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Sample size calculations are now mandatory for
many research protocols, but the ones useful in
common situations are not all easily accessible. This
paper outlines the ways ofcalculating sample sizes in
two group studies for binary, ordered categorical,
and continuous outcomes. Formulas and worked
examples are given. Maximum power is usually
achieved by having equal numbers in the two groups.
However, this is not always possible and calcu-
lations for unequal group sizes are given.

A sample size calculation is now almost mandatory in
research protocols and to justify the size of clinical
trials in papers.' Nevertheless, one of the most com-
mon faults in papers reporting clinical trials is in fact a
lack of justification of the sample size, and it is a major
concern that important therapeutic effects are being
missed because of inadequately sized studies.2 A recent
paper has concluded "the reporting of statistical power
and sample size needs to be improved."3 Recent
articles in the BMJ have described the basis of sample
size calculations,4 5 and explained the fundamental
concepts of statistical significance (oa), effect size (8),
and power (1-3). A nomogram for sample size calcu-
lations for continuous data is also available.6 However,
there have been some recent developments in the
theory of sample size calculations, which are likely to
prove useful, and the purpose of this paper is to make
available a collection of formulas and examples for a
variety of situations likely to be encountered in
practice. In particular, situations not dealt with in
previous articles are two group comparisons with
unequal sample sizes, and sample sizes for ordered
categorical outcomes (for example categories better,
same, or worse). The paper describes sample size
calculations, and provides tables, for studies compar-
ing two groups of individuals that have outcome
variables that are binary (yes/no), ordered categorical,
or continuous. A further paper will consider studies
when the data are paired. Further examples are given
by Machin and Campbell.7
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Parameter definition
Of all the parameters that have to be specified before

the sample size can be determined the most critical is
the effect size. Reducing the effect size by half will
quadruple the required sample size. The effect size can
be interpreted as a "clinically important difference,"
but this is often difficult to quantify. A valuable
attempt at classification was made by Burnand et al,
who reviewed three major medical journals and looked
for words such as "impressive difference," "important
difference," "dramatic increase" and then calculated a
standardised effect size.8 This provided a guide to the
size of effect regarded as important by other authors.
There are several ways of eliciting useful sample sizes:
a Bayesian perspective has been given recently,9 along
with an economic approach,'0 and one based on
patients' rather than clinicians' perceptions of
benefit."

In statistical significance tests one sets up a null
hypothesis and, given the observed difference of
interest, calculates the probability of observing the

difference (or a more extreme one) under the null
hypothesis. This yields the P value. If the P value is less
than some prespecified level then we reject the null
hypothesis. This level is known as the significance
level oa. If we reject the null hypothesis when it is true
we make a type I error, and we set oa, the significance
level, to control the probability of doing this. If the null
hypothesis is in fact false but we fail to reject it, we
make a type II error, and the probability of a type II
error is denoted as P. The probability of rejecting the
null hypothesis when it is false is termed the power and
is defined as 1-[.

Unequal numbers in each group
For a given total sample size the maximum power is

achieved by having equal numbers of subjects in the
two groups. Often, however, in observational studies
an equal number is not expected in each group since
the incidence ofa particular factor may be higher in one
group than in another. In clinical trials, also, the
numbers of subjects taking one treatment may have to
be limited, so to achieve the necessary power one has to
allocate more patients to the other treatment. In this
case the sample sizes should be adjusted by a factor
dependent on the allocation ratio,'2 given as equation 1
in the Appendix.

If one were to maintain the same sample size as
calculated for a 1:1 ratio but then allocated in the ratio
2:1 the loss in power would be quite small (around 5%).
However, if the allocation ratio is allowed to exceed 2:1
with the same total sample size the power falls very
quickly (a loss of around 25% in power for a ratio of
5:1) and consequently a considerably larger total
sample size is required to maintain a fixed power with
an imbalanced study than with a balanced one.

Continuous data
In a two group comparative study where the out-

come measure is a continuous variable which is
plausibly normally distributed, such as blood pressure,
a two sample t test would be the statistical test used in
the final analysis.
To calculate a sample size, in addition to the

parameters discussed above, an estimate of the popu-
lation standard deviation v must be given. The sample
size formula7 is given as equation 2 in the Appendix,
and table I gives the sample size required for different
values of the standardised difference d, defined as
d=8/ur, at various levels of power at the two sided 5%
significance level.

Alternatively, Lehir gives a quick formula for
calculating these sample sizes."3 For a two sided
significance level of5% and power of 80%, the number
required in each group is given approximately by
m= 16/d'. This formula overestimates the sample sizes
a little for small values of d; otherwise it gives close
approximations to the sample size.

WORKED EXAMPLE

In a recent paper, Godfrey et aP4 found that 46
people who had no whorls on their fingers had a mean
systolic blood pressure of 136 mm Hg compared with
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93 patients with at least one whorl for whom the mean
blood pressure was 144 mm Hg.
Suppose an experimenter wished to confirm these

findings but suspected that the mean difference would
be less than that observed, with 5 mm Hg being the
clinically minimum difference accepted. The overall
standard deviation of blood pressure in each group is
assumed to be 17 mm Hg, the same as that published.
We find d=5/17=0-294, which is about 0 3, and so
from table I the sample size required to detect this
difference with a two sided significance level of5% and
with 80% power would be 176 subjects in each group
and so 352 subjects in total. Alternatively, from Lehr's

TABLE I-Sample sizes required per group at the two sided 5%
signficance level for different values of d and power (d=expected
mean differenceIstandard deviation)

Power (1-p)

d 99 95 90 80 50

0 10 3676 2600 2103 1571 770
0-20 920 651 527 394 194
0 30 410 290 235 176 87
0 40 231 164 133 100 49
0-50 148 105 86 64 32
0-60 104 74 60 45 23
0-70 76 54 44 33 17
0-80 59 42 34 26 13
0 90 47 34 27 21 1 1
1-00 38 27 22 17 9
1 10 32 23 19 14 8
1-20 27 20 16 12 7
1-30 23 17 14 1 1 6
1-40 20 15 12 9 5
1-50 18 13 11 8 5

quick formula we get m= 16/0.2942=185 patients per
group. Suppose, like Godfrey et al, we would expect to
recruit two people with whorls for every one person
with no whorls. With r=2 from equation 1 we find that
m'=3x 176/4=132 and so rm'=264, giving a modified
total sample size of 396. The overall sample size is
larger if the groups were unequal because the design
has less power than a design ofthe same size with equal
numbers in the two groups.

Binary data
A binary outcome is a response which has just two

categories. These categories may be of the form yes/no
or presence/absence in relation to a given factor, for
example alive/dead. Often an experimenter may wish
to compare treatments by testing whether the differ-
ence in proportions responding on each treatment
could be due to chance. In this case the effect size can
be formulated as 8=PA-PB, where PA and PB are the
proportions expected in the two treatment groups. The
statistical test used to test for the association between
two binary variables is the Pearson X2 test.
To calculate the number of patients required in each

arm of a binary trial use equation 3 in the Appendix.
For proportions greater than about 0-1 this simplifies
to equation 4. Table II gives the sample sizes required
for various values of PA and PB for two sided signifi-

cance level ot and power 1-1. Note, however, that for PA
in the table only values up to 0 5 are given. This is
because having a success rate of65%, say, is identical to
a failure rate of 35% and so the sample sizes for
comparing PA to PB are the same as those for comparing
1-PA and 1-PB-
An approximate result similar to Lehr's formula"

for 80% power and two sided 5% significance level is
that m= l6p3(1-p)/(pA-pB)2, where P=(PA+PB)/2. Like
Lehr's equation given earlier, this overestimates the
sample size a little.

Observational surveys such as case control studies
are often summarised by an odds ratio or relative risk,
rather than a difference in proportions. If PA is the
proportion ofcases exposed to a risk factor and PB is the
proportion of controls exposed to the same risk factor,
then the odds ratio of being a case given the risk factor
is odds ratio=pA(l-pB)/{pB(l-pA)}. An approximate
sample size formula using the odds ratio (OR) is given
by equation 5 in the Appendix.

WORKED EXAMPLE

Tovey and Bonell stated that 52 (190/6) out of 281
men found condoms too tight."5 Of these 68% had
experienced their condom splitting compared with
only 26% of men whose condoms were not tight.
Suppose from anecdotal evidence a researcher sus-
pected that the prevalence of reported splitting was
nearer 50% in the group finding condoms too tight and
wished to conduct a study to show this prevalence still
to be significantly higher than in the other group.
The expectation is that the observed ratio of the

frequencies of "not tight" (A) to "tight" (B) would be
4:1. Here PA=0 5, PB=0-25 and r=4. From table II
the sample size required with equal allocation in each
group would be 58, and using equation 2 one derives a
modified sample size of just 37 subjects in the group
who found condoms too tight and 148 in the other
group, giving a total of 185. In the unlikely event of
equal group sizes a total of 116 subjects would be
required, yielding a saving of 69 subjects. Again, this
arises because the equal groups case is more efficient.
Note that Lehr's formula for equal sized groups gives
approximately 60 per group or a total of 120 subjects
required. Ifwe specified the effect size as an odds ratio,
then the postulated odds of splitting when the condom
is too tight are three times that when it is not. From
equation 5, we find in this case that for equal allocation
we require 55 subjects per group.

Ordered categorical data
A study may be undertaken where the outcome

measure of interest is an ordered scale, such as a Likert
scale (strongly disagree, disagree, agree and strongly
agree) or a rating scale (better, same, worse). The
statistical test used in this instance is the Mann-
Whitney U test, with allowance for ties.'6 The
calculation of sample sizes when the data are ordered
is not immediately straightforward. The problem
becomes considerably easier, however, if one considers

TABLE u-Sample sizes to detect a difference in two proportimons, PA andpp, at a 5% significance level with 80%power

PB

PA 0-05 0-10 0-15 0 20 0-25 0-30 0 35 0 40 0 45 0 50 0-55 0-60 0-65 0-70 0-75 0-80 0-85 0-90 0-95 1-00

0 00 152 74 48 35 27 22 18 15 13 11 10 8 7 6 6 5 4 4 3 2
0-05 435 141 76 49 36 27 22 18 15 12 1 1 9 8 7 6 5 4 4 3
0-10 686 199 100 62 43 32 25 20 16 14 11 10 8 7 6 5 4 4
0-15 906 250 121 73 49 36 27 22 17 14 12 10 8 7 6 5 4
0-20 1094 294 138 82 54 39 29 23 18 15 12 10 8 7 6 5
0-25 1251 329 152 89 58 41 31 24 19 15 12 10 8 7 6
0-30 1377 356 163 93 61 42 31 24 19 15 12 10 8 6
0 35 1471 376 170 96 62 43 31 24 18 14 11 9 7
0-40 1534 388 173 97 62 42 31 23 17 14 1 1 8
0 45 1565 392 173 96 61 41 29 22 16 12 10
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TABLE r-For ordered categorical data, values for 6 (zl, +z,-0Y/
log OR)' for various values of the odds ratio (OR) and power
(1-3) at two sided5% significance

Power (1-13)

Odds
ratio 99 95 90 80 50

0-75 1331 97 942 09 761 77 569 03 278 50
1-25 2213-86 1565-85 1266-13 945-78 562-89
1 50 67052 47425 38348 286-45 140-20
1-75 352-00 248-96 201-31 150-38 73-60
2 229-44 162-60 131-22 98 02 47-97
3 91-33 64 60 52-23 39-02 19-10
4 57-36 40-97 32-80 24-50 11-99
5 42-56 30-10 24-34 18-18 8-90
10 20-79 14-71 11-89 8-88 4-35

TABLE v-Correctionfactor to
be used with table III when the
number ofcategories is S5

No of Correction
categories factor

2 1-333
3 1-125
4 1-067
5 1-042

a number of pragmatic steps which will be described
later in this section.
As before, we need to specify an effect size, and here

it turns out to be easier to use the odds ratio. We must
also specify the proportion of subjects expected in each
category of the scale for one of the groups. Suppose we
have t categories, with the higher ordered categories
indicating worse prognosis, and the proportions
expected in group A are PA1l PA2--- PAt (where PAI+
pA2+ . +PAt= 1) with similar notation for group B.
Let cAl, cA2,... cAt, be the cumulative probabilities, so
CA1=PA1, CA2=PA1+pA2, etc. The odds ratio is the
chance of a subject being in a given category or lower
in one group compared with the other. For category 1
it is given by ORl={cAl/(l-cAl)}/{cBl/(l-CB1)} and
similarly OR2 for category 2, up to category t-1. As will
be shown later, the odds ratio may not necessarily be
too difficult to estimate, as the proportions expected
for one group may already be known through a pilot
study or from previous research. The experimenter
may postulate that on the new treatment a patient is
only half as likely to have a score above a given level
than on the old treatment and so the odds ratio would
be estimated as 0 5. Alternatively, an experimenter
may know the expected proportions in each category
for one group and speculate that, if a proportion, p,
were in a particular category or better, then a clinically
significant difference would be for the corresponding
proportion to be about 20% higher in the other group.
From this information an odds ratio can be calculated
and hence the other expected proportions and the
sample size.
Equation 6 in the Appendix gives the formula for

sample size calculations for ordered categorical data. It
assumes that the odds ratio is constant for each pair of
adjacent categories, that is OR1=OR2=... ORt-14 and
this assumption means that the Mann-WhitneyU test is
the best test to use. It also means that one can estimate
the odds ratio from any cumulative proportion from
each group. To aid the calculations table Ill gives
values of the numerator from equation 6 for different
values ofodds ratio and power.

If the number of categories is large it is difficult to
postulate the proportion of people who would fall in a
given category. However, Whitehead has shown that
there is little increase in power (and hence saving in

TABLE v-Playftdness in children

Numbers* Proportions Cumulative proportions

A B A B A B Odds
Category PAi PBi CA CBi ratios

Normal 3 6 0-14 0-27 0 14 0-27 0-440
Slightly listless 5 9 0-24 0 41 0 38 0-68 0-287
Moderately listless 5 5 0 24 0-23 0-62 0-91 0-1625
Very listless 8 2 0-38 0-09 1-00 1-00 -

Total 21 22 1-00 1-00

*A=contro1, B=paracetamol.

number of subjects recruited) to be gained by increas-
ing the number ofgroups beyond five.'7

WORKED EXAMPLE

In a randomised controlled trial of paracetamol for
the treatment of feverish children, Kinmonth et al
categorised playfulness as normal or slightly, moder-
ately, or very listless.'5 The results for the 43 replies are
given in table V, together with the proportions and the
cumulative proportions. The first odds ratio in the
table is calculated from {0 14/(1-0 14)/(0 27/(1-0 27))}
=0 44, and in a similar way we get 0-287 and 0-1625 for
the other two pairs. The average is about 0-3.
Suppose a new study was planned in which we

wished to replicate these results. The distribution of
children in the control group (group A) was expected to
be about the same as was found previously and shall be
used in the calculation of the sample sizes. If an odds
ratio of 0 33 in favour of paracetamol (or equivalently
an odds ratio of about 3 against the control) was
expected, then from the definition of the odds ratio
we can calculate the expected cumulative proportions
in the treatment group (group B) from the formula
CBi=CAj/(Cai+OR (1-CaA)) Thus the proportion
expected in the first category of group B is 0d14/(0-14+
0 33 (1-0-14))=0-33 and so on. The cumulative pro-
portions expected in group B are 0 33, 0-65, 0-83,
and 100, and so the actual proportions expected
are 0 33, 0-32=(0 65-0-33), 0-18=(0 83-0 65), and
0-17=(1 00-0 83). The average proportions p are given
by 0-235, 0-280, 0-210, and 0-275. Thus (1-p3)=
0 935. For 80% power and 5% significance level, from
table III, the numerator is 39-02, and so the sample size
is 39-02/0-935=41-7, or about 42 patients per group.
The formula is quite complicated and we have a

number of suggestions to simplify matters. If the mean
proportions (pi's) in each category are roughly equal
then the denominator in equation 6 is constant for a
given number of categories, and if the number of
categories exceeds five it is approximately unity. Thus
for 80% power and a two sided significance of 5%, an
estimate of the sample size can be obtained from m=
47/(log OR).2 If the number of categories is less than or
equal to five then multiply this sample size estimate by
a correction factor given in table IV. From this table, in
the situation of approximately equal proportions, it is
evident that having only two categories in your data for
analysis may require you to recruit a third more
patients than if the data were kept continuous. For our
example, the correction factor from table IV is 1 067
and so n= 1-067x47/(log 0 33)2=40.8, or 41 patients.
Another simplification occurs if the proportion of

subjects in one category for both groups is expected to
be large. We can combine categories until there are
only two left and use the formula and table given
previously for binary data. Combining categories
reduces the amount of information available, so one
would expect the required sample size to increase.

In the worked example if we had pooled those
scoring 1-2 and those scoring 3-4, we would compare
proportion PA=0-38 to PB=0-65. Formula 4 shows
that this study would require 49-9, or about 50 patients
per group. Thus, use of all four categories, rather than
simply two, yields a reduction of 16%/o in the study size,
and this might outweigh the benefit of an easier sample
size calculation.

Comment
From the equations in the Appendix it is clear that

the sample size, significance level, power, and effect
size are all interlinked. Given any three parameters, in
principle the equations can be solved for the fourth.
Thus, if the sample size were limited by resources, and
the significance level fixed in advance, one could
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arbitrarily increase the power of the study by pos-
tulating larger effect sizes. In practice, however, the
estimate of the effect of an intervention often proves
too optimistic, resulting in many trials which are too
small. The need for sample size calculations provides
an excellent opportunity to involve a statistician early
in the planning of a study and not just when the
analysis is required. This paper has covered only a
limited range of designs, and a statistician could advise
on other designs. These include comparison of more
than two groups,'9 comparison of survival curves,7202'
and studies to demonstrate bioequivalence.22 Com-
puter software is available for some of the sample size
calculations discussed here,2326 and other reviews have
been given.27 28
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Appendix
In each of the following m is the number of subjects

required in each group for a two sided significance a
and power 1-P, and zl-&2 and zl-, are the appropriate
values from the standard Normal distribution for the
l00(l-a/2) and 100(1-,B) percentiles respectively. Some
useful values are the following: for two sided a=0 05,
zl<,2=1 96; for two sided a=0 01, zl ,,/2=2-58; for
,B=0-2, zl =0 84; and for,0 1,zl-=1-28.

UNEQUALALLOCATION
Given m, calculated assuming equal sized groups, let

m' be the sample size in the first group and rm' the
sample size in the second group. Then m' is given by

m=r+l1M
2r

where r is the allocation ratio.

CONTINUOUS DATA
To detect a difference 8 we require7:

2 (Zl/2+Z1_0)2 Z21-o'2
2

+ ~~(2)
d2 4

where d=8/r and or is the standard deviation of the
measurements. The last term in the equation is a
correction factor to enable Normal tables rather than t
tables to be used and can be ignored except for very
small sample sizes. For a 5% two sided significance
level it increases the sample size by 1. Table I gives the
sample size required for different values ofd and power
from 50% to 99%.

BINARY OUTCOME
Suppose the expected proportions in groups A and B

were PA and PB-

[ZI/21@2]{p (1-]P)}+Z1_ PA (1-PA)+PB (1-PB)I] (3
B2

where 8=PA-PB, and p=(PA+PB)I2.

An approximate, simpler formula, is:

(z1,,2+zI,)2 [PA (1-PA)+PB (1-PB)]m-8 (4)

which is sufficiently accurate except when PA) PB are
small (say <005). Table II gives the sample size
required per group at 5% significance level and 80%
power for values of PA between 0 and 0-45 and PB
between 0-05 and I00.

Ifthe effect size is specified as an odds ratio

OR=PA(1PB)
PB (-PA)

then an approximate formula is given by

2 (zl-,,,2+zl 0)2
log (OR)2 jp (1-p)

Ordered categorical data

6 (zj,2+z1_p)2/(log OR)2
M=

-3 ~~~~~~(6)
[1-± pi]

where OR is the odds ratio of a patient being in
category i or less for one treatment compared to the
other, k is the number of categories and pi is the mean
proportion expected in category i-that is, pi=(pAi+
PBi)/2 where pA, and PBi are the proportions expected in
category i for the two groups A and B respectively.
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