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Modelling climate (or weather) impacts on health is tricky!

A very complex set of interacting systems is involved
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Dengue in Brazil

Dengue transmitted by Aedes aegypti mosquitoes

Severe joint and muscle pain (rarely fatal)

Epidemics depend on mosquito density and distribution, virus
circulation and human susceptibility

Brazil has more cases of dengue than anywhere else in the world

More than 3 million cases in Brazil 2001-2009

2008 epidemic: 787,726 cases, 448 deaths

Seasonal pattern: increases in Jan-May when climate warmer/humid

Early warning systems that account for multiple dengue risk factors,
are required to implement timely control measures

Seasonal climate forecasts provide potential to anticipate dengue
epidemics several months in advance.



Temporal variability in dengue in Brazil

Monthly dengue counts for main regions of Brazil 2001-2009



Spatial variability in dengue in Brazil

Total dengue cases in microregions (553) 2001-2009



Dengue transmission

Epidemiological drivers, e.g.

Susceptible population
Sero-type circulation

Human drivers, e.g.

population growth/urbanisation/poverty
(substandard housing)

abundance of water-storage
(containers/bad drainage)

Environmental drivers, e.g.

Precipitation
(filling of containers)

Temperature/humidity
(mosquito development)



Some questions?

Is it possible to develop a model to provide
spatio-temporal probabilistic forecasts of
dengue risk?

To what extent can variations in dengue risk be
accounted for by climate variations?

Which observed and unobserved non-climatic
confounding factors should be incorporated?



Some questions?

Is it possible to develop a model to provide
spatio-temporal probabilistic forecasts of
dengue risk?

To what extent can variations in dengue risk be
accounted for by climate variations?

Which observed and unobserved non-climatic
confounding factors should be incorporated?



Some questions?

Is it possible to develop a model to provide
spatio-temporal probabilistic forecasts of
dengue risk?

To what extent can variations in dengue risk be
accounted for by climate variations?

Which observed and unobserved non-climatic
confounding factors should be incorporated?



Some more questions?

Is climate information useful in a dengue
Early Warning System (EWS) for Brazil?

How well can the developed model
predict future and geographically
specific dengue epidemics?

How does this compare with current
‘surveillance and response’ approach in
Brazil (observe early dengue cases
Dec/Jan then estimate epidemic
potential for late austral summer)

How can early warnings of dengue
epidemics based on climate information
be effectively communicated to public
health decision makers?
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Disease and Demographic Data

Disease data SINAN-DATASUS

Monthly dengue cnts (originally Jan 2001 -
Dec 2009, but now until 2013)

Spatial unit: microregion

Census/cartographic data SIDRA-IBGE

% urban population

Altitude

Administrative region

Zone or Biome (e.g. Atlantic/Amazon
Rainforest)

Original dataset: 108 months, 553 locations

DIR= yst
pst

× 12 × 100, 000

Low: DIR < 100
Med: 100 < DIR < 300

High: DIR > 300



Gridded climate data (2.5◦ × 2.5◦)

Average precipitation rate (GPCP)

Reanalysis average temperature (NCEP/NCAR)

Precipitation Temperature

Dec-Feb climatology (2000-9)



ENSO

Precipitation

Temperature

Correlation Oceanic Niño Index (ONI) vs Dec-Feb precipitation & temperature



GLMM model framework

yst |φs , νs , ωt′(t) ∼ NegBin(µst , κ); s = 1, . . . , 553; t = 1, . . . , 108

logµst = log est︸ ︷︷ ︸
offset

+α + δ1t′(t) + δ2s′(s) + δ3s′(s)t′(t)︸ ︷︷ ︸
month+zone factors

+ γ1w1st + γ2w2s︸ ︷︷ ︸
non-climate vars: pop dens+altitude

+β1s′(s)x1,s,t−2 + β2s′(s)x2,s,t−2 + β3s′(s)x3,t−6︸ ︷︷ ︸
climate vars: precip+temp+ONI

+ φs + νs︸ ︷︷ ︸
spatial random effects

+ ωt′(t)︸ ︷︷ ︸
monthly random effects

t′(t) = 1, . . . , 12

s ′(s) = 1, . . . , 8

φs ∼ N(0, σ2
φ); s = 1, . . . , 553

(ν1, . . . , ν553) ∼ CAR(σ2
ν)

ω1 ∼ N(ω12, σ
2
ω)

ωt′(t) ∼ N(ωt′(t)−1, σ
2
ω); t′(t) = 2, . . . , 12



GLMM model conclusions

Climate signal is weak but highly significant

Precipitation and temperature averaged over preceding 3 month
period, 2 month lag with dengue. (particularly seems to help in
accounting for spatial variation)

ONI lagged 6 months with dengue, 4 months with climate variables
(particularly seems to help in temporal variation)

Random effects are important

Unobserved confounding factors (population immunity to circulating
serotype, health interventions/vector control measures)

Overdispersion

Temporal correlation and spatial clustering
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Selected results - GLMM, SE Brazil

precipitation temperature ONI

Climate coefficient posteriors

Observed log(DIR) vs model fit, FMA, 2001-2009



Selected results - GLMM, SE Brazil, FMA season

2008 (epidemic year)
Observed Predicted

2005 (non-epidemic year)
Observed Predicted



GLMM and current surveillance practice, SE Brazil, FMA

Current surveillance practice effectively
equates to the auto-regressive model
(ARM):

yst ∼ NegBin(µst , κ)

logµst = log est + α + β log(
ys,t−3

es,t−3
)

Obs GLMM ARM



Posterior predictions for selected SE microregions 2008-2009

GLMM

ARM

(a) Três Marias, (b) Belo Horizonte, (c) Báıa de Ilha Grande, (d) Rio de Janeiro, (e) São Jose dos Campos



Defining and visualising epidemic risk

Symmetric (tercile) and non-symmetric (100 and 300
cases per 100,000) category boundaries of the observed

distribution of DIR, FMA 2001-2007, SE Brazil



Visualising GLMM probabilistic forecasts

GLMM ARM Observed

SE, FMA 2008

SE, FMA 2009



Epidemic prediction: FMA 2008, SE Brazil, GLMM

Posterior predictive results in 160 microregions in SE
for DIR exceeding 300 cases per 100,000 at probability

decision thresholds (50%&30%)

50% Obs
Yes No

Pred Yes 31 13
No 23 93

PC=78%,HR=57%,FAR=12%

30% Obs
Yes No

Pred Yes 51 31
No 3 75

PC=79%,HR=94%,FAR=29%

Posterior predictive distributions and prob of > 300 per
100,000 in 5 selected regions (arrow indicates observed DIR)

(a) Três Marias, (b) Belo Horizonte, (c) Báıa de Ilha Grande (d) Rio de Janeiro, (e) São Jose dos Campos



Combined GLMM model framework

yst |φs , νs , ωt′(t) ∼ NegBin(µst , κ); s = 1, . . . , 553; t = 1, . . . , 108

logµst = log est︸ ︷︷ ︸
offset

+α + δ1t′(t) + δ2s′(s) + δ3s′(s)t′(t)︸ ︷︷ ︸
month+zone factors

+ γ1w1st + γ2w2s︸ ︷︷ ︸
non-climate vars: pop dens+altitude

+ λzs,t−4︸ ︷︷ ︸
lagged log SMR

+β1s′(s)x1,s,t−2 + β2s′(s)x2,s,t−2 + β3s′(s)x3,t−6︸ ︷︷ ︸
climate vars: precip+temp+ONI

+ φs + νs︸ ︷︷ ︸
spatial random effects

+ ωt′(t)︸ ︷︷ ︸
monthly random effects

t′(t) = 1, . . . , 12

s ′(s) = 1, . . . , 8

φs ∼ N(0, σ2
φ); s = 1, . . . , 553

(ν1, . . . , ν553) ∼ CAR(σ2
ν)

ω1 ∼ N(ω12, σ
2
ω)

ωt′(t) ∼ N(ωt′(t)−1, σ
2
ω); t′(t) = 2, . . . , 12



Epidemic prediction: FMA 2008, SE Brazil, Combined Model

Posterior predictive results in 160 microregions in SE
for DIR exceeding 300 per 100,000 at probability

decision thresholds (50%&30%)

50% Obs
Yes No

Pred Yes 34 10
No 20 96

PC=81%, HR=63%, FAR=9%

30% Obs
Yes No

Pred Yes 47 24
No 7 82

PC=81%, HR=87%, FAR=23%



Epidemic prediction combined model

Combined GLMM Observed

FMA 2008

FMA 2009



Extending prediction lead-time with forecast climate



Forecasting Dengue Risk Levels for the World Cup

Framework applied to predict dengue risk for June 2014 during the
World Cup in Brazil, a mass gathering of more than 3 million
local/international spectators.



Evaluation of June 2014 Forecasts on National Basis

Observed Category
Low Medium High Total

Forecast Low 193 (34.9%) 49 (8.9%) 40 (7.2%) 282
Category Medium 50 (9.0%) 20 (3.6%) 26 (4.7%) 96

High 38 (6.9%) 47 (8.5%) 90 (16.3%) 175
Total 281 116 156 n=553

Hit: 54.8% Near hit: 31.1% Miss: 14.1%
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Modelling climate (or weather) impacts on health is tricky!

Even ignoring the systems implications:

Data is largely ‘available’ rather than from a ‘designed’ study

Relationships are inevitably very noisy

Data is usually mixture of spatial and temporal observations

Data is often multi-scale

Relationships may involve multi-level (hierarchical) structure

Relationships may exhibit threshold or extreme dependencies
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