<font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="font-family: Verdana, Arial, Helvetica, sans-serif;">Bom dia a todos,</div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;">Na proxima semana, o Ciclo de Seminarios do DEST-UFMG estara recebendo o professor Raffaelle Argiento (https://www.raffaeleargiento.it/) da <span style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3" style="">Università degli Studi de Bergamo</font></span></div><div style=""><span style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3" style="">e o professor Marcos O Prates (</font></span><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">https://www.est.ufmg.br/~marcosop/) da </font><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">UFMG. Estes jovens talentos tem dado contribuições relevantes para a Estatística e um pedacinho </span></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">destas contribuições será discutido no Workshop cujas informacoes estão abaixo ou em nossa pagina </span><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">https://www.est.ufmg.br/portal/seminarios-do-dest/</font></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;"><br></span></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">Otimo dia a todos</span></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">Rosangela</span></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">*******</span></div><div style=""><span style="font-family: Arial, "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;"><br></span></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><br></div><div style="font-family: Verdana, Arial, Helvetica, sans-serif;"><b style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><font size="3">Workshop on </font></b><b style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: medium;">Recent Advances in Complex Data Modeling</b></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><b><font size="3"> </font></b></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><b><font size="3">DEST- UFMG- Room 2076</font></b></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><b><font size="3">Friday, October 24, 2024 at 13h30</font></b></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><br></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><br></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><div><div><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Reducing Dimensionality in Covariate-Informed Random Partition Models</font></b></div><div><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></b></div><div><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Raffaele Argiento (Università degli Studi de Bergamo, It)</font></b></div><div><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></div><div><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Covariate-informed models for clustering, such as the Product Partition Model with covariates (PPMx), have proven effective in incorporating auxiliary information to improve clustering performance. However, in high-dimensional settings, selecting a low-dimensional subset of covariates becomes a central challenge: including irrelevant variables can distort clustering by overpowering the response signal and leading to overly granular or uninterpretable partitions. In this work, we introduce a novel approach based on Covariate Subset Selection (CSS). Although originally developed within computer science, CSS has recently been shown to admit a statistical formulation in which no specific assumptions are required for the selected covariates, while a multivariate regression model is specified for the remaining covariates, conditional on the selected subset.</font></div><div><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Building on this foundation, we assign a Bayesian mixture model to the joint distribution of the response and the selected covariates. We show that the resulting model corresponds to a PPMx that automatically performs CSS as part of the clustering mechanism. This unified framework offers several advantages: it is probabilistically coherent, computationally efficient, and retains desirable properties such as Kolmogorov consistency, all while avoiding the complexities associated with reversible jump MCMC schemes. Simulation studies and real-data applications demonstrate the robustness and practical effectiveness of the proposed approach.</font></div><div><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></div></div><div><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></div></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="text-align: justify;"><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><span style="text-align: justify;"><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Advances in Spatial Statistics for Large-Scale and Complex Domains</font></b></span></div><div style="font-family: "Default Sans Serif", Verdana, Arial, Helvetica, sans-serif; font-size: small;"><p style="box-sizing: border-box; margin-block: 0px 0.9rem;"><span style="text-align: justify;"><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><br></font></b></span></p><p style="box-sizing: border-box; margin-block: 0px 0.9rem;"><span style="text-align: justify;"><b><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3">Marcos Oliveira Prates (DEST-UFMG)</font></b></span></p><p style="box-sizing: border-box; margin-block: 0px 0.9rem;"><font face="Arial, Default Sans Serif, Verdana, Arial, Helvetica, sans-serif" size="3"><span style="box-sizing: border-box; text-align: justify;">The proliferation of large-scale geospatial data from sources such as satellite remote sensing and cellular phone networks has created a need for new statistical methods capable of handling massive datasets and complex spatial domains, as classical techniques often face prohibitive computational burdens and restrictive assumptions. In this talk, I discuss recent advances that directly address some of these challenges, primarily through the development of a scalable model that reduces computational complexity from cubic to near-linear in the number of observations. Further, we explore some of its applications. Beyond scalability, progress has been made in tailoring methods for complex domains by defining a process using appropriate distance metrics. The synthesis of these scalable and geometrically aware methods empowers practitioners to extract meaningful insights from vast and intricate spatial data. Again, we revisit applications in other spatial domains. FAPEMIG and CNPq partially funded these works. </span><span style="text-align: justify;">This is a joint work with Carlos Gonzáles, Dipak K. Dey, Harvard Rue, Heitor Ramos, Lucas Godoy, Lucas Michelin, Jun Yan, and Zaida Quiroz.</span></font></p></div><br><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><br><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="padding-left:5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div style="font-family: Verdana, Arial, Helvetica, sans-serif; padding-left: 5px;"><div style="padding-right:0px;padding-left:5px;border-left:solid black 2px;"><font face="Default Sans Serif,Verdana,Arial,Helvetica,sans-serif" size="2"><div></div></font></div></div><div></div></font></div></div><div></div></font></div></div><div></div></font></div></div><div></div></font></div></div><div></div></font></div></div><div></div></font></div></div><div></div></font>