a response is triggered. The size of the threshold regions that
correspond to each response has been adjusted to make some
responses more or less likely (Kvam & Turner, 2021).

This kind of mechanism could link a continuous diffusion process
to the ABS. As long as the size of the threshold associated with each
discrete fine-grained hypothesis is proportional to its posterior
probability, then the continuous diffusion process will effectively
be sampling from the posterior on fine-grained hypotheses.'” If the
fine-grained hypotheses that are sampled are then processed to
produce judgements and decisions as in the ABS, this would
formally link the models, through substituting a diffusion-based
sampling algorithm for the local sampling algorithm currently used.
Thus, the distinction between diffusion and sampling may not be
clear cut, and they may potentially be viewed as parts of a larger
framework.

Multialternative ABS

Asking people to choose among more than two alternatives is
often a useful strategy to test the generalizability of computational
models developed to explain binary choice data. As previously
noted, many aspects of the ABS are readily applicable to such
choices: the hypothesis space can be divided into as many regions as
required by the query, and the Beta prior generalizes to a Dirichlet
distribution when considering more than two options. The optimal
stopping rule derived from dynamic programming is, however,
more difficult to calculate within realistic times when choosing
between more than two alternatives (see Appendix C, for detail). As
we have noted, the max-minus-next heuristic is often considered
as a good approximation to the optimal stopping rule in multi-
alternative choices (Dragalin et al., 1999, 2000) and, indeed, there is

computational work suggesting that humans adopt the max-minus-
next stopping rule to choose among many alternatives (Brown
etal., 2009). Indeed, recent work in evidence accumulation models
find that a variety of binary and multiple-choice phenomena can be
modeled as accumulating “advantage”—the difference in evidence
supporting one versus another, which is conceptually related to the
max-minus-next stopping rule (Mileti¢ et al., 2021; van Ravenzwaaij
et al., 2020), and the ABS could be equivalently implemented in this
framework. This heuristic stopping rule can also explain the best-
known empirical result on the relationship between choice and RT,
Hick’s Law (Brown et al., 2009): that RT increases logarithmically
with the number of alternatives (Hick, 1952; Proctor & Schneider,
2018).

Multialternative choice tasks with confidence have also recently
been used to argue against the Bayesian confidence hypothesis—
that confidence in a choice is the posterior probability of that choice.
Li and Ma (2020) found that the best-fitting model for confidence
ratings in a three-alternative choice task was not the posterior
probability of the chosen option, but the difference between the
probability of the chosen option and the probability of second most
probable option. This result could be reconciled with the Bayesian
confidence hypothesis through the ABS, assuming a stopping rule
such as the max-minus-next heuristic. More formally, consider a
three-alternative choice with options A, B, and C, with respective
accumulated evidence i, j, and k. Further assuming that i > j > k, then
option A is chosen where i—j = A following the max-minus-next
stopping rule. The confidence difference between the best and the
second-best is thus, Diff = Conf, — Confy = ﬁ and the total
amount of evidence is related to this difference, i + j + k = 5.
Given that, we can rewrite the confidence for the chosen option A
as follows:

i i
Conf, = ———— = Diff — = Diff —. 10
Tk o T A (19)
Thus, the best-fitting model in Li and Ma (2020), which was used to
argue against the Bayesian confidence hypothesis, is proportional to
the predictions of the ABS using the max-minus-next stopping rule.

Extending to Complex Representations

The behaviors discussed here are low-dimensional, with re-
sponses being situated within one- or two-dimensional spaces.
As aresult, the transformation from hypothesis samples to behavior
is relatively simple, sometimes just with a linear mapping. But the
scope and diversity of human behavior is much broader: many
complex human behaviors are both high-dimensional and embedded
in hierarchically organized spaces. Drawing, for example, or even
copying line-drawings, requires sophisticated mental processes that

17 Alternatively, without changing the absorbing threshold, we can adjust
the drift rate to mimic a sampling algorithm. The idea is that a diffusing
particle that moves with a bias in the direction of higher probability can be
linked to local sampling algorithms (Ma et al., 2019; Roberts & Stramer,
2002; Rossky et al., 1978). Indeed, local samplers move around the space
stochastically, which can be described as a diffusion process. Therefore, by
carefully designing the biasing method for diffusion, the long-term behavior
will converge to as if drawing samples from a distribution. For instance, a
class of Lengevin diffusions has been designed such that the stationary
distribution of the diffusion is in proportion to the target distribution of
MCMC sampling (Ma et al., 2019; Roberts & Stramer, 2002).
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represent a description of a drawing’s parts (e.g., lines and circles)
and higher-order relations (e.g., repetition and hierarchy; Tian et al.,
2020; Van Sommers, 1984). The motor system that implements
routines and trajectories for turning these rich, structured represen-
tations into motor commands to produce drawings is also doing a
more complex task than in low-dimensional behavior (e.g., complex
trajectories may to be segmented into discrete, and hierarchically
organized actions). Thus, the hypothesis space from which outputs
are selected can be open-ended, and hierarchically organized at a
range of levels of abstraction. While it is difficult to see how sensory
accumulation models such as the SPRT or the DDM might extend to
such cases, it is at least possible in principle to see how a Bayesian,
sampling-based approach might operate. For example, many exist-
ing models of cognition, perception, and motor control involve
Bayesian inference over compositional symbolic representations
(e.g., Lake et al., 2017)—and the relevant computations can only be
approximated, often using sampling (frequently, using standard
MCMC). An interesting direction for future research is how far
these Bayesian models can be mapped into fine-grained data relating
detailed measures of high-dimensional output (including, for exam-
ple, accuracy and variability) to fine-grained performance features,
such as timing, and autocorrelations across trials. In general, where a
Bayesian cognitive model can be defined, a sampling approximation
to that model can be created, and compared with detailed process
data from experiments. Thus, the ABS provides a possible bridge
from simple, but intensively studied, decisions concerning binary
choice or one-dimensional estimation, to models of cognition
operating at full scale.

Assessing the Rationality of the ABS

Bayesian models of cognition, pitched at Marr’s computational
level, combines all available trial information (that is, prior knowl-
edge of hypotheses, p(h), and the likelihood of the data presented in
the trial given a hypothesis, p(h|s)) using the rules of probability
theory. In doing so, Bayesian models fully extract trial information
with 100% efficiency (Zellner, 2002).

We see the ABS as Bayesian in two ways. First, the ABS provides a
sample-based approximation to an underlying Bayesian representation
of a task. Combining the ABS with a Bayesian representation produces
a rational process model (Griffiths et al., 2012). In other words, it is an
algorithmic approximation of a computational-level model, which
transforms it into a process model. A rational process model does
not align perfectly with the underlying computational-level model
because sampling approximations inevitably lead to loss of informa-
tion. As a result, sampling models predict mistakes, systematic biases,
and variability in behavior that are due to using stochastic samples.

Although we developed the ABS with a Bayesian perspective in
mind, the underlying model does not necessarily have to be Bayes-
ian. The probabilistic representation could be simply the relative
frequencies of past events, without an associated probabilistic model
(e.g., Costello & Watts, 2014). Alternatively, the probabilistic
representation might not even be described as optimal or rational
(Tauber et al., 2017). All that is required is that the representation
can be written as a probability distribution, which covers a wide
range of representations—after all, any finite set of nonnegative
numbers can be normalized to become a probability distribution.

The second way in which the ABS is Bayesian is that the
Bayesian Monte Carlo approach is used to interpret the samples

that are generated by the model itself. This allows the ABS to take
advantage of context-free expectations about the underlying proba-
bilities, which improves probability (and confidence) judgments
when a small number of samples give only imprecise information
about those probabilities. We assume a conjugate prior on re-
sponses, making this process computationally very simple. Our
analysis suggests that people do incorporate this prior on responses
in forming behaviors—as we have seen, this assumption explains
many classical empirical effects in probability judgments. Simple
adaptivity in constructing the prior on responses (e.g., adapting to
immediate feedback from the preceding trial) also helps explain
human data such as fast errors.

This raises the question of whether the ABS makes optimal use of
the sampling mechanism it has available. This is a different kind of
normative concern than just fully extracting trial information. Here
the question is whether the ABS is resource rational (Bhui et al.,
2021; Lieder & Griffiths, 2020). Aside from the Bayesian Monte
Carlo prior on responses, which could be argued to be resource
rational, there is the smaller scale temporal tradeoff between either
generating another sample which takes time or stopping and making
do with the samples collected so far. The optimal stopping rule relies
on solving a difficult dynamic programming problem (detailed in
Appendix C). Indeed, given the fact that the optimal stopping rule is
generally computationally intractable, we assumed another approx-
imation to the optimal stopping rule with the max-minus-next rule,
which has been independently suggested to well-approximate the
performance of optimal stopping rule in the information theory
literature (Dragalin et al., 1999). This optional stopping rule helps
explain empirical patterns such as repulsion, slow errors, and
resolution of confidence.

In short, we argue that exploiting algorithmic approximations to
the optimal solution is the key feature of the ABS that justifies it as a
rational process model. Our proposal, nonetheless, does not address
the metalevel theoretical question concerning how the mind allo-
cates cognitive resources across these approximation algorithms
(e.g., the local sampler, the Bayesian Monte Carlo process, and the
approximate dynamic-programming solution for stopping). A fully
resource rational analysis would further specify the balance between
the times spent on each approximation algorithm and the incentives
from the task. Whether an optimal allocation of the limited cognitive
resources is at play merits future investigations.

The Prospects for Quantitatively Fitting the ABS

Quantitatively fitting a psychological model and determining
meaningful parameter values are crucial for evaluating and compar-
ing models. However, it can be challenging to apply standard fitting
methods to the ABS when the assumptions of the model do not align
with those of the fitting methods. We will elaborate the discrepan-
cies in assumptions and provide suggestions for fitting methods that
can be used to overcome these issues.

First, standard likelihood-based fitting methods, such as the
maximum likelihood method, assume independence of behavioral
data across trials, while the ABS assumes positive correlations both
across and within trials, making it difficult to obtain a robust fit.
Second, the ABS’s autocorrelated sampling process (as illustrated in
Figure 12 top) is inherently stochastic, which means that even with
the same inputs, predicted behaviors will not be identical. Moreover,
there is no closed-form solution or accurate approximation of the
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Figure 12
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Further Illustrations of the Autocorrelated Sampling Process (Top) and the Bayesian Monte Carlo Process (Bottom), Expanding the
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distribution of the predicted behaviors under the ABS, preventing a
closed-form likelihood function of behavioral data given the ABS.

One way to improve the robustness of the fit is to use a group
of trials instead of individual trials. Grouping can be helpful because
it makes the data more independent at the group level. Various
methods such as quantiles can be used to group behavioral data. For
example, Heathcote et al. (2002) have demonstrated that grouping
RT data by sample quantiles produces a more efficient and less
biased estimator. To take this method further, one could use
likelihood-free techniques such as approximate Bayesian computa-
tion (ABC) as a more principled way to evaluate models with group-
level data or any other summary statistics (Turner & Van Zandt,
2012). With the ABC method, we can simulate a series of behaviors
predicted by the ABS using a set of parameter values, and compare
the summary of the simulated behaviors with the summary of human
behavioral data. Then we adjust the parameter values based on the
similarity of the two summaries, and repeat the process until a
satisfactory threshold is reached. The ABC method appear to be the
most suitable fitting approach for our model due to its ability to
handle issues such as autocorrelation and the absence of likelihood
functions, as well as the ability to control for differing model
flexibility. Some initial work has been done in fitting estimates
using ABC (Spicer et al., 2022b; Zhu, Ledn-Villagra, et al., 2022)
and relatedly fitting summary statistics of probability judgments

using linear regression (Sundh et al., 2021). While in probability
judgments the parameters of the prior are uniquely identifiable
(Sundh et al., 2021), it would need to be established that the full
range of model parameters are uniquely identifiable for the ABS to
be used as a measurement model to interpret observed behavior in
the way that DDMs are.

Conclusions

We have outlined a rational process model of human behavior: the
ABS. The ABS is rooted in a Bayesian framework, where the
cognitive system is presumed to have an internal probabilistic model,
which describes how the sensory data is generated in the real world.
But rather than representing and computing with probabilities, we
assume that the cognitive system uses a tractable approximation of the
posterior which is realized via a local sampling algorithm. Distinct
aspects of these posterior samples are relevant for different types of
query and using simple and natural transformations, they provide a
unified explanation of probability judgments, estimates, confidence
intervals, choices, confidence judgments, and the time course of the
posterior sampling accounts for RT.

Our framework shifts the locus of explanations for the accumu-
lation of sensory input to computation (through sampling) over
internal hypotheses. Thus, in our framework, the time course, and
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variability, of behavior is primarily explained in terms of an internal,
noisy, computational process (involved in sampling from the
hypothesis space), rather than through perfect Bayesian computa-
tion using noisy sensory data. We demonstrate the usefulness of our
theory by reproducing key pair-wise relationships and stylized facts
for the six behavioral measures and point the way toward extending
the approach to the complex probabilistic models required to
describe the richness of human behavior.
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Appendix A

Algorithm and Simulation Details

Throughout the article, we used a consistent set of parameters in
simulating the Autocorrelated Bayesian Sampler. All simulations
were repeated 2'* times. The target posterior distributions (i.e.,
P(h|s) in Equation 3) for sampling were Gaussian distributions:
N = 0, 6 = 1) for choice tasks and N(j = Piarge, 6 = 4) for
estimation tasks. The stimuli discriminability was manipulated at
five different values by fully randomizing the decision boundaries
between {—0.2, 0.2} (for the least discriminable stimuli), {—0.5, 0.5},
{=0.7, 0.7}, {—1, 1}, and {-2, 2} (for the most discriminable
stimuli). When accuracy was emphasized, we set a larger value for
decision threshold A = 6, whereas we set A = 2 when speed was
emphasized. To qualitatively reflect that increasing visual con-
trasts reduces task difficulty, as shown in Figure 8B, we simulated
Gaussian target distributions with means all equal to 0 but standard
deviations of 1.5 (Contrast 1), 1.3 (Contrast 2), and 1 (Contrast 3).

We simulated a local sampling algorithm, MC?®, which draws
samples from the unnormalized posterior (Geyer, 1991). MC> runs
parallel Markov chains at different temperatures and allows individual
chains to exchange information. We fixed the number of parallel
chains at C = 6 and varied the temperature between the chains where
the c-th chain has a temperature of 7', = m The higher tempera-
ture chains will draw samples from flattened target distributions, thus
prefer making long distance moves and assist lower temperature
chains to make nonlocal jumps through the swapping step (see
Algorithm, for details). This means that the first chain is also the
cold chain (temperature of 1) such that its target distribution is not
heated up and thus undistorted. The widths of proposal distribution
were always in smaller proportions to the width of target distribution,
where the ratios were set at 1:100 for choice tasks and 1:1.5 for
estimation tasks. The average speed of generating a sample A=0.1s"".
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Algorithm Metropolis-coupled Markov chain Monte Carlo (MC?)

Choose a starting hypothesis hq, target unnormalized posterior w(h) = P*(h|s)

for n=1to N
for c=1to C

Ac:mmﬂié;?%
n-1

Sample u~U[0,1]

1M/7e}

end for
repeat floor(C/2) times

AV = min{1,

Sample u~U|[0,1]

end repeat
end for

Draw a candidate hypothesis h'~N (h_;, 5%)

ifu < A€ then h§ = K’ else h§ = hS_, end if

if u < A% then swap(hl, h{;) end if

ogenerate N samples
cupdate all C chains
>Gaussian proposal

© acceptance probability

o acceptance threshold
o decide acceptance

o chain swapping

Randomly select two chains i, j without repetition
(hy) M (hi) M
m(h) /T ()"

© swapping probability

o swapping threshold
o decide swapping

Appendix B

Reinterpretations of Nosofsky and Palmeri’s (1997) Exemplar-Based Random
Walk Model and Blurton et al. (2020) Poisson Random Walk Model

In this section, we provide detailed reinterpretations of Nosofsky
and Palmeri’s (1997) EBRW model and Blurton et al. (2020) PRW
model. This analysis helps shed light on the relationship between the
ABS and these existing computational models. In short, the direct
sampling variant of the ABS parallels the model mechanisms of both
the EBRW and PRW models.

Nosofsky and Palmeri’s (1997)
Exemplar-Based Random Walk Model

The EBRW model, a generalization of Logan’s instance-based
model (Logan, 1988), aims to explain the relationship between
categorization and response times by integrating exemplar-based
models of categorization and response—-time models of evidence
accumulation (Nosofsky & Palmeri, 1997). Exemplar models assume
that people store many instances (“exemplars”) of events in memory,
and evaluate new events by activating stored exemplars according to
their similarity (Medin & Schaffer, 1978; Nosofsky, 1986). This idea
has been formalized in the Generalized Context Model (Nosofsky,
1986): individual exemplars are assumed to be represented as points
in a multidimensional psychological space where similarity between
exemplars decreases with the distance between objects in the space
(Shepard, 1987). For a new observation x and a set of K stored
exemplars X* = {x],x,, --- , Xk}, all exemplars are activated in
proportion to their similarity with the new observation s(x, x*). The
predictive value for the new observation is:

N Z{(:]f(xi)s(xvxi)
Fx) = Listrx) B

where f(x;) is the information associated with the exemplar x;. This
equation is a general expression for many cognitive applications of the
exemplar model. For example, to identify x within the set of exemplars

X* (ie., f(x)=p(x'|x)), we can set the function f(x;)=
{ (1) l)ftﬁier:w)icse; similarly, to judge the probability of x belonging

.z 1 ife=c
to a category ¢ (i.e., f(x) = p(c|x)), f(x;) = { 0 otherwise’
When the function f(x;) is an indicator function as it was used in
the categorization tasks, the resultant f () is a discrete probability
distribution within a continuous psychological space. The probabil-
s(xx;)
1

ity associated with the i-th exemplar equals S e

if its indicator
s(x,x;)

i=

function takes a value of 1. In this case, the exemplar-based model
provides one way to construct the posterior probability of hypothe-
ses by incorporating similarity-weighted information from stored
exemplars. EBRW then supposes that people sequentially draw
samples according to f (x) until a threshold number of samples in
favor of a response is reached. The waiting times between samples
are exponentially distributed, as in the ABS, though each waiting
time also includes an additive constant which is not currently present
in our model. Thus, the EBRW is nearly equivalent to the direct
sampling variant of the ABS in which there is no interdependence
between samples of exemplars. What the full ABS can add to this
model are autocorrelations between samples and an adaptive prior,
which potentially could allow it to account for a wider range of
behavior.

Blurton et al.’s (2020) Poisson Random Walk Model

While closely related to the EBRW, Blurton et al.’s (2020) PRW
model instead focuses on assigning confusable visual stimuli to
perceptual categories (e.g., whether a Gabor patch is oriented to the
left or right of vertical) and is based on the Theory of Visual
Attention (Bundesen, 1990). The TVA’s contribution can be cap-
tured by Equation B1, with the additional assumption of PRW being

(Appendices continue)
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that the interstep time between two successive tentative categories is
exponentially distributed with a rate C. Thus, for N samples
generated in this way, the response time should follow an Erlang
distribution (the sum of N exponentially distributed intervals):

f(#|N, C) = Erlang(N, C), (B2)

where, in the binary case, the average speed of generating a tentative
category C =v,4 + v where v,4, vg represent the strengths of category
A, B respectively. In other words, the probability of a tentative
category being A is p, = VA‘_’;‘VB and that of being B is pp =
1-p,y = »-Av-fvg' If we consider the category A as the upper bound
and the category B as the lower bound, the random walk of the
accumulator has an increment of +1 with probability p, and —1 with
probability pp. Coupling the Poisson process of tentative category
generation with an optional stopping rule whose accumulator starts
at 7 (0 < z < a) and evidence thresholds k4 = a, kg = 0, we can derive
the cumulative distribution function of first passage time to state kp
(Equation A5 of Blurton et al., 2020):

= v
Fg(tlva,vp.a,2) = ZF(l\n, va +vg)fp(n| ﬁ,a, z), (B3)
AtV

n=z

where F(t|n,v4 + vg) is the cumulative distribution function of the
Erlang distribution above. Because of the fixed thresholds (0, a) and
starting point (z), the number of samples (or number of increments)
in the random walk to reach one of the thresholds is a random
variable. n can be as small as z (for reaching threshold B) or a — z (for
reaching threshold A) if all the tentative categories generated in the
process are for the same category. But due to the randomness in
generating tentative categories, n can also be far greater than those
numbers and the probability of  has a closed form solution (Blurton
et al., 2020; Feller, 1968 Equation Al). Marginalizing over all
possible ns produces the cumulative distribution function (CDF)
of RT.

This basic version of the PRW is mathematically very close to
both the decision process of the EBRW (as noted in Blurton et al.,
2020) and a restricted version of the ABS that uses direct sampling
and no adaptive prior. First, we can interpret ps, pg as posterior
probabilities of category A and B respectively and they also nor-
malize to 1. Second, the Erlang distribution of RT given N samples
is also assumed in the ABS (compare Equations 6 and B2). Third,
the random walk process with an increment of +/—1 is equivalent to
the heuristic stopping rule used in the ABS where the differences in
number of samples is tracked. While p,, pp, z are free parameters for
the PRW model, our reinterpretation will constrain their values. py4,
ps as the posterior probability should be further constrained by the
mental representation of stimuli.

Beyond this basic formulation, the PRW also includes extensions
to improve its fit to the data and its scope. To produce fast or slow
average errors (in comparison to average correct responses), the
PRW incorporates, following the approach used in DDMs, trial-by-
trial variability in category strengths and starting points. To explain
the variability in the leading edge of response time distributions, the
PRW allows for processing rates to vary within a trial. The full
version of the ABS produces fast or slow errors because of an
adaptive prior and autocorrelated sampling respectively. While we
did not explore the ABS’s predictions for variability in the leading
edge of response time distributions, it would be interesting to see if
autocorrelated sampling—effectively varying processing rates
within a trial—produces this effect as well, or whether other
mechanisms, such as a variable nondecision time, are needed.

The PRW also has been extended beyond two-alternative choice
tasks to any number of alternatives by assuming that evidence for
one response suppresses evidence for all other responses. The
suppression is strong enough that only one counter has nonzero
counts at any one time. This extension differs from our proposal in
the Discussion of using a max-minus-next stopping rule for multi-
alternative choice as there is no inhibition, but future work is needed
to explore what contrasting predictions these mechanisms make.

(Appendices continue)
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Appendix C

Optimal Stopping Rule Is Approximated by the Heuristic Stopping Rule

The optimal solution to terminate the sampling algorithm is to
solve the following dynamic programming problem. To illustrate,
we demonstrate the optimal stopping rule in binary choice. Let pgq
denote the prior probability of one alternative being true (i.e., the
prior on responses) and p;; the posterior probability after i 0 s and j
1 s have been accumulated. The posterior probability that the other
alternative is true is simply 1 — p;. The binary decision task is
equivalent to a sequential statistical test on whether p; < 1/2, and the
optimal stopping rule for this test can be formally described using
dynamic programming as follows (Wald, 1949; Zhu et al., 2019):

F(i, j) = min{Fy(i, j), c +p,»jF(i,j+ 1)
+(L=py)F(i+1,)} (CD)

where F(i, j) and FO(i, j) are, respectively, expected cost of sampling
and expected cost of termination after i samples against and j samples
in favor have been observed, and c¢ is the opportunity cost of
generating a sample. Suppose that pyy = Beta(0, 0), then the posterior
of evidence is also Beta distributed p;; = Beta(i, j). If the punishment
for an incorrect decision is one unit of utility, the expected cost of
termination should be the expected cost of incorrectly choosing an
alternative when posterior of that alternative is p;;:

Fo(i, j) = min{#j,#j}. (C2)

The expected cost of drawing another sample is the sum of (a) the
cost of generating one sample, ¢, (b) the expected cost if the new
sample turns out to be in favor, p;F(i, j + 1), and (c) the expected
cost if the new sample turns out to be against, (1 — p;F( + 1, j).
The sampling process should stop whenever the expected cost of
sampling exceeds that of termination: F(i, j) > Fy(i, j). We solved

the dynamic programming and visualized its stopping rules in
Figure C1 by setting the cost of collecting one sample, ¢ =
0.006, and the prior probability of evidence to Beta(l, 1). While
the optimal decision threshold is collapsing over time, it can be
approximated by a heuristic max-minus-next stopping rule. Indeed,
in multialternative settings, it has been shown that implementing the
max-minus-next rule closely matches the performance of an optimal
stopping rule (Dragalin et al., 1999; 2000).

Figure C1
Decision Thresholds Obtained From Solving the Dynamic
Programming Problem
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Note. The sampling algorithm should be terminated once the accumulator

reaches the yellow terminating regions. In this illustration, the accumulator
started at the top-left corner {i = 0, j = 0} (white triangle) and terminated
at the state {i = 3, j = 5} (white circle). See the online article for the color
version of this figure.

Appendix D

Confidence From Binomial Sample Counts Can Produce Metacognitive Inefficiency

In this section, we demonstrate the problem that when confidence
judgments are assumed to be tally of discrete sample counts
(especially when the sample size is small), the so-called “metacog-
nitive inefficiency” effect demonstrated by Shekhar and Rahnev
(2021a) can also be present even without any loss of information
(i.e., noise) in forming confidence judgments. To recap, metacog-
nitive inefficiency describes a relationship between an informative-
ness measure (mete_d'/d") and the confidence criterion which
classifies confidence judgments as either high or low (Shekhar &
Rahnev, 2021a). Both mete_d’ and d’ are model-based measures of
informativeness that crucially assume Gaussian distributions
(Fleming & Lau, 2014; Maniscalco & Lau, 2012). More specifically,
the inverse Gaussian CDF is used to calculate mete_d’ and d':

meta_d'(c) = ¢! (hit rate|c) — ¢! (false alarm ratelc),

where ¢~ is the inverse Gaussian CDF and c is the confidence
criterion for which individual confidence judgments that are greater

(smaller) than ¢ are considered high (low). Note that when ¢ = 50%
(i.e., when choosing either option always receives the same level of
confidence), d' = mete_d'.

The empirical results uncovered using this approach indicate that
as the confidence criterion (c¢) increases, mete_d'/d’ decreases
(Shekhar & Rahnev, 2021a). As d' is fixed in this calculation,
that means that as ¢ moves further into the upper tails, mete_d'(c)
becomes smaller. This result has been used to argue that a certain
amount of information about a decision was lost in the process of
forming metacognitive judgments and that more extreme confidence
judgments are noisier (Shekhar & Rahnev, 2021a, 2021b).

Here, we do not challenge the empirical validity of the effect.
Instead, we show that assuming a Gaussian distribution when calcu-
lating the informativeness of metacognitive judgment can lead to a
decrease in the measured metacognitive efficiency when there is no
loss of information but the data-generating distribution is not Gauss-
ian. To illustrate, we present an example when the data is generated
by binomial distributions (see Figure D1). In this example, the

(Appendices continue)
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Figure D1
An Illustration of Metacognitive Inefficiency Arising Not From Loss of Information in
Confidence Judgment, but From Incorrectly Assuming Gaussian Generating
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Note. Two confidence criteria were shown (x, y, where x > y). Hit rates were calculated based
on the binomial distribution Bin(V,p) (black circles) given its intersection with a confidence
criterion, whereas similarly false alarm rates were calculated using the symmetric binomial
distribution Bin(N, 1 — p) (black squares). In this illustrative example, N = 12 and p = .8. Using a
Gaussian to compute mete_d' (difference in the horizontal positions of the solid curves) will lead
to a decrease in value when the confidence criterion increases: mete_d'(x) < mete_d'(y). See the
online article for the color version of this figure.

cumulative Gaussian distributions that respectively intersect with the difference between the two mete_d' of 0.16 is small but noticeable in
hit and false alarm distributions (which are cumulative binomial) this example (see Figure D1). However, this bias becomes smaller
become closer together as the confidence criterion becomes more when N is large because the data-generating binomial distribution is

extreme: mete_d'(x) < mete_d'(y) and x > y > Np. The quantitative better approximated by a Gaussian distribution.

(Appendices continue)
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Appendix E

ABS Predictions When Estimates are the Sample Average Instead of the Last Sample

Here we consider an alternative process of making estimates
using sample averages instead of taking the last sample as the
estimate. As shown in Figure E1, with this new process of producing
estimates, the qualitative model behavior of the ABS was repro-
duced. Using the sample average as the estimate, however, does
make the anchoring effect stronger, while repulsion and the degree
of autocorrelation become weaker. This is because, compared to

taking the last sample, averaging of all samples increases the impact
of the earlier samples generated by the autocorrelated sampler.

Using the last sample as the estimate also implies that estimates
will often fall outside the range of participant-produced confidence
intervals, much more often than when using the mean or the median
as the estimate. These differing predictions can be tested in future
empirical work to distinguish between them.

Figure E1
Using the Sample Average, Rather Than the Last Sample, as the Estimate Does Not Qualitatively Change Model
Behaviors
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Note.

(A) The model predicts co-occurrence of repulsion and anchoring as shown in Figure 10. (B) The model produces 1/f

noise as shown in Figure 11. The sample size used in the simulations was fixed at 5. See the online article for the color version of

this figure.
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Appendix F

The Process and Time for Producing Probability Judgment

Figure F1
Probability judgments and Response Times
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Note. (A) Window-binned (bin width equals to 0.05) probability judg-
ments show no relationship with response times. Empirical data were
reanalyzed from the three experiments shown in the legend. Dots are
mean RTs and shaded areas cover 95% confidence interval. (B) Histograms
of RT data. Across the three experiments, RTs for probability judgments are
unimodal and positively skewed. Colored lines are best-fitting Gamma
distributions. RTs greater than 60 s were excluded from analysis. RT =
response times. See the online article for the color version of this figure.

In this section, we provide further justification for the ABS
process of probability judgment in which (a) a fixed number of
samples is collected and (b) the waiting time between two
consecutive samples are exponentially distributed. The fixed-
sample-size rule was assumed both for simplicity and because
of the lack of an obvious target for deriving an optimal stopping
rule for probability judgments. As shown in the main text, this
process should produce Gamma-distributed RTs (i.e., continuous
generalization of the Erlang distribution), which are unimodal and
positively skewed. In Figure F1, this prediction is confirmed by
the RT data collected from three experiments (Sundh et al., 2021;
Zhu et al., 2020). The best-fitting shape and scale parameters for
Experiments 1, 2, and 3 are Gamma(2.36, 3.43), Gamma(2.37,
3.97), and Gamma(2.22, 3.68) respectively. The RT distributions
resemble each other despite being based on different groups of
participants and different probability judgments, suggesting that
people may indeed use a fixed-sample-size rule to produce probability
judgments.

Alternatively, one could replace the fixed-sample-size rule with
an optional stopping rule (e.g., the max-minus-next stopping rule)
or a fixed-time stopping rule (e.g., stop after thinking about the
task for 10 sec). A max-minus-next stopping rule would predict a
mixture of Erlang distributions but would also predict no indif-
ferent probability judgments because sampling continues under
this rule until probability judgments are no longer indifferent.
Furthermore, the max-minus-next stopping rule should predict
that the probability judgments become less extreme, on average,
for longer RTs. These predictions mismatch empirical data as
discussed earlier and the empirical relationship between proba-
bility judgments and RTs shown in Figure F1A. On the other
hand, a fixed-time rule predicts a Gaussian distribution of RTs if
we further assume Gaussian noise in the estimation of elapsed
time. This prediction should be rejected given the skewness in the
RT distributions (see Figure F1B).
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