What the No Free Lunch
Theorems Really Mean; How to
Improve Search Algorithms

David H. Wolpert

SFI WORKING PAPER: 2012-10-017

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE

What the no free lunch theorems really mean;
how to improve search algorithms

David H. Wolpert

Santa Fe Institute
1399 Hyde Park Road, Santa Fe, NM, 87501
and
Information Sciences Division
MS B256, Los Alamos National Laboratory, Los Alamos, NM, 87545
david.h.wolpert@gmail.com

May 22, 2012

1 Introducton

The first No Free Lunch (NFL) theorems were introduced in [9], in the context
of supervised machine learning. These theorems were then popularized in [8],
based on a preprint version of [9]. Loosely speaking, these original theorems can
be viewed as a formalization and elaboration of concerns about the legitimacy
of inductive inference, concerns that date back to David Hume (if not earlier).
Shortly after these original theorems were published, additional NFL theorems
that apply to search were introduced in [12].

The NFL theorems have stimulated lots of subsequent work, with over 2500
citations of [12] alone by spring 2012 according to Google Scholar. However ar-
guably much of that research has missed the most important implications of the
theorems. As stated in [12], the primary importance of the NFL theorems for
search is what they tell us about “the underlying mathematical ‘skeleton’ of op-
timization theory before the ‘flesh’ of the probability distributions of a particular
context and set of optimization problems are imposed”. So in particular, while the
NFL theorems have strong implications if one believes in a uniform distribution
over optimization problems, in no sense should they be interpreted as advocating
such a distribution.

In this short note I elaborate this perspective on what it is that is really im-
portant about the NFL theorems for search. I then discuss how the fact that there
are NFL theorems for both search and for supervised learning is symptomatic of
the deep formal relationship between those two fields. Once that relationship is
disentangled, it suggests many ways that we can exploit practical techniques that
were first developed in supervised learning to help us do search. I summarize
some experiments that confirm the power of search algorithms developed in this
way. | end by briefly discussing the various free lunch theorems that have been
derived, and possible directions for future research.

2 The inner product at the heart of all search

Let X be a countable search space, and specify an objective function f : X —» Y
where Y C R is a countable set. Everything presented in this paper can be extended
in a straightforward way to the case of a stochastic search algorithm, stochastic
objective function, time-varying objective function, etc. Sometimes an objective
function is instead called a “search problem”, “fitness function”, “cost function”,
etc.

In practice often one does not know f explicitly. This is the case whenever f
is a “blackbox”, or an “oracle”, that one can sample at a particular x, but does not
know in closed form. Moreover, often even if a practitioner does explicitly know
f, they act as though they do not, for example when they choose what search
algorithm to use on f. For example, often someone trying to solve a Traveling
Salesman Problem (TSP) will use the same search algorithm for any TSP. In such
a case, they are behaving exactly as they would if they only knew that the objective
function is an TSP, without knowing specifically which one it is.

These kinds of uncertainty about the precise f being searched can be expressed
as a distribution P(f). Say we are given such a P(f), along with a search algo-
rithm, and a real-valued measure of the performance of that algorithm when it is
run on any objective function f. Then we can solve for the probability that the
algorithm results in a performance value ¢. The result is an inner product of two
real-valued vectors each indexed by f. (See Appendix.) The first of those vectors
gives all the details of how the search algorithm operates, but nothing concern-
ing the world in which one deploys that search algorithm. The second vector is
P(f). All the details of the world in which one deploys that search algorithm are
specified in this vector, but nothing concerning the search algorithm itself.

This result tells us that at root, how well any search algorithm performs is
determined by how well it is “aligned” with the distribution P(f) that governs the
problems on which that algorithm is run. For example, Eq. (2) means that the
years of research into the traveling salesman problem (TSP) have (presumably)

resulted in algorithms aligned with the implicit P(f) describing traveling salesman
problems of interest to TSP researchers.

3 The no free lunch theorems for search

The inner product result governs how well any particular search algorithm does
in practice. Therefore, either explicitly or implicitly, it serves as the basis for
any practitioner who chooses a search algorithm to use in a given scenario. More
precisely, the designer of any search algorithm first specifies a P(f) (usually im-
plicitly, e.g., by restricting attention to a class of optimization problems). Then
they specify a performance measure ® (sometimes explicitly). Properly speaking,
they should then solve for the search algorithm that the inner product result tells
us will have the best distribution of values of that performance measure, for that
P(f). In practice though, instead informal arguments are often used to motivate
the search algorithm.

In addition to governing both how a practitioner should design their search
algorithm, and how well the actual algorithm they use performs, the inner product
result can be used to make more general statements about search, results that hold
for all P(f)’s. It does this by allowing us to compare the performance of a given
search algorithm on different subsets of the set of all objective functions. The
result is the no free lunch theorem for search (NFL). It tells us that if any search
algorithm performs particularly well on one set of objective functions, it must per-
form correspondingly poorly on all other objective functions. This implication is
the primary significance of the NFL theorem for search. To illustrate it, choose
the first set to be the set of objective functions on which your favorite search algo-
rithm performs better than the purely random search algorithm that chooses the
next sample point randomly. Then the NFL for search theorem says that compared
to random search, your favorite search algorithm “loses on as many” objective
functions as it wins (if one weights wins / losses by the amount of the win / loss).
This is true no matter what performance measure you use.

As another example, say that your performance measure prefers low values of
the objective function to high values, i.e., that your goal is to find low values of
the objective rather than high ones. Then we can use the no free lunch for search
theorem to compare a hill-descending algorithm to a hill-ascending algorithm, i.e.,
to an algorithm that “tries” to do as poorly as possible according to the objective
function. The conclusion is that the hill-descending algorithm “loses to the hill-
ascending algorithm on as many” objective functions as it wins. The lesson is that
without arguing for a particular P(f) that is biased towards a set B of objective
functions on which one’s favorite search algorithm performs well, one has no
formal justification that that algorithm has good performance.

A secondary implication of the NFL theorem for search is that if it so happens
that you assume / believe that P(f) is uniform, then the average over f’s used in
the NFL for search theorem is the same as P(f). In this case, you must conclude
that all search algorithms perform equally well for your assumed P(f). This con-
clusion is only as legitimate as is the assumption for P(f) it is based on. Once
other P(f)’s are allowed, the conclusion need not hold.

An important point in this regard is that simply allowing P(f) to be non-
uniform, by itself, does not nullify the NFL theorem for search. Arguments that
P(f) is non-uniform in the real world do not, by themselves, establish anything
whatsoever about what search algorithm to use in the real world.

In fact, allowing P(f)’s to vary provides us with a new NFL theorem. In this
new theorem, rather than compare the performance of two search algorithms over
all f’s, we compare them overall P(f)’s. The result is what one might expect: If
any given search algorithm performs better than another over a given set of P(f)’s,
then it must perform corresponding worse on all other P(f)’s. (See appendix for
proof.)

4 The supervised learning no free lunch theorems

The discussion above tells us that if we only knew and properly exploited P(f), we
would be able to design an associated search algorithm that performs better than
random. This suggests that we try to use a search process itself to learn some-
thing about the real world’s P(f), or at least about how well one or more search
algorithms perform on that P(f). For example, we could do this by recording the
results of running a particular search algorithm on a set of (randomly chosen) real-
world search problems, and using those results as a “training set” for a supervised
machine elearning algorithm that models how those algorithms compare to one
another on such search problems. The hope would be that by doing this, we can
give ourselves formal assurances that one search algorithm should be used rather
than another, for the P(f) that governs the real world.

The precise details of how well such an approach would perform depend on
the precise way that it is formalized. However two broadly applicable restrictions
on its performance are given by an inner product formula for supervised learning
and an associated NFL theorem for supervised learning.

Just like search, supervised learning involves an input space X, an output space
Y, a function f relating the two, and a data set of (x,y) pairs. The goal in super-
vised learning though is not to iteratively augment the data to find what x mini-
mizes f(x). Rather it is to take a fixed data set and estimate the entire function f.
Such a function mapping a data set to an estimate of f (or more generally an es-
timate of a distribution over f’s) is called a learning algorithm. We then refer to

the accuracy of the estimate for x’s that do not occur in the data set as off-training
set error.

The supervised learning inner product formula tells us that the performance of
any supervised learning algorithm is governed by an inner product between two
vectors both indexed by the set of all target functions. More precisely, it tells
us that as long as the loss function is symmetric, how “aligned” the supervised
learning algorithm is with the real world (i.e., with the posterior distribution of
target functions conditioned on a training set) determines how well that algorithm
will generalize from any training set to a separate test set. (See appendix.)

This supervised learning inner product formula results in a set of NFL theo-
rems for supervised learning, applicable when some additional common condi-
tions concerning the loss function hold. The implications of these theorems for
the entire scientific enterprise (and for trying to design good search algorithms
in particular) are wide-ranging. In particular, we can let X be the specification
of how to configure an experimental apparatus, and Y the outcome of the asso-
ciated experiment. So f is the relevant physical laws determining the results of
any such experiment, i.e., they are a specification of a universe. In addition, d is
a set of such experiments, and 4 is a theory that tries to explain that experimental
data (P(h | d) being the distribution that embodies the scientist who generates that
theory). Under this interpretation, off-training set error quantifies how well any
theory produced by a particular scientist predicts the results of experiments not
yet conducted. So roughly speaking, according to the NFL theorems for search, if
scientist &7 does a better job than scientist & of producing accurate theories from
data for one set of universes, scientist Z will do a better job on the remaining set
of universes. This is true even if both universes produced the exact same set of
scientific data that the scientists use to construct their theories — in which case
it is theoretically impossible for the scientists to use any of the experimental data
they have ever seen in any way whatsoever to determine which set of universes
they are in.

As another implication of NFL for supervised learning, take x € X to be the
specification of an objective function, and say we have two professors, Smith and
Jones, each of whom when given any such x will produce a search algorithm to
run on x. Let y € Y be the bit that equals 1 iff the performance of the search
algorithm produced by Prof. Smith is better than the performance of the search
algorithm produced by Prof. Jones.! So any training set d is a set of objective
functions, together with the bit of which of (the search algorithms produced by)
the two professors on those objective functions performed better.

"Note that as a special case, we could have each of the two professors always produce the
exact same search algorithm for any objective function they are presented. In this case comparing
the performance of the two professors just amounts to comparing the performance of the two
associated search algorithms.

Next, let the learning algorithm % be the simple rule that we predict y for all
x ¢ dy to be 1 iff the majority of the values in dy is 1, and the learning algorithm
2 to be the rule that we predict y to be -1 iff the majority of the values in 47 is 1.
So ¥ is saying that if Professor Smith’s choice of search algorithm outperformed
the choice by Professor Jones the majority of times in the past, predict that they
will continue to do so in the future. In contrast, & is saying that there will be
a magical flipping of relative performance, in which suddenly Professor Jones is
doing better in the future, if and only if they did worse in the past.

The NFL for supervised learning theorem tells us that there are as many uni-
verses in which algorithm % will perform worse than algorithm & — so that Pro-
fessor Jones magically starts performing worse than Professor Smith — as there
are universes the other way around. This is true even if Professor Jones produces
the random search algorithm no matter what the value of x (i.e., no matter what ob-
jective function they are searching). In other words, just because Professor Smith
produces search algorithms that outperform random search in the past, without
making some assumption about the probability distribution over universes, we
cannot conclude that they are likely to continue to do so in the future.

S Exploiting the relation between supervised learn-
ing and search to improve search

Given the preceding discussion, it seems that supervised learning is closely analo-
gous to search, if one replaces the “search algorithm” with a “learning algorithm”
and the “objective function” with a “target function”. So it should not be too sur-
prising that the inner product formula and NFL theorem for search have analogs in
supervised learning. This close formal relationship between search and supervised
learning means that techniques developed in one field can often be “translated” to
apply directly to the other field.

A particularly pronounced example of this occurs in the simplest (greedy)
form of the Monte Carlo Optimization (MCO) approach to search [3]. In that
form of MCO, one uses a data set d to form a distribution g(x € X) rather than (as
in most conventional search algorithms) directly form a new x. That g is chosen
so that that one expects the expected value of the objective function,), g(x)f(x)
to have a low value, i.e., so that one expects a sample of g(.) to produce an x with
a good value of the objective function. One then forms a sample x of that g(.), and
evaluates f(x). This provides a new pair (x, f(x)) that gets added to the data set d,
and the process repeats.

MCO algorithms can be viewed as variants of random search algorithms like
genetic algorithms and simulated annealing, in which the random distribution gov-

erning which point to sample next is explicitly expressed and controlled, rather
than be implicit and only manipulated indirectly. Several other algorithms can
be cast as forms of MCO (e.g., the cross-entropy method [7], the MIMIC algo-
rithm [1]). MCO algorithms differ from one another in how they form the distri-
bution ¢ for what point next to sample, with some not trying directly to optimize
> q(x)f(x) but instead using some other optimization goal.

It turns out that the problem of how best to choose a next g in MCO is for-
mally identical to the supervised learning problem of how best to choose a hy-
pothesis 4 based on a training set d [13, 5, 6]. If one simply re-interprets all MCO
variables as appropriate supervised learning variables, one transforms any MCO
problem into a supervised learning problem (and vice-versa). The rule for this re-
interpretation is effectively a dictionary that allows us to transform any technique
that has been developed for supervised learning into a technique for (MCO-based)
search. Regularization, bagging, boosting, cross-validation, stacking, etc., can all
be transformed this way into techniques to improve search.

As an illustration, cross-validation in supervised learning is a technique for
using an existing training set d to choose a value for a hyperparameter arising in
a given supervised learning algorithm. We can use the dictionary to translate this
use of cross-validation from the domain of supervised learning into the domain of
search. Training sets become data sets, and the hyperparameters of a supervised
learning algorithm become the parameters of an MCO-based search algorithm.
For example, a regularization constant in supervised learning gets transformed
into the temperature parameter of a form of MCO that is very similar to simulated
annealing. In this way using the dictionary to translate cross-validation into the
search domain shows us how to use it on one’s data set in search to dynamically
update the temperature in the temperature-based MCO search algorithm. That
updating proceeds by running the MCO algorithm repeatedly on subsets of one’s
already existing data set d. (No new samples of the objective function f beyond
those already in d are involved in this use of cross-validation for search, just like
no new samples are involved in the use of cross-validation in supervised learning.)

Experimental tests of MCO search algorithms designed by using the dictio-
nary have established that they work quite well in practice [13, 5, 6]. Applying
bagging and and stacking, in addition to cross-validation, have all been found to
transform an initially powerful search algorithm into a new one with improved
search performance.

Of course, these experimental results do not mean there is any formal jus-
tification for these kinds of MCO search algorithms; NFL for search cannot be
circumvented. To understand in more detail why one cannot provide a formal
justification for a technique like cross-validation in search, it is worth elaborating
why there is not even a formal justification for using cross-validation in supervised
learning. Let O be a set of learning algorithms. Then given a training set d, let

7

scientist ./ estimate what f produced their training set the following way. First
they run cross-validation on d to compare the algorithms in ®. They then choose
the algorithm 6 € ® with lowest such cross-validation error. As a final step, they
run that algorithm on all of d. In this way &/ generates their final hypothesis 4 to
generalize from d. Next let scientist % do the exact same thing, except that they
use anti-cross-validation, i.e., the algorithm they choose to train on all of d is the
element of ® with greatest cross-validation error on d, not smallest error. By the
NFL theorems for supervised learning, we have no a priori basis for preferring
scientist .27’s hypothesis to scientist %’s. Although it is difficult to produce f’s
in which # beats o7, by the NFL for supervised learning theorem we know that
there must be “as many” of them (weighted by performance) as there are f’s for
which 7 beats B.

Despite this lack of formal guarantees behind cross-validation in supervised
learning, it is hard to imagine any scientist who would not prefer to use it to using
anti-cross-validation. Indeed, one can view cross-validation (or more generally
“out of sample” techniques) as a formalization of the scientific method: choose
among theories according to which better fits experimental data that was generated
after the theory was formulated, and then use that theory to make predictions
for new experiments. By the inner product formula for supervised learning, this
bias of the scientific community in favor of using out-of-sample techniques in
general, and cross-validation in particular, must correspond somehow to a bias in
favor of a particular P(f). This implicit prior P(f) is quite difficult to express
mathematically. Yet almost every conventional supervised learning prior (e.g., in
favor of smooth targets) or non-Bayesian bias favoring some learning algorithms
over others (e.g., a bias in favor of having few degrees of freedom in a hypothesis
class, in favor of generating a hypothesis with low algorithmic complexity, etc.)
is often debated by members of the scientific community. In contrast, nobody
debates the “prior” implicit in out-of-sample techniques. Indeed, it is exactly this
prior which justifies the ubiquitous use of contests involving hidden test data sets
to judge which of a set of learning algorithms are best.

6 Free lunches and future research

There are many avenues of research related to the NFL theorems which have not
yet been properly explored. Some of these involve free lunch theorems which
concern fields closely related to search, e.g., co-evolution [11]. Other free lunches
arise in supervised learning, e.g., when the loss function does not obey the condi-
tions that were alluded to above [10].

However it is important to realize that none of these (no) free lunch theorems
concern the covariational behavior of search and / or learning algorithms. For

example, despite the NFL for search theorems, there are scenarios where, for some
s, B(® | fym, /) —EB(® | f,m, %) = k (using the notation of the appendix),
but there are no f’s for which the reverse it true, i.e., for which the difference
E(® | f,m, B)—-E@ | f,m, /) = k. It is interesting to speculate that such “head-
to-head” distinctions might ultimately provide a rationale for using many almost
universally applied heuristics, in particular for using cross-validation rather than
anti-cross-validation in both supervised learning and search.

There are other results where, in contrast to the NFL for search theorem, one
does not consider fixed search algorithms and averages over f’s, but rather fixes f
and averages over algorithms. These results allow us to compare how intrinsically
hard it is to search over a particular f. They do this by allowing us to compare
two f’s based on the sizes of the sets of algorithms that do better than the random
algorithm does on those f’s [4]. While there are presumably analogous results for
supervised learning, which would allow us to measure how intrinsically hard it is
to learn a given f, nobody currently knows. All of these issues are the subject of
future research.

A Appendix of mathematical derivations

A.1 NFL and inner product formulas for search

To formalize the discussion in the text, it will be useful to use the following nota-
tion. Let a data set d" = {d¥,d}'} be any set of m separate pairs (x € X, f(x)). A
search algorithm is a function <7 that maps any d” for any m € {0, 1,...} to an
x ¢ dy. (Note that to “normalize” different search algorithms, we only consider
their behavior in terms of generating new points to search that have not yet been
sampled.) By iterating a search algorithm we can build successively larger data
sets: d™! = d"u (Ady), fTAdY)]) for all m > 0. So if we are given a perfor-
mance measure O : 47 — R, then we can evaluate how the performance of a
given search algorithm on a given objective function changes as it is run on that
function.

This allows us to establish the inner product for search result, mentioned in
the text. To begin expand

P@|o/m) = > P} |, mP(@|dy,,m)
dy
= Py | o, m)5(e, D)) (1)
ay

where the delta function equals 1 if its two arguments are equal, zero otherwise.

Eq. (1) shows that the choice of search algorithm affects performance only
through the term P(dy | 2/, m). In turn, this probability of d}/ under <7 is given
by

Py |/ m) = Y Py | fom a)P(f | m,)
f

D P@; | fom, PP, 2)
f

As claimed, this is an inner product of two real-valued vectors each indexed by f:
P(dy | f,m, /) and P(f). Note that the first of those gives all the details of how
the search algorithm operates.

This notation also allows us to state the NFL for search theorem formally. Let
B be any subset of the set of all objective functions, Y*. Also let .2/ be any search
algorithm, and let @ be any performance measure. Then Eq. (2) can be used to
prove that

ZE((Dl fom, /) = constant — Z E(® | f,m,) 3)

feB feyX\B

where the symbol “\” indicates set subtraction and the constant on the right-hand
side depends on @, but is independent of both .« and B [12]. Expressed differ-
ently, Eq. (3) says that }., E(® | f,m, o) is independent of .. This is the NFL
for search.

A.2 NFL for search when we average over P(f)’s

To derive the NFL theorem that applies when we vary over P(f)’s, first recall our
simplifying assumption that both X and Y are finite (as they will be when doing
search on any digital computer). Due to this, any P(f) is a finite dimensional
real-valued vector living on a simplex Q. Let x refer to a generic element of
Q. So fgdn P(f | m) is the average probability of any one particular f, if one
uniformly averages over all distributions on f’s. By symmetry, this integral must
be a constant, independent of f. In addition, as mentioned above, Eq. (3) tells
us that } ;s E(® | f,m, &) is independent of .o7. Therefore for any two search

10

algorithms .« and 4,

DE@|fima) = Y E@| fim B),
f f

gE@w,m,m[Lan(fm] - ;E(Qlf,m,%)[LdﬂP(fM)],

Y B fomh)| [dnnn] = Y E@| fm) [anni)]
f Q I3 Q
[Lar Y E@1 fmam) = [dn Y E@ 1 fm B, @
f S
i.e.,
fdﬂ E D |m, o) = fd?‘(E (D | m, B). (&)
Q Q

We can re-express this result as the statement that fQ dn B(® | m, o) is indepen-
dent of .o7.

Next, let IT be any subset of Q. Then our result that fQ drn E.(® | m, &) is
independent of .o/ implies

f dn BE(® | m, /) = constant — f dn B (D | m, &) (6)
nell meQ\IT

where the constant depends on @, but is independent of both </ and I1. So if
any search algorithm performs particularly well for one set of P(f)’s, I1, it must
perform correspondingly poorly on all other P(f)’s. This is the NFL theorem for
search when P(f)’s vary.

A.3 NFL and inner product formulas for supervised learning

To state the supervised learning inner product and NFL theorems requires intro-
ducing some more notation. Conventionally, these theorems are presented in the
version where both the the learning algorithm and target function are stochastic.
(In contrast, the restrictions for search — presented above — conventionally in-
volve a deterministic search algorithm and deterministic objective function.) This
makes the statement of the restrictions for supervised learning intrinsically more
complicated.

Let X be a finite input space, Y a finite output space, and say we have a
target distribution f(y; € Y | x € X), along with a training set d = (dy,d})
of m pairs {(dy(i) € X,dy(i) € Y)}, that is stochastically generated according to

11

a distribution P(d | f) (conventionally called a likelihood, or “data-generation
process”). Assume that based on d we have a hypothesis distribution A(y, € Y |
x € X). (The creation of & from d — specified in toto by the distribution P(h | d)
— is conventionally called the learning algorithm.) In addition, let L(y;, y) be a
loss function taking Y X Y — R. Finally, let C(f, &, d) be an off-training set cost
function?,

C(fhdyec > > P@LopyfOr | 9t | q) (7)

YreX.yn€Y qeX\dy

where P(q) is some probability distribution over X assigning non-zero measure to

X\dy.
All aspects of any supervised learning scenario — including the prior, the
learning algorithm, the data likelihood function, etc. — are given by the joint

distribution P(f, h,d, c) (where c is values of the cost function) and its marginals.
In particular, in [2] it is proven that the probability of a particular cost value c is
given by

P(c|d) = fdfdh P(h | d)P(f | d)Mcq(f,h) ®)

for a matrix M., that is symmetric in its arguments so long as the loss function
is. P(f | d) «< P(d | f)P(f) is the posterior probability that the real world has pro-
duced a target f for you to try to learn, given that you only know d. It has nothing
to do with your learning algorithm. In contrast, P(h | d) is the specification of
your learning algorithm. It has nothing to do with the distribution of targets f in
the real world. So Eq. (8)

References

[1] J.S. De Bonet, C.L. Isbell Jr., and P. Viola, Mimic: Finding optima by es-
timating probability densities, Advances in Neural Information Processing
Systems - 9, MIT Press, 1997.

[2] Wolpert. D.H., On the connection between in-sample testing and generaliza-
tion error, Complex Systems 6 (1992), 47-94.

2The choice to use an off-training set cost function for the analysis of supervised learning is
the analog of the choice in the analysis of search to use a search algorithm that only searches over
points not yet sampled. In both the cases, the goal is to “mod out” aspects of the problem that are
typically not of interest and might result in misleading results: ability of the learning algorithm
to reproduce a training set in the case of supervised learning, and ability to revisit points already
sampled with a good objective value in the case of search.

12

[3] Y. M. Ermoliev and V. 1. Norkin, Monte carlo optimization and path depen-
dent nonstationary laws of large numbers, Tech. Report IR-98-009, Interna-
tional Institute for Applied Systems Analysis, March 1998.

[4] W. G. Macready and D. H. Wolpert, What makes an optimization problem
hard?, Complexity 1 (1995), 40-46.

[5] D. Rajnarayan and David H. Wolpert, Exploiting parametric learning to
improve black-box optimization, Proceedings of ECCS 2007 (J. Jost, ed.),
2007.

[6] —, Bias-variance techniques for monte carlo optimization: Cross-
validation for the ce method, arXiv:0810.0877v1, 2008.

[7] R. Rubinstein and D. Kroese, The cross-entropy method, Springer, 2004.

[8] C. Schaffer, A conservation law for generalization performance, Interna-
tional Conference on Machine Learning, Morgan Kaufmann, 1994, pp. 295—
265.

[9] D. H. Wolpert, The lack of a prior distinctions between learning algorithms
and the existence of a priori distinctions between learning algorithms, Neu-
ral Computation 8 (1996), 1341-1390,1391-1421.

[10] |, On bias plus variance, Neural Computation 9 (1997), 1211-1244.

[11] D. H. Wolpert and W. Macready, Coevolutionary free lunches, Transactions
on Evolutionary Computation 9 (2005), 721-735.

[12] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization,
IEEE Transactions on Evolutionary Computation 1 (1997), no. 1, 67-82.

[13] D. H. Wolpert, D. Rajnarayan, and Bieniawski S., Probability collectives in
optimization, Encyclopedia of Stastistics, 2012.

13

