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Bayesian Statistical Inference in Psychology:
Comment on Trafimow (2003)
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D. Trafimow (2003) presented an analysis of null hypothesis significance testing (NHST) using Bayes's
theorem. Among other points, he concluded that NHST is logicaly invalid, but that logically valid
Bayesian analyses are often not possible. The latter conclusion reflects a fundamental misunderstanding
of the nature of Bayesian inference. This view needs correction, because Bayesian methods have an
important role to play in many psychologica problems where standard techniques are inadequate. This
comment, with the help of a simple example, explains the usefulness of Bayesian inference for

psychology.
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Like all empirical sciences, psychology deals with uncertainty.
Samples are limited, measurements are imprecise, and confound-
ing variables are difficult to control. Indeed, each of these sources
of uncertainty can be particularly severe under the experimental
and ethical constraints involved in studying psychologica phe-
nomena. This means psychology relies heavily on statistical infer-
ence, and its success as a discipline depends crucially on the
quality of the methods it uses.

In this context, Trafimow (2003) considered the relationship
between standard statistical practice and Bayesian approaches. A
central part of Trafimow’s conclusion is that null hypothesis
significance testing (NHST) is logically invalid but that logically
valid Bayesian analyses are often not possible. In particular, he
argued, “My best guess is that some of the necessary information,
particularly p(Hp) and p(F\—Hgy) or numbers from which these
probabilities can be estimated, are often lacking, and consequently
a Bayesian approach cannot be used” (p. 534), and thus “it is
understandable that NHSTP [NHST procedure] rather than Bayes-
ian analysis is the order of the day—after all, researchers can
perform the analyses’ (p. 527).

It is difficult to imagine how two sentences could more funda-
mentally misrepresent Bayesian statistical inference. Bayesian
analysis is not simply a way of shuffling the probabilities used in
standard statistics, together with some new probability statements
representing things like priors, in accordance with Bayes's theo-
rem. In fact, Bayesian statistical inference is philosophically and
fundamentally different from the standard approach. Its differences
allow Bayesian inference to address problems standard approaches
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cannot, and make it more general and efficient than the canned
recipes that dominate current practice in psychology. Most impor-
tantly, and contrary to Trafimow’s (2003) assertion, the basic
nature of Bayesian inference guarantees that it is always possible
to undertake analyses.

Trafimow’s (2003) mistaken claims need correction, because
psychology now has much to benefit from the adoption of Bayes-
ian methods. With the advent of modern computing technology,
Bayesian inference has become possible in practice as well asin
principle and has been adopted with great success in most scien-
tific fields. The literature now contains literaly thousands of
worked examples—ranging from astrophysics (e.g., Gregory,
1999) to particle physics (e.g., Sivia, Carlile, & Howells, 1992) to
image processing (e.g., Gull & Daniell, 1980) to economics (e.g.,
Zellner, 1984)—where Bayesian techniques have successfully
been used to tackle problems that were previously difficult or
impossible using standard methods. In psychology, Bayesian
methods have recently been successfully applied to the fundamen-
tal problem of choosing between competing hypotheses or models
of psychological data (e.g., Myung, Forster, & Browne, 2000;
Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002).

In this comment, we describe, with a simple example, those
situations in psychological research where Bayesian methods are
more useful and applicable than standard methods. We emphasize
that Bayesian analyses are always possible in principle, and that
current computational methods make most Bayesian analyses fea-
sible for the sorts of problems psychology addresses.

The Strengths of Bayesian Inference

The strength of standard statistical approaches lies in their
computational simplicity, which stems from having been devel-
oped before the advent of modern computing abilities. Standard
methods consist of a set of usualy sensible, but always ad hoc,
heuristics for estimating uncertain quantities, and testing the sig-
nificance of observations by comparing them with those that
would occur by chance.
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Jaynes (2003, p. 550) argued that standard methods are usable
and useful when dealing with the problems for which they were
originally developed. These are basically problems where all the
relevant information comes (or can accurately be conceived of as
coming) from independent runs of simple random experiments.
This means that standard methods work well when three condi-
tions are met:

1. The variables of interest vary according to ssimple distri-
butions, like the normal and binomial, in which a small
number of parameters adequately describe their distribu-
tional form.

2. No important prior information is available about the
variables of interest.

3. The number of data is reasonably large.

When these conditions are met, standard methods are often quick,
easy, and useful. Outside of these conditions, they behave like
most heuristics when applied to unintended problems. At best, they
are inefficient. At worgt, they are inapplicable or produce patho-
logical behavior that makes them useless or misleading. The lit-
erature now contains many concrete examples of inefficiencies and
pathologies for both estimators and significance tests for realistic
problems of scientific inference (e.g., Jaynes, 2003; Lindley, 1972;
Lindley & Phillips, 1976; Press, 1989).

The key point, of course, isthat psychology has many important
problems that do not meet one or more of these three conditions:

1. It seems very unlikely that every interesting psycholog-
ical variable has a simple distributional form. There is
considerable debate in the literature, for example, about
the distributional form of response times (e.g., Van
Zandt, 2000).

2. Because psychology is inherently interdisciplinary, rele-
vant prior information often comes from other fields. For
example, basic chemical knowledge must be relevant for
many drug-related studies in psychology. Sometimes this
information takes the form of alawful relationship, rather
than data coming from an experiment. Unlike standard
methods, Bayesian statistics deals naturally with both
types of information.

3. In clinica and other applied settings, it is sometimes
difficult, expensive, or just impossible to obtain data in
any great number.

Unlike standard methods, Bayesian inference has a principled
basis in probability theory, as formalized by Cox’s (1961) theo-
rems. This means it can be applied to any statistical distribution,
naturally incorporates relevant prior information, and is valid for
any number of data. Bayesian methods, therefore, have the poten-
tial to enhance and further psychological understanding, allowing
new and different problems to be tackled.

The Process of Bayesian Inference

Bayesian inference explicitly represents what is known and
unknown about variables of interest, at all stages of analysis, using

probability distributions. For variables that take discrete values,
these distributions assign a probability value to each possibility.
For variables that can assume a continuous range of values, the
distributions assign a probability density value to each possibility.
Probability densities behave much like probabilities: Ratios of
densities quantify how much more likely one outcome is than
another, and sums of densities over a range of outcomes give the
probability that the variable lies in that range. In both the discrete
and continuous cases, probability distributions naturally and intu-
itively represent the current knowledge and remaining uncertainty
researchers have about psychological variables of interest.

Bayesian analysis has principled methods for updating proba-
bility distributions. These methods are based on three different, but
potentially equally important, sources of information. We demon-
strate these three stages using the following concrete problem:

Twelve participants complete a problem-solving task, with only
their success or failure measured. In the order that participants
completed the problems, the data (D) take the form

D = (F,F,F,.SF,F,F,F,SFF)S),

where F denotes failure and S denotes success.

Undertaking the Analysis

We now present a nontechnical account of the Bayesian analysis
of this problem. Technical details are in the appendix.

Information inherent in the problem.  Just as zero is the natural
starting point for counting, the natural initial representation for
Bayesian inference is one corresponding to complete ignorance.
Recently, principled methods have been developed for defining
prior distributions corresponding to complete ignorance (see
Jaynes, 2003, chap. 12). These methods rely on establishing trans-
formational invariances inherent in problems that constrain the
choice of prior distribution. Intuitively, theideaisto consider ways
in which a problem could be restated, so that it remains funda-
mentally the same problem but is expressed in a different formal
way. Prior distributions must necessarily be invariant under these
transformations, because otherwise different ways of stating the
same problem would lead to different inferences being drawn. In
general, the requirement of invariance from information inherent
in a problem provides strong constraints on the choice of prior
distribution and often determines the prior distribution uniquely.

As a concrete example, consider using a Weibull distribution to
make inferences about response time data. The conclusions drawn
by such an analysis obviously should not be affected by the scale
of measurement (i.e., expressing the time data in milliseconds
rather than seconds should not matter), and so the parameters for
the Weibull must have priorsthat are invariant to changesin scale.
As it turns out, this lone constraint is sufficient to determine
uniquely the required prior distributions.

For our problem-solving example, complete ignorance about the
rate of success is expressed by the prior distribution known as
Haldane's prior, which is shown in Figure 1A. A rigorous deriva-
tion of this prior using transformational invariance is given by
Jaynes (2003, pp. 382-385); an alternative information geometric
derivation is provided by Takeuchi (1997); a more intuitive justi-
fication is provided by Zhu and Lu (2004). The form of this prior
arises because, consistent with the assumption of complete igno-
rance, it is not known whether the problem-solving task is so
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Figure 1. Probability distributions for the rate of success, starting with the completely ignorant prior distri-
bution (Panel A), progressing as 1 (Panel B), 6 (Panel C), and al 12 (Panel D) data are observed.

difficult that it cannot be solved, or so easy that it is always solved.
Thisleads to the extreme possibilities, with success rates of zero or
one, being more probable, while still allowing for the possibility
that the true rate is somewhere between zero and one. We describe
Figures 1B-1D below.

Relevant prior information.  If other relevant prior information
is available, Bayesian analysis incorporates it into the prior distri-
butions. This is done by updating the prior distributions so that
they capture the known constraints provided by additional infor-
mation but otherwise remain maximally uncertain. For our
problem-solving example, a different scenario is that we do know
both success and failure are possible. This additional piece of
information leads to the uniform prior distribution, which is shown
in Figure 2A. Once again, see Jaynes (2003, p. 385) for a
derivation.

Information provided by data. As relevant data from experi-
mental or other observations become available, Bayesian analysis
uses them to update the probability distribution according to
Bayes's theorem. This updating can be done for a complete data
set or sequentially as data arrive. Figure 1B—1D and Figure 2B-2D
show the updating for 1, 6, and then all 12 data for the problem-
solving example, starting with the complete ignorance and uniform
priors, respectively. Recall that the first datum is afailure, the first
6 data contain 1 success and 5 failures, and al 12 data have 9
failures and 3 successes.

Comparing the two situations shows the impact the priors,
representing different initial states of knowledge, have on our
understanding. Under complete ignorance, where it is not known
that both successes and failures are possible, the first datum, being
afailure, reinforces the possibility that the rate of success might be
zero, but eliminates the possibility that the rate is one. In the other

scenario, where it is known both are possible, the observation of a
failure makes very low rates of success more likely, but still allows
some significant likelihood to arange of other possible rates. After
6 data have been observed and a success has been seen, the
different states of initial knowledge still influence the distributions,
but the influence is less marked. By the time all 12 data have been
observed, with amix of 9 failures and 3 successes, the distributions
are very similar.

Satistical Inferences

Standard statistical practice provides essentialy two ways of
making inferences. One involves parameter estimation, where
some quantitative statement is made about the values of unknown
parameters of interest. The other involves hypothesis testing,
where the probability of a chance-based null account of the datais
assessed, to be retained or rejected in favor of an aternative
account.

Estimation. The Bayesian equivalent of estimation is to draw
conclusions from the posterior distributions of the variables of
interest. These conclusions can take any useful form, because the
distribution completely describes what is known about the vari-
able. For example, when all 12 data have been observed using the
uniform prior, the distribution in Figure 2D allows, among a
plethora of others, the following inferences to be made:

» The most likely rate of success (i.e., the mode of the distri-
bution) is.25. Thisis the single value that is more likely than any
other, and so constitutes a best estimate if the interest is in
choosing exactly one rate.

» The expected rate of success (i.e., the mean of the distribu-
tion) is about .29. This is the value that has the smallest expected
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Figure2. Probability distributions for the rate of success, starting with the uniform prior distribution (Panel A),
progressing as 1 (Panel B), 6 (Panel C), and al 12 (Panel D) data are observed.

squared difference from the success rate, and so (in a sense)
congtitutes a best estimate if the interest is in being as close as
possible to the correct value.

» The success rate being .20 is about 2.7 times more likely than
the success rate being .10. This is the relative height of the
distribution at .20 compared with .10.

* The probability that the success rate is less than .30 is about
59%. Thisisthe areaunder the distribution that is over the relevant
range from O to .30.

» The probability that the success rate is between .10 and .55 is
about 95%. This is the area under the distribution that is over the
relevant range from .10 to .55.

Of course, different answerswill be obtained under the different
prior assumptions of complete ignorance in Figure 1. This should
be expected and is desirable. Indeed, it would be worrisome if a
method for statistical inference, when given different information
about a problem, did not reach different conclusions. Usually,
however, the effects of different prior information are overcome by
sufficient data, and so the Bayesian answers to the sorts of ques-
tions posed in this list will converge.

Hypothesis testing. The Bayesian equivalent of hypothesis
testing is model comparison, where competing accounts (possibly,
but not necessarily, including a null account) are compared using
Bayes factors (e.g., Kass & Raftery, 1995; Myung & Pitt, 1997).
Bayes factors can be thought of as an extension of likelihood
ratios, measuring how much more likely one model is than another
on the basis of the evidence provided by the data. Applying Bayes
factors to our example requires comparing a null hypothesis that
assumes a chance success rate with an alternative hypothesis that
assumes a success rate different from chance. We assume, for
concreteness, that the nature of the problem-solving task means

that chance corresponds to arate of .50, but our method of analysis
applies for any other rate.

The Bayes factor is aratio of two quantities: the probability of
the observed data under a certain null hypothesis and the proba-
bility of the observed data under the alternative hypothesis. Hence,
the Bayes factor quantifies the extent to which the data support the
null over the alternative. In our example, it is straightforward to
calculate the probability of the observed data (i.e., nine failures and
three successes) under a certain null hypothesis specifying a
chance success rate of .50. In contrast, it may not be obvious at
first sight how to calculate the probability of the data under an
dternative hypothesis that assumes the success rate differs from
chance, because this composite hypothesis is not associated with
any one success rate in particular. Under the Bayesian approach,
this probability is calculated as the weighted average of the prob-
ability of the data for each individual success rate that differs from
chance. The weight given to each possibility in averaging corre-
sponds to its a priori plausibility, as quantified by the prior distri-
bution for the success rate.

As detailed in the appendix, for the uniform prior case shown in
Figure 2, the Bayes factor is 1.0 for the prior distribution, and
remains at 1.0 after 1 datum has been observed. This means that,
at these stages of analysis, the available information does not favor
one hypothesis over the other. Once 6 data have been observed, the
Bayes factor shows that the alternative hypothesis is about 1.14
times more likely than the null. Once all 12 data are taken into
account, the alternative hypothesis has become 1.43 times more
likely.

Of course, experimental psychologists are often interested in
comparing two groups, rather than comparing one group against a
null hypothesis. Suppose, for example, a second smaller group of
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advanced problem solvers is observed to solve 5 of 6 problems,
and an inference is required about whether 5 out of 6 corresponds
to the same success rate as the origina sample performance of 9
out of 12. Bayesian inference also handles this problem by using
Bayes factors. For this example, it is about 6.9 times more likely
that the advanced group will have a greater success rate than the
origina control group. As with estimation, both this Bayes factor
and the one comparing the original group to the null hypothesis,
will differ under the prior assumption of complete ignorance, but
will generally converge as the evidence provided by data domi-
nates prior information.

Discussion

The two quantities highlighted by Trafimow (2003) as being prob-
lematic for Bayesian analysis—the prior probability of the null hy-
pothesis, and the probability of the data when the null hypothesisis
false—are, in fact, both readily calculated using priors corresponding
to complete ignorance To be fair, the definition of complete-
ignorance priors in terms of transformational invariance is a recent
development in Bayesian statistics and addresses what had previously
been a serious deficiency. Previoudy, the definition of priors had
relied on applying the so-called principle of indifference or principle
of insufficient reason, often associated with Laplace (e.g., Laplace,
1951), to the events whose rel ative probabilities were being quantified
by the prior distribution. This principle smply assumes, in the ab-
sence of other evidence, that al possibilitiesare equally likely. Ashas
repeatedly been pointed out (e.g., A. Edwards, 1972; Fisher, 1930,
1932, 1956), including by those advoceting the Bayesian approach
(e.g., Kass & Wasserman, 1996), this principle is highly problematic
when applied to events, because different (but equally reasonable)
ways of partitioning a variable into a set of events lead to different
inferences being drawn.? One way of understanding transformational
invariance isthat it applies the principle of indifference at the level of
problems rather than events, where there is no such arbitrariness,
because it relies only on the explicit statement of the problem.®

With the advent of an objective method for determining priors,
our rate example shows the feasibility of Bayesian inference for
psychology in a concrete way. Whether one possible rate is more
likely than another can be assessed, and how much more likely it
is can be quantified. The probability that the rate is greater than
some value or is between two values can be measured. Observed
data can be compared with chance or with data from another
experimental group. Whatever the question, the important point is
that Bayesian inferences are always possible in principle. Even in
the most extreme case, where the problem has been defined, but
absolutely nothing else is known, Figure 1A shows the distribution
on which inferences should be based.

Our example aso provides severa demongtrations that Bayesian
anaysis is sometimes necessary. One of these dituations is where
thereisrelevant prior information. Figure 2A is different from Figure
1A because additional relevant prior information is available. Stan-
dard methods, with their reliance on sampling distributions of data,
have no easy way of incorporating prior information. Another obvious
advantage of Bayesian analysisin our exampleisits ability to handle
small numbers of data. Many routinely applied estimators are large-
sample approximations. An attraction of the Bayesian approach isthat
the same method can be applied vaidly to any sample size. The same
holds true for hypothesis testing, where Bayesian methods always

COMMENTS

work but ones based on NHST or confidence intervals can be ineffi-
cient or pathological. Indeed, it is well documented (e.g., Carlin &
Louis, 2000; Lindley & Phillips, 1976) that NHST and confidence
interval methods behave incoherently for our example, because they
violate what is known as the likelihood principle. Our god is to
explain Bayesian methods rather than criticize standard ones, so we
encourage the interested reader to consult Berger and Wolpert (1984)
and W. Edwards, Lindman, and Savage (1963) for details.

Of course, our example is one where Bayesian methods are
computationally aswell as conceptually straightforward. However,
modern computing capabilities, and the numerical agorithms that
use them (e.g., Gelman, Carlin, Stern, & Rubin, 1995; Gilks,
Richardson, & Spiegelhalter, 1996), have rendered less elegant
inference problems equally tractable. These algorithms are pro-
gressively being incorporated into standard statistical software
packages.* Bayesian inference maintains its conceptual simplicity
throughout, but more computational work is required to generate
posterior distributions and Bayes factors.

We would argue that, despite the temptation of retaining current
methods, making the additional computational effort to use Bayes-
ian methods will often be rewarded. Psychology has many impor-
tant and interesting problems with characteristics that do not suit
current methods, but can be dealt with in a principled and unified
way by the Bayesian approach. This is why Bayesian inference
deserves serious study and widespread adoption in psychology.

1 The averaging procedure used to calculate the probability of the data
under a composite hypothesis follows from elementary probability theory.
Therefore, the claim that it isimpossible to calcul ate the probability of the
observed data when the null hypothesis is false reduces to the argument
that it is not possible to determine prior distributions.

2 We note that unbiased estimators, efficient estimators, shortest confi-
dence intervals, and other key quantities in standard statistics continue to
suffer from the lack of reparameterization invariance that is at the heart of
this problem (Jaynes, 2003, p. 377). If objections to the principle of
indifference are Trafimow’'s (2003) justification for rejecting Bayesian
inference, then standard statistics certainly must also be rejected.

3 A concrete example of this key difference is Jaynes's (2003, pp.
386-394) solution of the Bertrand paradox—a problem that had previously
provided one of the best examples of the difficulties with the principle of
indifference—using transformational invariance to determine the required
prior distributions.

4 For example, Systat (Version 11; 2002) has general Markov chain
Monte Carlo sampling procedures.
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Appendix

Technical Details

This appendix provides a formal treatment of the worked example
of Bayesian analysis. The complete ignorance prior is found by
Jaynes (2003, pp. 382-385) as the probability distribution that is
invariant under the transformation s’ = as/(1 — s + as), where the rate
of success s € [0, 1] and a > 0. The unique solution is known as
Haldane's prior, and is given by py(s) « 1/[s(1 — s)]. Jaynes then
showed that updating this prior to include the knowledge that both
successes and failures are possible leads to the uniform prior, given by
py(s) = 1.

Both of these prior states of knowledge can conveniently be represented
as beta distributions

g i 1-9P?
Beta,, n(s) = T Bab
where B(a, b) = (a—1)!(b-1)!/(a + b—1)! isthe betafunction, witha =
b= 0forpyanda=b=1forp,.
For any available data D showing k successes out of n trials, Bayes's
theorem gives the posterior distribution

P(s|D) = Betag + b+ n - k(9.

Every distribution shown in Figures 1 and 2 corresponds to the appro-
priate beta distribution (i.e., the relevant prior, updated by the available
data).

Hypothesis testing with the null and alternative models, H,
and H,, is based on the Bayes factor. For our example, the Bayes
factor is

oy (z)

p(DIH,) ~ [:
' f (E) (1 — 9" *Betay, y(9)ds

(2)

“Bb+kbin—K" @

Note that the denominator in Equation 1 is the probability of the data given
that the null is false (i.e., given that the interval aternative hypothesis is
true). Thisis one of the quantities that Trafimow (2003) incorrectly argued
is not available for Bayesian analysis.

Using Equation 1, the Bayes factors reported for our example were
found simply by substituting the appropriate numbers of observations and
successes, using the appropriate prior. For example, Figure 2A corresponds
tok = 0and n = Owith the prior having b = 1. Substituting these numbers
into Equation 1 gives the reported Bayes factor of 1.0. As a second
example, Figure 2D correspondsto k = 3, n = 12, and b = 1. Substituting
these numbers gives a Bayes factor of approximately .70 in favor of the
null hypothesis. This corresponds to a Bayes factor of 1/.70 ~ 1.43 in favor
of the alternative hypothesis, as reported in the text.

The reported comparison between the control and advanced groups was
done by applying the Bayes factor that compares a same-rate model Mg
against a different-rates model M. For two groups respectively having k,
and k, successes out of n, and n, trias, the same-rate model assumes the
same success rate (s) applies for both groups. The different-rates model
assumes different success rates (s, and s,) for the two groups. The Bayes
factor comparing these models is given by
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For our example, the counts of the numbers of successes and total trials for
each group are k; = 3, n; = 12, k, = 5, and n, = 6. Substituting these
values, together with b = 1 for the uniform prior, into Equation 2 gives a

Bayes factor of approximately .145 in favor of the same-rate model. This
corresponds to the Bayes factor of 1/.145 ~ 6.9 in favor of the different-
rates model reported in the text.
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Postscript: Bayesian Statistical Inference in Psychology:
Comment on Trafimow (2003)

Michael D. Lee
University of Adelaide

Eric-Jan Wagenmakers
University of Amsterdam

Trafimow (2005) isright in pointing out that our comment (Lee &
Wagenmakers, 2005) focused on using Bayesian methods to make
statistica inferences about psychologica models and data, at the
neglect of philosophical issues. And there are certainly some philo-
sophicd issues that are worth discussing. It seems, for example, that
our comment should have made it clear that the objective Bayesian
approach we advocate views probabilities neither as relative frequen-
cies nor as belief states, but as degrees of plausibility assigned to
propositions in arationa way, entirely (and uniquely) determined by
the available information. Harder philosophica problems that we
think are important, but did not mention, are whether it is possible to
give a complete statistical characterization for any data-generating
process and how incompleteness results (such as Godel’s theorem)
might apply to the Bayesian framework.

Unfortunately, these substantial issues are not addressed. In-
stead, Trafimow (2005) provides a series of consternations making
it clear that Bayesian methods cannot work miracles for psycho-
logical researchers and that researchers must be resigned to using
them to provide coherent and rational analyses of available infor-

mation. The Fisher example shows that Bayesian inference cannot
divine true information with which it was never provided. The
amazing theory of memory example and the dating example show
that Bayesian inference cannot resolve the indecision of research-
ers about what hypothesis they are testing and what information
they have available. And, while we are not sure we understand the
point of the Suppes example, we agree that Bayesian inference
cannot account for the quirks of human language production under
uncertainty. In the end, these consternations seem to leave Trafi-
mow troubled by all methods for analyzing psychological models
and data. Perhaps he is right, and Bayesians should “down tools,”
waiting for a method of inference that is not only coherent and
rational, but can also work miracles. But, even if we had fortunes,
we wouldn’t bet them on it.

References

Lee, M. D., & Wagenmakers, E.-J. (2005). Bayesian statistical inferencein
psychology: Comment on Trafimow (2003). Psychological Review, 112,
662—668.

Trafimow, D. (2003). Hypothesis testing and theory evaluation at the
boundaries: Surprising insights from Bayes's theorem. Psychological
Review, 110, 526-535.

Trafimow, D. (2005). The ubiquitous Laplacian assumption: Reply to Lee
and Wagenmakers (2005). Psychological Review, 112, 669—674.

Received June 28, 2004
Revision received October 6, 2004
Accepted October 7, 2004 =





