<div dir="ltr"><div class="gmail_quote gmail_quote_container"><div dir="ltr"><div><div>Prezados colegas, <br><div><br></div><div><font face="arial, sans-serif">A nossa próxima palestra ocorrerá na quarta-feira, </font>08 de OUTUBRO<font face="arial, sans-serif">, no horário das 15h30 às 17h00, Local: Laboratório de Sistemas Estocásticos (LSE), Sala I-044-B, Centro de Tecnologia - UFRJ.</font></div><div><br></div><div><div><p class="MsoNormal" style="margin:0in 0in 8pt;line-height:15.6933px"><font face="arial, sans-serif"><b>Palestrante: </b></font>Camila Borelli Zeller (UFJF)</p><p class="MsoNormal" style="margin:0in 0in 8pt;line-height:15.6933px"><font face="arial, sans-serif"><span lang="EN-US"><b>Título</b>:<b> </b></span></font>Finite mixture of regression models based on multivariate scale mixtures of skew-normal distributions</p><div><font face="arial, sans-serif"><span lang="EN-US"><b>Resumo</b>:<b> </b></span></font>The traditional estimation of mixture regression models is based on the assumption of component normality (or symmetry), making it sensitive to outliers, heavy-tailed errors, and asymmetric errors. In this work, we propose addressing these issues simultaneously by considering a finite mixture of regression models with multivariate scale mixtures of skew-normal distributions. This approach provides greater flexibility in modeling data, accommodating both skewness and heavy tails. Additionally, the proposed model allows the use of a specific vector of regressors for each dependent variable. The main advantage of using the mixture of regression models under the class of multivariate scale mixtures of skew-normal distributions is their convenient hierarchical representation, which allows easy implementation of inference. We develop a simple expectation–maximization (EM) type algorithm to perform maximum likelihood inference for the parameters of the proposed model. The observed information matrix is derived analytically to calculate standard errors. Some simulation studies are also</div>presented to examine the robustness of this flexible model against outlying observations. Finally, a real dataset is analyzed, demonstrating the practical value of the proposed method. The R scripts implementing our methods are available on the GitHub repository at <a href="https://bit.ly/3CLcI1W" target="_blank">https://bit.ly/3CLcI1W</a>.<br><br></div><div>BENITES, L.; LACHOS, V. H.; BOLFARINE, H.; ZELLER, CAMILA BORELLI.<br>Finite mixture of regression models based on multivariate scale mixtures of skew-<br>normal distributions. COMPUTATIONAL STATISTICS, p. 1-32, 2025.</div></div></div><div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif">Mais informações: <a href="https://ppge.im.ufrj.br/ciclo-de-palestras-segundo-semestre-de-2025/" target="_blank">https://ppge.im.ufrj.br/ciclo-de-palestras-segundo-semestre-de-2025/</a></font></div></div><div><div><font face="arial, sans-serif"><br>Organizadores: Maria Eulalia Vares e Widemberg S Nobre</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif">Atenciosamente,</font></div></div></div><div><br></div></div><br>
<p></p></div><div><br clear="all"></div><div><br></div><span class="gmail_signature_prefix">-- </span><br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Maria Eulalia Vares<div>Professora Titular - Instituto de Matemática - UFRJ</div><div>Coordenadora do Programa de Pós-Graduação em Estatística</div><div><a href="https://ppge.im.ufrj.br/" target="_blank">https://ppge.im.ufrj.br/</a></div><div><br></div></div></div></div>