<font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style=""><div style=""><div style=""><font size="3" style="" face="Default Monospace, Courier New, Courier, monospace">Boa noite a todos!</font></div><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace"><br></font></div><div style=""><font face="Default Monospace, Courier New, Courier, monospace" size="3">Gostaria de convida-los para o Seminario do DEST a ser realizado na sexta-Feira, </font></div><div style=""><font face="Default Monospace, Courier New, Courier, monospace" size="3">04 de julho as 13h30. </font><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">Este seminário será proferido por </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">Lourenço Ribeiro</span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">, professor </span></div><div style=""><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">recém contratado do Depto de Estatística </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">da UFMG. </span></div><div style=""><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace"><br></font></div><div style="text-align: start; text-indent: 0px;"><font face="Default Monospace, Courier New, Courier, monospace" size="3"><span style="text-align: justify; text-indent: 20px;">Lourenço possui </span><span style="text-align: justify; text-indent: 20px;">Mestrado e Doutorado em Engenharia Elétrica, pelo Programa de Pós-Graduação </span></font></div><div style="text-align: start; text-indent: 0px;"><font face="Default Monospace, Courier New, Courier, monospace" size="3"><span style="text-align: justify; text-indent: 20px;">em Engenharia Elétrica da UFMG (PPGEE-UFMG), </span></font><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; text-align: justify; text-indent: 20px;">na linha de Inteligência Computacional. </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">informações</span></div><div style="text-align: start; text-indent: 0px;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">sobre suas contribuições cientificas </span><font style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">podem ser encontradas </font><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">em </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">http://lattes.cnpq.br/5431964263222139</span></div></div></div><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace"><br></font></div><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace">otimo fim de semana a todos</font></div><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace">Rosangela</font></div><div style=""><font size="3" face="Default Monospace, Courier New, Courier, monospace"><br></font></div><div style=""><font size="3" style="" face="Default Monospace, Courier New, Courier, monospace">PS: Sobre o Seminario</font></div></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><div><br></div><div><br></div><div><div dir="auto"><div dir="auto"><b><font size="3">Distance-based loss function for deep feature space learning of convolutional neural networks</font></b></div><div dir="auto"><b><font size="3"><br></font></b></div><div dir="auto"><b><font size="3">Prof. Lourenço Ribeiro</font></b></div><div dir="auto"><font size="3"><br></font></div><div dir="auto"><font size="3">Convolutional Neural Networks (CNNs) have been on the forefront of neural network research in recent years. Their breakthrough performance in fields such as image classification has gathered efforts in the development of new CNN-based architectures, but recently more attention has been directed to the study of new loss functions. Softmax loss remains the most popular loss function due mainly to its efficiency in class separation, but the function is unsatisfactory in terms of intra-class compactness. While some studies have addressed this problem, most solutions attempt to refine softmax loss or combine it with other approaches. We present a novel loss function based on distance matrices (LDMAT), softmax independent, that maximizes interclass distance and minimizes intraclass distance. The loss function operates directly on deep features, allowing their use on arbitrary classifiers. LDMAT minimizes the distance between two distance matrices, one constructed with the model’s deep features and the other calculated from the labels. The use of a distance matrix in the loss function allows a two-dimensional representation of features and imposes a fixed distance between classes, while improving intra-class compactness.</font></div></div><div><font size="3"><br style="font-family: verdana, helvetica, arial, sans-serif;"></font></div></div><div><font size="3"><b>Data:04 de julho de 2025</b></font></div><div><font size="3"><b>Horario:13:30</b></font></div><div><font size="3"><b>Local: Sala 2076-ICEX</b></font></div></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif"><div style=""><div><font face="Calibri" size="3"><br></font></div></div><div style="font-size: small;"></div></font></div></div><div></div></font>