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Hypothesis Testing and Theory Evaluation at the Boundaries:
Surprising Insights From Bayes’s Theorem
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Because the probability of obtaining an experimental finding given that the null hypothesis is true
[p(R\Hy)] is not the same as the probability that the null hypothesis is true given a finding [p(Ho\F)],
calculating the former probability does not justify conclusions about the latter one. As the standard
null-hypothesis significance-testing procedure does just that, it is logically invalid (J. Cohen, 1994).
Theoretically, Bayes’s theorem yields p(H\F), but in practice, researchers rarely know the correct values
for 2 of the variables in the theorem. Nevertheless, by considering a wide range of possible values for
the unknown variables, it is possible to calculate a range of theoretical values for p(Hy\F) and to draw
conclusions about both hypothesis testing and theory evaluation.

Despite a variety of different criticisms, the standard null-
hypothesis significance-testing procedure (NHSTP) has dominated
psychology over the latter half of the past century. Although
NHSTP has its defenders when used “properly” (e.g., Abelson,
1997; Chow, 1998; Hagen, 1997; Mulaik, Raju, & Harshman,
1997), it has also been subjected to virulent attacks (Bakan, 1966;
Cohen, 1994; Rozeboom, 1960; Schmidt, 1996). For example,
Schmidt and Hunter (1997) argue that NHSTP is “logically inde-
fensible and retards the research enterprise by making it difficult to
develop cumulative knowledge” (p. 38). According to Rozeboom
(1997), “Null-hypothesis significance testing is surely the most
bone-headedly misguided procedure ever institutionalized in the
rote training of science students” (p. 336). The most important
reason for these criticisms is that although one can calculate the
probability of obtaining a finding given that the null hypothesis is
true, this is not equivalent to calculating the probability that the
null hypothesis is true given that one has obtained a finding. Thus,
researchers are in the position of rejecting the null hypothesis even
though they do not know its probability of being true (Cohen,
1994). One way around this problem is to use Bayes’s theorem to
calculate the probability of the null hypothesis given that one has
obtained a finding, but using Bayes’s theorem carries with it some
problems of its own, including a lack of information necessary to
make full use of the theorem. Nevertheless, by treating the un-
known values as variables, it is possible to conduct some analyses
that produce some interesting conclusions regarding NHSTP.
These analyses clarify the relations between NHSTP and Bayesian
theory and quantify exactly why the standard practice of rejecting
the null hypothesis is, at times, a highly questionable procedure. In
addition, some surprising findings come out of the analyses that
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bear on issues pertaining not only to hypothesis testing but also to
the amount of information gained from findings and theory eval-
uation. It is possible that the implications of the following analyses
for information gain and theory evaluation are as important as the
NHSTP debate.

Hypothesis Testing

The first section of this article concerns two questions pertaining
to hypothesis testing. First, when is it acceptable and when is it not
acceptable to reject the null hypothesis? Second, how much infor-
mation does one gain when conducting an experiment?

Rejecting the Null Hypothesis

At a bare minimum, NHSTP includes the following steps:
1. Propose a hypothesis to be (hopefully) supported.

2. Propose a null hypothesis (H,) to be (hopefully) rejected
(the hypothesis and H, are supposed to be defined such
that they are mutually exclusive and exhaustive).

3. Collect the data.

4. Compute the probability of obtaining the finding (e.g., a
difference between the experimental and control condi-
tion) given that H, is true [p(F\H,)].

5. If p(R\H,) < .05, reject Hy and conclude that the alter-
native hypothesis (H,) is true.

As it has been outlined above, NHSTP may seem eminently
logical. Obviously, if Hy has been eliminated [because p(F\Hg) <
.05], then the remaining hypothesis is supported. Unfortunately,
matters are not so simple. If it were impossible to obtain the
finding given the null hypothesis [p(F\H,) = 0], then the logic of
NHSTP would be unassailable and provable by the following
reasoning:

1. If Hy is true, the finding cannot happen. (Premise 1)
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2. The finding happens. (Premise 2)

3. Therefore H, is not true. (Conclusion 1)

4. Either Hy or H; must be true. (by definition)
5. Hg is not true. (from 3)

6. Therefore H,; must be true. (Conclusion 2)

Unfortunately, when dealing with probabilities rather than with
certainties, the above reasoning does not hold. If p(F\H,) = .05,
p(Ho\F) can take on any value between 0 and 1, depending on two
other probabilities: the prior probability of the null hypothesis
[p(Ho)] and the probability of obtaining the finding if H, is not true
[p(R\—Hy)]. To see why this is so, consider Bayes’s theorem
below:

P(Ho\F) = p(F\Ho)p(Ho)/[p(F\Ho) p(Ho)+p(F\—Ho)p(—Ho)]. (1)

Note that by definition, p(—H,) = probability of the alternative
hypothesis [p(H,)] = 1 — p(Ho), so that Equation 2 is also true:

P(Ho\F) = p(F\Ho)p(Ho)/[p(F\Ho) p(Ho)
+ p(FR\—Hy) (1 — p(Ho)].  (2)

In summary, Equation 2 implies that one needs to know three
probabilities to calculate p(Ho\F). These are p(F\H,), p(H,), and
p(F\—H,). The first of these probabilities can be calculated
from the data with t tests, F ratios, and the like, but one rarely
has enough information to calculate p(H,) or p(F\—H,). Thus,
it is understandable that NHSTP rather than Bayesian analysis
is the order of the day—after all, researchers can perform the
analyses.

Unfortunately, the fact that NHSTP is easy does not mean that
it is valid. Even if p(F\H,) is .05, it is easy to choose values for
p(Hy) or p(R\—Hy) that will result in p(Hy\F) being quite a bit
larger than .05, and in an extreme enough case, this value can even
equal 1. To see this quickly, suppose either p(Hy) is 1 or p(F\—H,)
is 0. In the first case, 1 — p(Hy) = 1 — 1 = 0, and so the whole
term containing that value (to the right of the plus sign in the
denominator of Equation 2) equals 0. Thus, Equation 2 reduces to
p(R\Hy) p(Ho)/p(F\Hy) p(Hy) = 1. In the second case, in which
p(R\—Hy,) = 0, the whole term containing that value again
equals 0, and so Equation 2 again reduces to p(F\Hy) p(Ho)/
p(FH,) p(Hy) = 1. Thus, in either case, even if p(F\H,) < .05,
p(Ho\F) equals 1. Clearly, rejecting the null hypothesis [because
p(F\Hy) < .05] when it is certainly true is a bad idea.

An astute reader might object that substituting 1 for p(H,) or 0
for p(F\—H,) is extreme and that NHSTP might fare better with
less extreme values. In fact, as | shall demonstrate, NHSTP does
fare better with less extreme values instantiated into Equation 2.
Figure 1 shows all of the values p(Ho\F) can have assuming that
p(F\H,) is set at .05 (the conventional alpha level); that p(F\—H,)
equals .1 (top curve), .2 (next to the top curve), ..., .9 (bottom
curve); and that p(H,) is greater than or equal to 0 and less than or
equal to 1. The horizontal axis represents the values that p(H,) can
have and the vertical axis represents the probabilities that p(H,\F)
can have. Finally, the top [p(F\—H,) = .1] and bottom
[p(R\—H,) = .9] curves are labeled, but there was no room to label

the other curves [p(F\—Hy) = .2, ..., .8], and so they are not
labeled.

To begin with, Figure 1 shows two basic tendencies. First, as
p(Ho) increases, so does p(Ho\F). Second, as p(F\—H,) decreases,
p(Ho\F) increases. So it is immediately clear that large values for
p(Ho) or small values for p(F\—H,) imply large values for p(H\F).
There is also a joint effect of p(Hy) and p(F\—H,) on p(Ho\F). As
Figure 1 indicates, when p(F\—Hy,) is low (e.g., .1), most values for
p(H,) result in values for p(H,\F) being greater than .05. For
example, any value of .1 or higher for p(H,) will result in a final
value for p(Ho\F) being greater than .05. Thus, looking at the top
curve implies that NHSTP usually results in the rejection of the
null hypothesis when it is quite likely to be true.

On the other hand, a look at the bottom curve in Figure 1, in
which p(F\—H,) = .9, suggests a more optimistic evaluation of
NHSTP. Values for p(H,) can go almost up to .5 before p(Hy\F)
begins to exceed .05. Thus, in this case, almost half of the values
p(Hy) can take on result in a conservative rejection rate when
NHSTP is used. Further, high values for p(H,\F) do not occur until
p(Ho) exceeds .8 [at this value, p(Ho\F) = .18], and extremely high
values for p(H,\F) do not occur until p(H,) exceeds .9 [at this
value, p(Hp\F) = .33].

Is NHSTP too liberal? Figure 1 shows that this depends on
p(Hy) and p(F\—H,). NHSTP can be extremely liberal or ex-
tremely conservative depending on these values. So NHSTP is too
liberal, too conservative, or just right, depending on what one
believes these values are, in the kinds of studies and experiments
that get published in psychology journals.

Information Gain

It is widely accepted that scientists conduct studies or experi-
ments to gain information; but what do we as scientists mean when
we talk about information gain? One way of defining information
gain is in terms of the change in the probability of H, from before
the finding was obtained [the prior probability of H, or p(H,)] to
its probability after the finding is obtained [the posterior probabil-
ity of Hy or p(Ho\F)]. If the posterior probability is very different
from the prior probability, then a lot of information from the
experiment has been gained. A more precise way of saying this is
that obtaining the finding that H, predicts (and that H, does not
predict) provides maximal information when the posterior proba-
bility of Hy is much less than the prior probability of H, [i.e., when
p(Ho) — p(Ho\F) = high number]. Equation 3 summarizes these
points:

Information gain (1) = p(Hy) — p(Ho\F). 3)

Equation 3 can also be expressed in terms of the same variables in
Equation 2. So substituting everything to the right of the equal sign
in Equation 2 into Equation 3 yields Equation 4:

I = p(Ho) — {p(F\Ho)p(Ho)/[p(F\Ho)p(Ho)
+ p(F\—Ho) (1 — p(H) 1} (4)

Equations 3 and 4 define information gain in terms of change
from the prior to the posterior probability of H,. It is also possible
to define information gain in terms of the change in prior to
posterior probability of H; by substituting H, for H, in Equation 4,
which leads to Equation 5:
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Figure 1.

Curves representing nine equations, based on Equation 2, for calculating p(H,\F) as a function of

p(Ho), p(F\Hy), and p(F\—Hy,). These variables took on the following values: p(H,) varied between 0 and 1;
p(R\H,) was set at the conventional alpha level of .05; and p(F\—H,) was set at .1 (top curve), .2 (next to top
curve), . . ., .9 (bottom curve). The dashed line represents p(Hy\F) = .05. p(Ho\F) = the probability that the null
hypothesis is true given a finding; p(H,) = prior probability of the null hypothesis; p(F\H,) = probability of the
finding given the null hypothesis; p(F\—H,) = probability of obtaining the finding given that the null hypothesis

is not true.

I = p(Hy) — {p(F\HYp(H)/[p(F\H)p(H,)
+ p(A\—H)@ — (H))]}. (5)

However, even if one wishes to think of information gain in terms
of Hy, itis still useful to be able to use the same variables that were
used in Figure 1. So, 1 — p(Hy) can be substituted for p(H,),
p(R\—H,) for p(F\H,), p(F\H,) for p(F\—H,), and p(H,) for 1 —
p(H,), which leads to Equation 6:

I = [1 = p(Ho)] — {p(F\—Ho)(1 — p(Ho))/
[p(F\—Ho)(1 — p(Ho)) + p(F\Hp)p(Ho)1}.  (6)

Note that expressing information gain in terms of H, rather than
Ho, as in Equation 6, renders the change in probability of H, as a
negative rather than a positive number. This happens because
successfully obtaining a finding increases the posterior probability
of H; over its prior probability unless the prior probability is 0 or 1.

Figure 2 illustrates information gain in terms of H, but still uses
the variables from Figure 1. Thus, the following were instantiated
into Equation 6 and are represented in Figure 2: p(F\H,) was kept
at .05, p(H,) was allowed to vary from 0 to 1, and p(F\—H,) was
set at .1 (top curve), .2 (next to top curve), .. ., .9 (bottom curve).
As in Figure 1, the top [p(F\—H,)] and bottom [p(F\—H,)] curves
are labeled, and the other curves are not.

To understand the implications of Figure 2, consider what
happens to information gain as p(F\—H,) increases and p(H,)
increases. As p(F\—Hy) increases, information gain also increases.
Note that the bottommost curve represents the greatest information
gain. This makes good intuitive sense; as the likelihood of the
finding given that H, is wrong (and therefore that H, is right)
increases, the finding provides a much stronger case for H,.

Now consider information gain as p(H,) increases. Figure 2
shows that when p(H,) is a small number, information gain also
tends to be small. But when p(H,) gets closer to 1 (but not too



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and i< not to be disseminated broadly.

SURPRISING INSIGHTS 529

0,2

P(Ho)

0,4 0,6 08 1

-0.31
Information Gain

-0.471

-0.5T7

T T T

P(F\H,) = 1

PF\-Hy) =.9

Figure 2. Curves representing nine equations, based on Equation 6, for calculating information gain as a
function of p(H,), p(F\H,), and p(F\—H,). These variables took on the following values: p(H,) varied between 0
and 1; p(R\H,) was set at the conventional alpha level of .05; and p(R\—H,) was set at .1 (top curve), .2 (next
to top curve), . . ., .9 (bottom curve). p(H,) = prior probability of the null hypothesis; p(F\H,) = probability of
the finding given the null hypothesis; p(F\—H,) = probability of obtaining the finding given that the null

hypothesis is not true.

close), information gain is maximized. This is particularly true
when p(F\—Hy) is a large number. [It is important to note that the
“best” value for p(H,) for maximizing information gain is depen-
dent on p(F\—H,). It should also be noted that the best value would
change if p(F\H,) were set at values different from .05.] In terms
of H;, what this means is that when researchers propose “obvious”
hypotheses (i.e., the prior probability of H, is low and that of H,
is high), they fail to gain much information even when they obtain
the desired finding. However when researchers propose nonobvi-
ous hypotheses so that the prior probability of the null hypothesis
is high (but not too high) and that of the alternative hypothesis is
low, then obtaining the desired finding results in a large amount of
information gain. The philosophical moral of Figure 2 is that
researchers should try to test nonobvious hypotheses.*

Theory Evaluation

The foregoing discussion focused on the relations between
hypotheses and findings but ignored theories. However, the reason
researchers propose hypotheses and perform experiments is to
evaluate their theories (at least this is supposed to be so in basic

psychology journals). So suppose that a researcher has derived a
hypothesis from a theory and wishes to know the extent to which
the theory is supported by the hypothesis. The posterior probability
of the theory, given that the hypothesis is true, can be expressed by
Bayes’s theorem as shown in Equation 7. In essence, Equation 7 is
similar to Equation 2 except that the idea is to find the probability
of the theory, given that the derived hypothesis is true [p(T\H,)],
in terms of the prior probability of the theory [p(T)], the proba-
bility of the derived hypothesis given the theory [p(H,\T)], and the
probability of the derived hypothesis if the theory is not true

[P(HN\=T)]:
p(T\H,) = p(HA\T)p(T)/[p(H\T)p(T)
+ p(HA=T)(1 = p(MT)]. (7)

L1t should be noted, however, that this recommendation involves a good
deal of risk to the researcher. The testing of nonobvious hypotheses entails
a substantial probability that H, will fail to be rejected. It is often difficult
to publish failed attempts to reject Hy, and so the researcher who adopts the
recommended strategy should be prepared to deal with this consequence.
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Equation 7 allows one to perform analyses that are somewhat
analogous to those performed in the previous section, but with
regard to theories and hypotheses rather than hypotheses and
findings. In the following subsection, | explore the posterior prob-
ability of the theory being true given that the hypothesis is true. In
the subsection after that, | explore the change in probability of the
theory after the hypothesis derived from the theory is supported.

The Posterior Probability of the Theory

It is probably a myth in science that research hypotheses are
arrived at solely by deduction from theories (Faust, 1984). If this
myth were true, it would imply that given the truth of a theory, the
hypothesis must be true. Accept the myth, for a moment, and
assume that p(H,\T) = 1. In that case, Equation 7 reduces to
Equation 8:

p(MHy = p(M/[p(T) + p(HA=T)(1 = p(T)].  (8)

On the basis of Equation 8, Figure 3A presents the posterior
A
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probability of the theory [p(T\H,)] as a function of the prior
probability of the theory [p(T), which is allowed to vary from 0 to
1] and p(H,\—T), which is set at .1 (top curve), .2 (next to top
curve), ..., .9 (bottom curve). The horizontal axis represents the
prior probability of the theory, and the vertical axis represents the
theory’s posterior probability. As in Figures 1 and 2, the top
[p(H\—=T) = .1] and bottom [p(H,\—T) = .9] curves are labeled,
and the other curves are not.

Not surprisingly, as the prior probability of the theory increases,
so does the posterior probability. It is more interesting to note that
the posterior probability of the theory is strongly dependent on the
probability of the hypothesis when the theory is not true
[pP(H\=T)]. As p(H,\—T) decreases, p(T\H,) increases. Thus,
Figure 3A demonstrates the importance of testing theories with
hypotheses that are unlikely to be true if the theory is not true.

Of course, Figure 3A depends on the unlikely assumption that
p(H\T) = 1. As several philosophers and psychologists have
demonstrated, hypotheses are derived from a combination of a
theory and “auxiliary” assumptions outside the theory that estab-
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Figure 3. These four panels were based on Equation 7 in which p(H,\T) was set at 1 (A), .8 (B), .5 (C), and
.2 (D). Within each of these panels, the curves represent nine equations for calculating p(T\H,) as a function of
p(T), which ranges between 0 and 1, and p(H,\—T), which equals .1 (top curve), .2 (next to top curve), ..., .9
(bottom curve). p(H,\T) = probability of the alternative hypothesis given the theory; p(T\H,) = the probability
of the theory given the alternative hypothesis; p(T) = prior probability of the theory; p(H,\—T) = probability
of the alternative hypothesis given that the theory is not true.
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lish initial conditions, assumptions about the measurement of
variables, and others (Hempel, 1965; Lakatos, 1978; Meehl, 1990,
1997; Popper, 1959, 1962). Meehl (1997) has provided a list of
these auxiliary assumptions. Unless one is willing to assume that
the probability of the truth of these auxiliary assumptions equals 1,
it is necessary to assume that p(H,\T) is less than 1. So, Figure 3B
assumes that p(H,\T) = .8, Figure 3C assumes that p(H,\T) = .5,
and Figure 3D assumes that p(H,\T) = .2. The points made above
with regard to Figure 3A also come across in Figures 3B, 3C, and
3D. It is interesting to note, however, that as p(H;\T) decreases
(across Figures 3A to 3D), the posterior probability of the theory
also decreases. There is an interesting interaction whereby the
shape of the curves depends on both p(H,\T) and p(H,\—T). When
p(H,\T) is high and p(H,\—T) is low, then the curves tend to rise
quickly before flattening out. This means that even when the prior
probability of the theory is low, the posterior probability may
nevertheless be quite high. Conversely, when p(H,\T) is low and
p(H,\—T) is high, the curves are rather flat to begin with before
rising substantially. This means that even with a respectable prior
probability of the theory, the posterior probability of the theory
may nevertheless not be very high. Finally, a low p(H,\T) can be
counterbalanced by an even lower p(H,\—T), and a high p(H,\—T)
can be counterbalanced by an even higher p(H,\T), with all of
these effects depending on the prior probability of the theory.

Change in Probability of the Theory as a Result of the
Hypothesis

By reasoning similar to that in the previous section, it is possible
to derive an equation that represents the change from the prior
probability of the theory to its posterior probability (given that the
hypothesis has been shown to be true). This difference is
p(MH,) — p(T) and represents the gain in confidence one can have
in the theory as a result of obtaining findings that support the
veracity of the hypothesis (C = change in confidence). This
reasoning is summarized in Equation 9:

C = p(T\Hy — p(T). 9)

Substituting the right half of Equation 7 for p(T\H,) renders
Equation 10:

C = {p(HA\T)p(T)/[p(H\T)p(T)
+ p(HAN=T)(1 — p(TNH]} — p(T). (10)

Analogous to Figures 3A, 3B, 3C, and 3D in which p(H,\T)
was 1, .8, .5, .2, respectively, Figures 4A, 4B, 4C, and 4D represent
change in confidence as a function of each of these values. Within
each figure, p(T) was allowed to vary from 0 to 1, and p(H,\—T)
was set at .1 (top curve), .2 (next to top curve), ..., .9 (bottom
curve). Thus, the horizontal axis represents the prior probability of
the theory [p(T)], and the vertical axis represents the change in
confidence in the theory (C). Similar to the other figures, the top
[p(H\—=T) = .1] and bottom [p(H,\—T) = .9] curves are labeled,
and the other curves are not.

First, consider Figure 4A. This figure demonstrates two impor-
tant points. First, as the probability of the hypothesis when the
theory is not true decreases [p(H,\—T) is a low number], one can
have much more confidence in the theory. Thus, Figure 4A dem-

onstrates the importance of proposing H,s that are unlikely to be
true if the theory is not true. Second, note that as the prior
probability of the theory itself decreases (as long as it doesn’t get
too close to 0), the amount of change in confidence is maximized.
However, Figures 4B, 4C, and 4D demonstrate that this effect is
more complicated than might be inferred from Figure 4A.

Now consider Figure 4B, in which p(H,\T) was set at .8. As was
true with Figure 4A, the greatest amount of positive change in
confidence in the theory is engendered when the probability of the
hypothesis if the theory is not true is minimized. This conclusion
holds for all of the Figures (i.e., Figures 4A to 4D). Note also that,
in general, the changes in confidence in the theory are lower in
Figure 4B than in Figure 4A. This means that as the hypothesis is
less tightly derived from the theory [p(H,\T) is a lower number],
support for the hypothesis provides decreased support for the
theory. Although this is not surprising, another conclusion implied
by Figure 4B is quite surprising. Specifically, when p(H,\—T) is
set at .9 (the lowest curve), the change in confidence in the theory
actually dips into negative territory. This means that if the hypoth-
esis derived from the theory is shown to be true, it actually
decreases one’s confidence in the theory. How can this happen if
the hypothesis was actually derived from the theory, and in a
reasonably tight way, too [remember that p(H,\T) was set at .8 for
Figure 4B]? The answer lies in the probability of the hypothesis
given that the theory is not true, which is .9 for the bottom curve
in Figure 4B. What this means is that the hypothesis can be more
tightly derived if the theory is not true than if the theory is true, and
so support for the hypothesis actually militates against the theory.

Figures 4C and 4D make this point clear in a more dramatic
way: Several of the curves dip into negative territory, and if
p(H,\—T) is set at .9, these dips imply an impressive degree of
negative change in confidence in the theory. The philosophical
moral of Figures 4A to 4D is that not only are hypotheses that are
unlikely to be true if the theory is not true required to substantially
increase one’s confidence in the theory but also failure to propose
such hypotheses can actually decrease the posterior probability of
the theory.

There is an additional, although less important, conclusion that
can be drawn from Figures 4A to 4D. Specifically, as one
progresses from Figure 4A to Figure 4D, the point of maximum
change in confidence occurs farther along the horizontal axis.
Thus, to obtain the maximum change in confidence in a theory, the
best prior value for the theory changes depending on how tightly
the hypothesis is derived from the theory.

Discussion

The foregoing analyses imply a variety of conclusions relating
to NHSTP, information gain, theory evaluation, and change in
confidence in theories. These will be addressed in turn.

1. There has been a great deal of debate over the desirability of
NHSTP (Abelson, 1997; Chow, 1998; Cohen, 1994; Mulaik et al.,
1997; Rozeboom, 1997; Schmidt, 1996; Schmidt & Hunter, 1997
Wilkinson & The Task Force on Statistical Inference, 1999). The
analyses reported here, particularly in Figure 1, not only cast doubt
on the validity of NHSTP but also specify the amount by which
researchers are wrong when they reject the null hypothesis under
various values for p(H,) and p(F\—H,) even when the finding is
significant at @ = .05. Whether the “wrongness” is in a liberal or
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Figure 4. These four panels were based on Equation 10 in which p(H,\T) was set at 1 (A), .8 (B), .5 (C), and
.2 (D). Within each of these panels, curves represent nine equations for calculating change in confidence (C) as
a function of p(T), which ranges between 0 and 1, and p(H,\—T), which equals .1 (top curve), .2 (next to top
curve), ..., .9 (bottom curve). p(H,\T) = probability of the alternative hypothesis given the theory; p(T) = prior
probability of the theory; p(H,\—T) = probability of the alternative hypothesis given that the theory is not true.

conservative direction depends, of course, on the values p(H,) and
p(F\—H,) are assumed to have.

It is important to make clear, however, that the problems with
rejecting H, that are engendered by NHSTP do not necessarily
constitute an argument against the common practice of calculating
p values [p(F\H,)]. To see this, consider the reasons why research-
ers calculate p. Two reasons are usually given, and I will show that
one of them is more appropriate than the other. The first use of p,
and the one that seems to be emphasized in most statistics text-
books, has to do with drawing conclusions about populations. H,
and H, are both statements about populations, and so using p to
reject one in favor of the other is equivalent to drawing a conclu-
sion about populations. As | have shown, this use of p is ques-
tionable at best.

The second reason researchers compute p is that they often
conduct experiments to support a theory, and therefore they wish
to argue that the truth of the theory is what is ultimately respon-

sible for their finding. To make this argument more compelling,
researchers must rule out as many alternative explanations for the
finding as possible. One alternative explanation that must be
rendered less plausible is that the finding is due to chance. If p is
small, then it is less plausible that the finding is due to chance, and
so other explanations are more plausible (e.g., the theory or alter-
native theories). This seems like an appropriate use of p, and | am
not advocating that researchers stop calculating this value. In
summary, although it seems reasonable to calculate p for the
purpose of rendering chance as a less plausible explanation for
findings, it seems less reasonable to perform the full NHSTP that
ultimately results in a conclusion about populations. Possibly,
however, in those cases in which there is good reason to believe
that p(Hy) is low and p(F\—H,) is high, NHSTP might be reason-
able (but see Point 2 below).

2. Figure 2 demonstrates that greater information gain is engen-
dered when p(F\—H,) is maximized. Figure 2 also suggests that as



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and i< not to be disseminated broadly.

SURPRISING INSIGHTS 533

the prior probability of the null hypothesis [p(H,)] gets closer to 1
(but not too close), information gain is maximized. This latter fact
points to a surprising dilemma for those who wish to perform
NHSTP. That is, to justify NHSTP, Figure 1 shows that it is
necessary to have a low value for p(H,). However, doing this
results in very little information gain. Thus, the valid performance
of NHSTP implies little information gain, and gaining a lot of
information implies an invalid use of NHSTP. There seem to be
two solutions to this dilemma. The most obvious solution is to not
use NHSTP. However, for those who still wish to perform NHSTP
(despite Figure 1), note that as p(F\—H,) increases, both p(Hy\F)
decreases, and information gain increases. So with a large enough
value for p(F\—H,), perhaps it is possible to validly perform
NHSTP and nevertheless gain a respectable amount of informa-
tion. One way of increasing p(F\—Hy) is to drastically increase the
number of participants. To see why this might work, consider that
as the sample sizes approach the population sizes, p(F\—H,) ap-
proaches 1. (Remember that this assumes H, is not true. If Hy is
true, then increasing sample sizes will tend to reinforce the lack of
a difference.) Of course, this brings up other issues that will not be
discussed here (e.g., How meaningful is an effect if it takes a large
number of participants to get it? How many participants are
needed? How would researchers know how many participants are
needed given that they usually do not have the required values to
obtain this number?).

In addition to sample sizes, population variances affect
p(R\—H,). To see this quickly, imagine that Population A has a
mean of 10, and Population B has a mean of 12. In addition,
imagine that there is 0 variance in both populations. In this case,
even with sample sizes of only 1, it would be guaranteed that the
difference between the two sample means would equal 2 (this is
because with 0 variance, all of the scores from A would be 10 and
from B would be 12). To state this principle in more general terms,
as the population variances approach 0, p(F\—H,) approaches 1
(when the populations really are different). | hasten to add, how-
ever, that it may require unusual cleverness on the part of the
researcher to design experiments with low population variances (a
high degree of control over irrelevant variables could be a big help
here). Furthermore, in the case of nonexperimental designs, control
over population variances is particularly unlikely to be under the
researcher’s control.

How quickly can the positive effects of increasing sample sizes
and decreasing population variances on p(F\—H,) be realized?
This depends on two other variables. The first of these is the actual
difference between the two populations. The second is the size of
the difference between samples that the researcher needs to qualify
as being extreme enough to qualify as F (which, among other
things, depends partly on what alpha is set at). As the actual
population difference increases or the required difference between
samples decreases, p(F\—H,) increases, and fewer participants
and/or greater population variances become more tolerable. A
mathematical analysis of how sample sizes, population variances,
population differences, and required differences between samples
vary to affect p(F\—H;) is beyond the scope of this article. It is
sufficient for now to merely note that all of these factors affect
p(R\—H,); consequently, all of them affect both p(H,\F) and
information gain, and therefore all of them provide possible ways
of dealing with the dilemma.

3. There is an issue that often comes up about whether obtaining
p < .05 with a small number of participants is as “good” as
obtaining it with a large number of participants. Points 1 and 2
suggest that the answer depends on whether one is talking about
rejecting H, or rendering chance as a less probable explanation of
the data. In the former case, the number of participants affects
p(F\—H,), and consequently it also affects p(Hy\F). Therefore, the
same p values, when obtained with different numbers of partici-
pants, can have quite different implications for NHSTP. In the
latter case, however, p = p regardless of the number of participants
used to obtain p. (And some would even argue that obtaining a
small p value with only a few participants implies an increased
effect size.) Given the foregoing argument that rejecting the null
hypothesis is rarely justified anyway, the implication is that in
most studies, a small p value obtained with a small sample size is
as good as a small p value obtained with a large sample size.

4. For conducting basic research, hypothesis testing derives
much of its importance from its connection to a more general
theory. For example, a researcher probably does not care whether
participants recall more words in an experimental condition than in
a control condition. The reason such a finding may matter is
because of the implications this difference might have for a theory
about how information is encoded and recalled. Thus, it is of
crucial importance to consider the relation between theories and
the hypotheses that are derived from them. Figures 3A to 3D
demonstrate a number of important issues that were mentioned
previously, although I will only discuss two here. First and most
important, the probability of the finding given that the theory is not
true has an extremely strong effect on the posterior probability of
the theory. One reason this is important is that researchers tend to
focus most of their attention on the probability of the hypothesis
given that the theory is true, when the probability of the hypothesis
when the theory is not true is just as important. Put another way,
it is absolutely crucial for researchers to derive hypotheses that are
likely to not be true, absent the theory, if they want to have a
chance at providing an impressive argument for that theory. Al-
though Lakatos (1978), Meehl (1990, 1997), and Platt (1964) have
argued for such strong hypotheses (I am using the word strong to
designate hypotheses that are unlikely to be true if the theory is
wrong), it is not always easy to find research articles in which this
has been done. In much published research, the hypotheses would
be likely to be true even if the theories were not true. Roberts and
Pashler (2000) have argued convincingly that this is particularly a
problem in research evaluating quantitative theories with free
parameters, which can be made to fit any plausible set of findings.
According to these researchers, “The need to make predictions that
are at least a little implausible seems to have been overlooked by
quantitative theorists” (p. 360). However, as Meehl (1997) sug-
gested, the problem is not limited to only this domain: “Most of
psychology is nowhere near that ‘ideal Popperian’ stage of theory
testing yet” (p. 415; also see Gergen, 1978; Gigerenzer, 1998;
Schaller & Crandall, 1998; L. Wallach & Wallach, 2001; M. A.
Wallach & Wallach, 1998). The upshot is that supporting the truth
of hypotheses in psychology has generally provided only weak
support for the theories from which they were derived. (Given the
cognitive limits of researchers reviewed by Faust, 1984, this is
likely to be a problem in many sciences, so | do not want to imply
that psychologists are worse at research than are scientists in other
domains.) Possibly one reason for the lack of emphasis on strong
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hypotheses is that nobody has ever quantified the consequences of
failing to derive strong hypotheses from theories. (I will admit,
however, that the difficulty in calculating the probability of the
hypothesis absent the theory might also be a reason.) | hope that
the present quantitative demonstration will have an effect that the
qualitative arguments of the past have not.

A second but related issue pertains to the relation between
p(H,\T) and p(H,\—T). Even if p(H,\T) is low, showing that the
hypothesis is true might still result in a reasonable posterior
probability of the theory if p(H,\—T) is substantially lower than
p(H,\T). On the other hand, even if p(H,\T) is high, if p(H,\—T)
is also high, then the posterior probability of the theory may still
remain low. All of these issues, of course, are also dependent on
the prior probability of the theory. These issues become even
clearer when framed in terms of change in confidence in the
theory, which will be discussed next.

5. It is not only the case, as Figures 3A to 3D demonstrate, that
weak hypotheses [in which p(H,\—T) is not a low number] fail to
result in impressive posterior probabilities of the theories (unless
of course, the prior probability of the theory was high to begin
with), but Figures 4A to 4D demonstrate that weak hypotheses also
fail to change the level of confidence one can have in theories.
Worse yet, if a hypothesis is sufficiently weak [p(H,\—T) is a high
number], support for the hypothesis derived from a theory can
actually decrease the confidence that can be placed on that theory.
Thus, whether one thinks in terms of the posterior probability of
the theory or the difference between the posterior probability of the
theory and the prior probability of the theory, the message is the
same—researchers should propose hypotheses that are unlikely to
be true if the theory is not true. Similarly, the ratio of p(H,\T) to
p(H,\—T) is quite important. If the ratio is high (much greater than
1), then change in confidence in the theory is likely to be impres-
sively positive. If that ratio is low (much less than 1), then change
in confidence in the theory is likely to be negative—the opposite
of what the researcher would have liked to achieve.

This discussion brings up an interesting way that theories can be
tested against each other. It is best, of course, to propose a
hypothesis that is tightly derived from one theory (T1), and that
should not be true if an alternative theory (T2) is true. However,
even if the researcher cannot think of a way to do this, there may
be an easier way of nevertheless providing an argument that T1 is
better than T2. That is, if the hypothesis is more likely under T1
than T2, even if it is somewhat likely under T2, then p(H,\T1) >
p(H,\T2), and so confirming the hypothesis would support T1 over
T2. How much would T1 be supported over T2? That would
depend on the judged ratio of p(H,\T1)/p(H,\T2). Also, the im-
portance of this ratio itself depends on the prior probabilities of T1
and T2.

6. Before | conclude, the foregoing analyses imply a strong
distinction between research that is (a) not theoretical or explor-
atory versus research that is (b) not theoretical but is exploratory
versus research that is (c) theoretical. Suppose researchers em-
ployed by a drug company want to show that a particular drug
cures a particular disease, but they are not concerned with why this
happens. Thus, they are not concerned with information gain or
theory testing. They just want to have a high posterior probability
that H, is true (and H, is false). Figure 1 implies that the research-
ers will be in best shape if the prior probability of H, is low (so the
prior probability of H, is high). However, Figure 2 shows that this

will result in little information gain. If one is performing explor-
atory research and wishes to maximize information gain, Figure 2
demonstrates that it is better to have Hgs that have a high prior
probability (so the prior probability of H, is low). For example, if
our hypothetical researchers wanted to maximize information gain,
they would be better off testing a drug that had not been tested
before rather than testing a drug for which there was already good
prior evidence of effectiveness.

Finally, if one wishes to test theories, it is best to derive
hypotheses that are likely to be true if the theory is true but that are
likely to be false if the theory is false. Consider the periodic table
published by Mendeléev in 1869. Mendeléev assumed that the
crucial property that distinguished the elements from each other
was not atomic weight, as had been previously assumed, but rather
valence (the tendency of elements to combine with other ele-
ments). To make the elements in each column of his table equiv-
alent with regard to valence, he was forced to put an element of
greater atomic weight ahead of one of lesser atomic weight (e.g.,
tellurium was put ahead of the lighter iodine to keep tellurium in
the valence = 2 column and iodine in the valence = 1 column).
Worse yet, he found it necessary to leave gaps in the table. Instead
of apologizing for the gaps, however, Mendeléev boldly asserted
that they represented elements that had not yet been discovered.
On the basis of the position of the gaps in the table, he went on to
predict exactly the characteristics each element would have when
discovered (e.g., melting point, boiling point, valence, pattern of
spectral lines in emissions when heated). Clearly, these predictions
were extremely likely to be wrong if the theory was wrong.
Although the world of chemistry remained skeptical of both the
theory and the predictions, within a few years new elements were
discovered, and their characteristics conformed to Mendeléev’s
bold predictions in every way. After that, nobody could doubt the
utility of Mendeléev’s periodic table. It is probably worth com-
menting that the low prior probability of the theory (at least in the
judgment of other chemists) was doubtless an aid to Mendeléev in
making such strong predictions.

In summary, the distinctions between research that is (a) not
theoretical or exploratory versus research that is (b) not theoretical
but is exploratory versus research that is (c) theoretical suggest that
it is often a mistake to try to make the same hypothesis serve
different purposes. This is not to prevent, however, a researcher
from proposing different hypotheses within the same project for
different purposes. Table 1 presents a summary of desiderata for
each type of research.

Conclusion

The fact that Bayes’s theorem provides the foundation for all of
the foregoing analyses and conclusions should not be interpreted to
mean that Bayesian statistical analyses should be routinely used in
the science of psychology. My best guess is that some of the
necessary information, particularly p(H,) and p(F\—H,) or num-
bers from which these probabilities can be estimated, are often
lacking, and consequently a Bayesian approach cannot be used. |
do claim, however, that Bayesian thinking can be valuable even if
the analyses cannot be carried out for the particular experiment at
hand. For example, the Bayesian analyses presented earlier not
only suggest possible problems with NHSTP but also demonstrate
when these potential problems become actual problems and when
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Table 1

Desiderata for Values of p(Hy), p(H,), p(F\H,), p(F\H,),
p(H\F), I, p(H\T), p(H,—T), p(T), and C, Depending on
Whether the Research Is Not Exploratory or Theoretical (X),
Exploratory but Not Theoretical (Y), or Theoretical (Z)

Research type

Value X Y z
p(Ho) Low High? High?
p(H,) High Low® Low®
p(F\Hy) Low Low Low
p(F\H,) High High High
p(H,\F)® High High High
1° — High High
p(H\T) — — High
p(H,\=T) — — Low
p(T) — — Low®
ce — — High

Note. p(Hy) = prior probability of the null hypothesis; p(H,) = prior
probability of the alternative hypothesis; p(F\H,) = probability of the
finding given the null hypothesis; p(F\H,) = probability of the finding
given the alternative hypothesis; p(H,\F) = probability of the alternative
hypothesis given the finding; | = information gain; p(H,\T) = probability
of the alternative hypothesis given the theory; p(H,\—T) = probability of
the alternative hypothesis given that the theory is not true; p(T) = prior
probability of the theory; C = change in confidence in the theory. Dashes
indicate that the variables to which the values pertain are not important for
the type of research. 2 The value should be close to 1, but not too close
(see Figure 2). ° The value should be close to 0, but not too close (see
Figure 2 and Figures 4A—-4D). °p(H,\F) is the goal and most important
value for Research Type X; | is the goal and most important value for
Research Type Y; C is the goal for Research Type Z.

they do not. Furthermore, these analyses quantify the size of the
problems and suggest possible solutions. However, the implica-
tions of Bayesian thinking are not limited to NHSTP. Rather, a
variety of conclusions pertaining to hypotheses testing, informa-
tion gain, and theory evaluation also came out of thinking issues
through in a Bayesian way. An example of a contribution of
Bayesian thinking to theory testing was that the importance of
proposing strong hypotheses became clear. One might well con-
clude that if one believes that there is a high proportion of weak
hypotheses in even the top journals in psychology, then weak
hypotheses are as much of a problem as NHSTP.
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