<font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style=""><div style=""><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font face="Default Monospace, Courier New, Courier, monospace" size="3">Boa Tarde a todos,</font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><br></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font face="Default Monospace, Courier New, Courier, monospace" size="3">Gostaria de convida-los para o Seminario do DEST a ser realizado </font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font face="Default Monospace, Courier New, Courier, monospace" size="3">na sexta-Feira, </font><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">29 de agosto às 13:30 na sala 2076. Este seminário </span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">será proferido </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">pelo Prof. Roger Camara,coordenador do PPGEst da UFMG.</span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;"><br></span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">Roger fez sua Graduação, Mestrado e Doutorado na UFMG. Sua área </span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">principal de pesquisa </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">é teoria de probabilidade, </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">com grande enfase </span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">em modelos de percolação e processos </span><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">markovianos. Mais informações </span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;">sobre o Roger podem ser encontradas em:</span><span style="font-variant-ligatures: none; font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium;">https://www.est.ufmg.br/~rogerwcs/</span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="font-family: "Default Monospace", "Courier New", Courier, monospace; font-size: medium; font-variant-ligatures: none;"><br></span></div></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3" face="Default Monospace, Courier New, Courier, monospace">Nos vemos!</font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3" face="Default Monospace, Courier New, Courier, monospace">otimo fim de semana a todos</font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3" face="Default Monospace, Courier New, Courier, monospace">Rosangela</font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3" face="Default Monospace, Courier New, Courier, monospace"><br></font></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3" face="Default Monospace, Courier New, Courier, monospace">PS: Sobre o Seminario</font></div></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></div><div style=""><div style=""><font face="Verdana, Arial, Helvetica, sans-serif"><span style="font-size: 12.8px;"><b>Multirange percolation of words on the hypercubic lattice</b></span></font></div><div style=""><font face="Verdana, Arial, Helvetica, sans-serif"><span style="font-size: 12.8px;"><b><br></b></span></font></div><div style=""><font face="Verdana, Arial, Helvetica, sans-serif"><span style="font-size: 12.8px;"><b>Roger Camara</b></span></font></div><div style=""><font face="Verdana, Arial, Helvetica, sans-serif"><span style="font-size: 12.8px;"><br></span></font></div><div style=""><font face="Verdana, Arial, Helvetica, sans-serif"><span style="font-size: 12.8px;">We investigate the problem of percolation of words in a random environment. We independently </span></font></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">assign each vertex a letter $0$ or $1$ according to Bernoulli random variables with mean $p$. </span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">The environment is the resulting graph obtained from an independent long-range bond percolation</span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">configuration on $\Z^{d-1} \times \Z$, $d\geq 3$, where each edge parallel to $\Z^{d-1}$ has </span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">length one and is open with probability $\epsilon$, while edges of length $n$ parallel to $\Z$ are </span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">open with probability $p_n$. We prove that if the sum of $p_n$ diverges, then for any $\epsilon$ </span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">and $p$, there is a $K$ such that all words are seen from the origin with probability close to $1$, </span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">even if all connections with length larger than $K$ are suppressed.</span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">Data:29 de agosto de 2025</span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">Local: Sala 2076- ICEx-UFMG</span></div><div style=""><span style="font-family: Verdana, Arial, Helvetica, sans-serif;">Horario: 13:30</span></div></div><div></div></font>