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Abstract—In the model presented here, we evaluate expectation
values over the entire network to obtain a multimoment descrip-
tion of the required quantities of key network and network element
(NE) resources and commensurate network costs. This approach
naturally and analytically connects the global (network) and local
(NE) views of the communication system and thereby the model
can be used as a tool to gain insight and very quickly provide
approximate results for the preliminary evaluation and design
of dynamic networks. Further, the global expectation model can
serve as a valuable guide in the areas of NE feature requirements,
costs, sensitivity analyses, scaling performance, comparisons,
product definition and application domains, and product and
technology roadmapping. We illustrate the application of the
techniques to backbone, fiber-optic transport networks.

Index Terms—Communication system economics, communica-
tion systems, modeling, networks, optical communication.

I. INTRODUCTION

THE TECHNOLOGY and architecture for circuit and
packet communication networks continue to evolve and

converge [1]. Fundamental to the comparison and selection of
network architectures and their technological implementations
is the total cost of ownership of the network. This cost in-
cludes the expenses for capital equipment (CAPEX), network
operation (OPEX), and network management (MANEX).
While operational and management expenses represent the
largest share of the total cost of ownership, capital costs
are a considerable and highly visible portion of the initial
investment. Equipment cost is therefore a very important factor
in the choice of architecture and technology. In this paper, we
focus our consideration on the cost of the physical gear that
constitutes the network and describe and illustrate a model for
very quickly gauging network equipment needs and costs.

In the model, network global expectation values are used as a
multimoment description of the required quantities of key net-
work and network element (NE) resources and commensurate
network costs. This approach naturally, analytically, and accu-
rately connects the global (network) and local (NE) views of
the communication system. As a result, the model can be used
as a tool to gain insight and quickly provide approximate results
for preliminary network evaluation and design, element feature
requirements, costs, sensitivity analyses, scaling performance,
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comparisons, product definition and application domains, and
roadmapping. Previously, we have summarized some useful as-
pects and preliminary results of the model when applied to back-
bone fiber-optic transport networks [2]. Here, we provide a more
complete, general formulation and description, as well as the in-
clusion of total network costs, more detailed NE cost structures,
nonregular networks, and the variances of key variables.

As will become evident, the framework of the model is readily
adaptable to various levels of detail and approximation and to a
wide range of networks. Our goal regarding the utility and char-
acter of the model has been to permit results to be computed very
fast with useful accuracy for a very wide range of network sizes
and thereby to provide valuable understanding and guidance. To
accomplish this, our approach has been to formulate analytic or
closed-form relationships among the important input and output
network variables via formal derivation, considered approxima-
tion, and semi-empirical observation. Our intent has been to
complement, not supplant, the more detailed and more accurate,
but computationally intensive and very time-consuming, net-
work planning and optimization tools based on numerical sim-
ulation [3]–[12]. Such detailed analyses remain critical to the
thorough engineering, costing, pricing, and evaluation of spe-
cific networks and network products.

The present model can serve as a precursory tool with which
to survey the landscape of options, as a means to interpolate and
extrapolate the more micro-scale analyses, to investigate scaling
performance, and to cross-check complex numerical simulation
tools. The analytic nature of the network global expectation
model also enables results for arbitrary-size networks to be com-
puted extremely quickly using very modest computational re-
sources and is therefore useful for network analyses in dynamic
operating and technological environments, such as encountered
in evolving provisionable and survivable backbone networks.
We suggest that the uncomplicated and transparent accounting
of NEs, systems, and costs inherent in the network global ex-
pectation model can constitute a framework for the cooperative
exchange of critical planning information on evolving network
needs across the many sectors of the communication business.
In analogy to the silicon electronics industry, coordination of
the materials, components, subsystems, systems, networks, op-
erations, applications, user, and investor communities through
more public roadmapping may allow rapid advance in capability
and service with higher efficiency and less market volatility than
would otherwise be the case.

Our work is divided into several major parts. In the present
exposition, we develop the general formalism of the global
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network expectation model and illustrate its application by
considering single-tier backbone networks with location-
independent traffic demands. In the future, we will consider
the refinement and extension of the approach to a wider
set of topologies, architectures, and traffic profiles. While
the methodology we present is very general, for specificity
throughout this paper, we describe its application in the context
of mesh networks.

II. NETWORK GLOBAL EXPECTATION MODEL

A. Costs and Expectation Values

As the cost of the network for a specified set of features is
considered the metric for comparison of architectures and tech-
nologies, we build the model and begin its description from this
perspective. Within the limits of consideration set forth previ-
ously, the total network cost is exactly the sum of the costs of
the constituent parts, or elements, of the network. This funda-
mental accounting of costs may be written mathematically as

(1)

where is the total network cost and is the unit cost of
the th component. (Here and throughout this paper, the sym-
bolic notation indicates the summation over the various con-
tributing terms, in this case the many individual components.)

It is usual that there are many components of a given type
used throughout the network, and these identical parts share a
common cost. In this case, using the associative, commutative,
and distributive properties of the field of real numbers, (1) may
be rewritten as

(2)

where again is the total network cost, is the number of
NEs of type , and is the corresponding unit cost of NE of
type .

Without loss of generality, we may assume that the technology
and corresponding unit costs , of the NEs used to construct
the network are known, i.e., given a priori. The challenge of
network design is to determine the number and placement
of each of the NEs of the given types to minimize the total
network cost under the constraint to service a specified traffic
demand among the network terminations located at specific
geographic locations. The strategy of the present model is to
carefully estimate the products of the NE counts and respective
costs while satisfying the external constraints, and thereby to
estimate the total network cost using (2), but without explicitly
establishing knowledge of the placement of every individual
component.

The sum in (2) does not distinguish among the various cat-
egories of NEs but considers each contributing type as atomic,
i.e., indivisible. Without changing the value of the sum, we may
collect terms that are logically related to one another into a cost
subtotal for larger categories of elements. Denoting a general
set of categories as , we may then rewrite (2) as

(3)

Fig. 1. Mesh network architecture. The average degree of node is ��� � � for
this network topology of � � � nodes and � � � links.

One useful subdivision for separating costs is based on col-
lecting the costs for signal transmission (TRANS) and signal
bandwidth management (BWM) into separate terms. In this
case, (3) may be arranged into the form

(4)

The transmission term might include, for example, objects such
as optical transceivers (OTs), optical multiplexers (OMUX),
and optical amplifiers (OA). The bandwidth management term
might include objects such as add/drop multiplexers (ADMs),
Internet protocol routers (IPRs), multiservice platforms (MSP),
electronic cross connects (EXCs), optical add/drop multi-
plexers (OADMs), and optical cross connects (OXCs). Of
course, which objects are to be associated with particular
categories is a matter of architectural choice.

The abstract representation of the mesh networks we con-
sider is depicted in Fig. 1. The network consists of nodes, where
traffic may enter and leave the network; terminals connected to
nodes, which are the sources and sinks of the traffic; and links
(or edges), which represent the physical segments over which
the traffic may be carried, or transported, between nodes. The
total number of nodes and links of the network are denoted by

and , respectively. For concreteness in Fig. 2, we illustrate
an example of the mesh networks to which the model may be
applied.

As suggested by the view of the networks illustrated in Figs. 1
and 2, the total network cost may also be represented by
terms that correspond to the links and nodes of the network,
viz.

(5)

or

(6)

where is the cost of the th link, and is the cost of the th
node. If we multiply the first term of (5) by and the second
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Fig. 2. Prototypical backbone network. Illustrated is a hypothetical core
fiber transport network indicative of the larger inter-exchange carriers of the
continental United States. This example network consists of 100 nodes and 171
links [6]. The average degree of nodes is ��� � ���, and the average number
of minimum hops between node pairs is ��� � ���. (Background relief map
courtesy of the U.S. Department of the Interior.)

term by and note that the expectation value , or average,
of a set of values is by definition

(7)

then we may write (5) as

(8)

Thus, as expressed in (8), the exact cost of the network may be
considered as the sum of the expectation value of the cost of a
link times the number of links and the expectation value of the
cost of a node times the number of nodes. The global expectation
values and are themselves explicitly

(9a)

and

(9b)

Note, throughout this paper, we will continue to use the bracket
notation to denote the expectation value of a variable—in
this case, the mean value of . In instances when the corre-
sponding set of an expectation value may be ambiguous,
we may follow the right bracket of the expectation value by a
subscript to provide clarification. For example, in (9a) in-
dicates an expectation value over the set of links , and in (9b)

indicates an expectation value over the set of nodes .
In addition, regarding expectation values, we point out that here
the elements of the set define a distribution, rather than
represent samples of a variable associated with either a discrete
or continuous probability distribution.

At this point, we briefly comment on the nature of the approx-
imations of the network global expectation model. The relation-
ship of network cost to link, node, and terminal costs embodied
in (8) and (9) may appear intuitively obvious and, as such, could
have served as the starting point of the discussion. However, we

have chosen instead to begin using (1) to firmly establish that
the use of expectation values, or averages, to determine the total
network cost is not an approximation but is exact. The approxi-
mations of the network global expectation model reside instead
in the estimation of the expectation values of the quantities of
NEs, . Consequently, the predictive capability of the model
will depend upon the accuracy of the estimations of these mean
values and the applicability of other related assumptions, such
as the demand model. As we shall see, for many variables the
expectation values may be computed exactly from the input vari-
ables for a given demand model, while for other variables, it is
necessary to introduce semi-empirical approximations. In the
following sections of this paper we turn next, therefore, to the
discussion of a basic model of the key network and NE vari-
ables, and costs. Through this basic model, we convey the im-
mediate utility and power of the methodology. In future works,
we introduce and illustrate additional refinements of the models
of the expectation values to extend further its applicability and
accuracy.

B. Network and Primary Model Variables

Referring to Figs. 1 and 2, we define a communication net-
work as the combination of a network graph , consisting of
a set of nodes and set of connecting two-way links,
or edges , and a network traffic. The network graph may be
represented by the symmetric matrix [ ] with elements [13].
The pairwise two-way communication traffic between terminals
located at different nodes may be represented by the symmetric
demand matrix [ ] with elements and the total ingress/egress
traffic .

The matrix elements are either 0 or 1 in value and specify
whether a pair of nodes is connected via a physical link. The
summation of all the values of the matrix elements of [ ] yields
the number of one-way links , which is twice the number
of two-way links . The demand matrix elements are
either 0 or a positive integer and denote the magnitude of the
terminal-to-terminal traffic in quantized units of some basic
measure of communication bandwidth, such as a standardized
channel bit rate . The summation of all the values of the
matrix elements of [ ] yields the number of one-way demands

, which is twice the number of two-way demands .
Generally, the diagonal elements of [ ] and [ ] are zero. Note,
sometimes the demands are also referred to as logical links to
highlight the relationship to and distinction from the physical
links (edges).

Often the channel bit rate is not explicitly given for the net-
work of interest. Instead, the total ingress/egress (i.e., total ter-
minal input/out (I/O)) traffic and number of demands are
specified. In that case, a value of the traffic demand bit rate,
denoted , must be deduced, and from this an appropriate value
of may be chosen. For example, if the total network traffic is
1 Tb/s, and this traffic is the result of 600 unit demands, then the
unit demand rate is precisely 1 Tb/s 600 1.667 Gb/s.
This demand rate is less than and about equal to the synchronous
optical network (SONET) STS-48 payload rate of 2.378 Gb/s.
Therefore, in this case, an appropriate value of the unit channel
rate might be chosen to be the SONET STS-48 signal rate of

2.488 Mb/s. In this paper, we consider the total two-way
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Fig. 3. Cross-connect views and one-way and two-way demands. (a) The cross-connect and line systems are arranged to illustrate five two-way ports (north,
south, east, west, and add/drop) appearing on a cross connect. (b) The same cross-connect and line systems are re-arranged to illustrate five one-way ports (five
inputs and five outputs). Note that the numbers of one-way and two-way ports are identical, i.e., � � � . In addition, the channel bit rate �, or alternatively the
traffic demand bit- rate � , describes both the one-way and two-way traffic between terminals, which are indicated here as add/drop.

traffic , which is one-half the total one-way traffic , to be
an independent variable and for to be a dependent variable.
Having chosen as an independent variable, we now have a
complete set of model inputs, namely

Primary Model Input Variables: ( ), , and to-
gether with a demand model.

As we shall see, all other variables of interest may be determined
from these.

In counting quantities such as links, demands, and traffic,
it is necessary to distinguish between one-way (simplex) and
two-way (duplex) variables. As we have indicated previously,
the number of two-way links, demands, and traffic is one-half
the corresponding number of one-way values. For future refer-
ence, we formally summarize these relationships as

Links (10a)

Total Traffic (10b)

Total Demands (10c)

Having stated this, we also note that it is usual to define a
two-way channel of bandwidth as the combination of two
one-way channels, XY and YX, each of bandwidth , i.e.,
the single value describes both the one-way and two-way
channels, which is evident in the example depicted in Fig. 3.
In addition, considering the trivial case of two nodes
and one two-way link , the reader will appreciate that the
total one-way traffic is , and the total two-way traffic
is . Of course, so long as one-way or two-way
variables are used consistently, or the proper conversion is
made, the results and conclusions are the same. For example,

.
The output variables that are determined by the network

global expectation model given the small number of inputs
are many. Among them are the traffic demand bit rate and
expectation values and variances for the degree of node, number
of hops, wavelengths on a link, traffic on a link, restoration
capacity, number of ports on a cross connect, total capacity of
a cross connect, and percentage add/drop at a node. With these

expectation values and a cost model for the individual elements,
we can also compute the total network cost. In the next section,
we derive expressions for important output variables in a logical
sequence using the expectation value formalism. In almost
all cases, the expressions we derive are valid independent of
the demand model. For those cases where it is necessary to
assume a demand model to derive or illustrate an analytic form
of the dependencies, in this paper, we consider the case of
location-independent demand of which uniform demand and
random demand are particular instances. In the future, we plan
to extend the analytic model by considering a broader range of
topologies, architectures, and demand scenarios.

III. SINGLE-TIER NETWORKS WITH

LOCATION-INDEPENDENT DEMANDS

A. Expectation Values of NE Quantities

To introduce the global expectation model, we first consider
a single-tier network consisting of a set of peer nodes and uni-
form demand which implies a complete set (fully connected) of
equal numbers of demands among all the terminals at the nodes
of the network. While this may seem restrictive, in fact the net-
work global expectation model can be applied to a wide range
of network topologies, architectures, and demand profiles. This
will become evident as we formulate the expectation values and
derive general relationships that are independent of the details
of the topology, architecture, and demand.

Most core networks carry symmetric traffic between nodes,
and so working with two-way variables is the norm. However,
in some instances, visualizing and counting one-way variables
may be more intuitive, such as tracking a one-way demand from
source to destination. Of course following two-way demands
from termination to termination is equivalent. In the following
exposition, we will explicitly develop expressions using both
one-way and two-way input variables for completeness and ut-
most clarity. The reader will observe that in very many cases,
the definition of output variables is such that the values do not
change when switching between the one-way and two-way per-
spectives, such as we have seen in Section II-B for the traffic
channel bit rate .



KOROTKY: NETWORK GLOBAL EXPECTATION MODEL 707

As an illustrative aide for the reader, throughout this paper,
we will apply the model to estimate key characteristics of two
example networks. One is the network depicted in Fig. 2, which
consists of 100 nodes and 171 links, uniform demand, and total
two-way network traffic of 5 Tb/s. The second example net-
work (not shown) has a topology similar to the first—being a
mesh network derived from the first example and covering the
same geographic area with nearly identical ratio of the number
of links to the number of nodes—and again supports uniform
demand. This second example differs from the first in that it
consists of a smaller number of nodes and links and serves a
smaller total traffic. Specifically, it consists of 25 nodes and 42
links, uniform demand, and total two-way traffic of 1 Tb/s.

B. Number of Demands

The number of nodes , the total two-way traffic , and the
number of two-way links are inputs of the model. The traffic
demand is also an input of the model. The total number of de-
mands is explicitly and, of course, straightforwardly related to
the numbers of demands terminating at the individual nodes. We
may relate the one-way demands originating at node to the el-
ements of the demand matrix [ ], viz. . Summing
the origininating one-way demands, we may then relate the total
one-way and total two-way demands to the mean number of de-
mands originating at a node as

(11a)

and

(11b)

These expressions are independent of the details of the demand
model. The uniform demand model specifies that there is a
one-way demand from every terminal to every other terminal,
or a two-way demand between every terminal–terminal pair of
the nodes. Thus, for uniform demand

(11c)

and

(11d)

(11e)

The number of two-way demands (logical links) for our example
network of nodes and physical links is

. The number of two-way demands for our second example
network of nodes and links is .

C. Traffic Demand Bit-Rate

The value of the traffic demand bit rate can be computed
exactly as the ratio of the total ingress/egress traffic and total
number of two-way network demands terminating at all
nodes. We have

(12a)

Fig. 4. Traffic demand bit rate. The traffic demand bit rate ����� � for
uniform demand is graphed as a function of the number of nodes � and total
two-way traffic � using a contour plot. Contours of constant � are labeled in
units of gigabits per second.

We emphasize that the total traffic and total number of de-
mands define the traffic demand bit rate , as indicated by the
relationship expressed in (12a), which is independent of the de-
mand model. Said differently, as the total traffic and the number
of demands define , the value of is uniquely specified, and as
such, its variance is exactly zero. If we specify a demand model,
then the particular value of for that model may be determined
using (12a). In the case of uniform demand, substituting (11e)
in (12a) yields

(12b)

The traffic demand bit rate for uniform demand is plotted as a
function of the number of nodes and total network traffic
in Fig. 4.

The traffic demand bit rate for our example network of
nodes, links, and total traffic of 5 Tb/s is
1.01 Gb/s. This may be compared with 3.3 Gb/s for

our example network of nodes, links, and total
traffic of 1 Tb/s. The channel bit rate is smaller for the
larger network because the number of demands for the larger
network is significantly greater than for the smaller network.

D. Degree of Node

1) Mean Value: The average degree of a node , i.e.,
, is calculated straightforwardly by summing the number

of one-way (directed) links and by dividing by the number of
nodes. Referring to the matrix representation [ ] of the network
graph, we have

(13a)

and so

(13b)

This compact expression for is exact and independent of the
demand model.
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2) Variance and Standard Deviation: The variance
and standard deviation of the set of values for the network
variable are defined by [14], [15]

(13c)

which may be rewritten as

(13d)

Again, we note that the set is not a sampled data set but
defines the distribution. We also alert the reader that the stan-
dard deviation of a network variable is not an indication of the
accuracy or error of the model, but rather it is a measure of the
variation of the number of NEs or subsystems from locale to lo-
cale across the network. Note too that, in general, the mean and
variance are independent variables. Thus, for example, the total
cost for bandwidth management may be accurately predicted
even while some nodes are smaller and cost less, and others are
larger and cost more.

The variance of the degrees of nodes is by definition

(13e)

and therefore, like and , is a function only of
the network graph . Note, however, unlike , there is no
closed-form expression for as a function only of
and . Rather, the variance of the degrees of nodes implicitly
depends upon the details of the network connectivity and must
be computed from a representation of the graph, such as [ ]
or an equivalent link list. If the network graph, or equivalently
the link list, is provided then functions of the degrees of nodes,
such as the variance, may be computed exactly.

Note, as and are directly proportional, and the variance
of is more closely related to [ ], in some situations, it may be
useful to consider as the independent input variable and
as the dependent output variable.

For our example network of nodes and
links, the mean degree of node is . The standard de-
viation of the nodal degree obtained from the network graph
(Fig. 2) is . By design, the mean degree of node and
standard deviation of the nodal degree for the second example
network of nodes and links are also
and .

E. Number of Hops

1) Mean Value: The number of hops between a pair of ter-
minals is defined as the minimum number of links traversed by
a demand between the terminating node pair. Algorithms for
determining the minimum number of hops between node
pairs (i,j) from the matrix representing the network graph [ ]
are well known, and so [ ] and may be readily computed
given a demand model [13]. The expectation value of the min-
imum number of hops is over the set of demands, i.e., , and
formally we have

(14a)

If the network graph and demands are provided, then we may
proceed to compute exactly. However, we may also approx-

imate for location-independent (uniform or random) de-
mands with knowledge only of the number of nodes and number
of links, as discussed subsequently.

The dependency of the average number of hops on the number
of nodes and number of links may be formulated by con-
sidering the schematic of the network graph. If we visualize the
outer boundary of the nodes of a planar network arranged
roughly as a square with nodes on each of the two orthog-
onal sides, we appreciate that the characteristic distance scale
of the network measured in units of hops scales as for uni-
form demand. We also realize that the mean number of hops
decreases as the number of links increases for fixed . An
approximate analytic relationship describing the dependency of
the mean number of hops on the number of nodes and the
mean degree of the nodes may be derived by considering a
single node at the center of a regular mesh network of constant
degree [2]. By dividing the network into sectors cen-
tered on the selected node and computing the mean number of
hops from the selected node to the nodes within
the sector using continuous integration to replace the discrete
summation, we find that the mean number of hops is approxi-
mately . This expression slightly
under-predicts the correct result in the special case where each
node is connected directly to every other node via a dedicated
physical link, i.e., and . Brute force evalu-
ation of the mean number of hops for regular networks of con-
stant degree for and except for the nodes at the
perimeter yields , which slightly over-pre-
dicts the mean number of hops for the special case of
and .

In the spirit of providing accurate compact analytic expres-
sions for all variables for a wide range of networks, we have
analyzed the average number of hops for several prototypical
networks that were designed to be survivable under all possible
single link failures. (Note, the failure of a single link implies the
simultaneous failure of all demands appearing on the specified
edge, which may be a very large number of interterminal de-
mands). This feature of network survivability translates into the
requirement that the degrees of nodes for all nodes be greater
than or equal to two, i.e., . The exact results for the mean
number of hops were fitted using the method of least squares de-
viation to determine the single coefficient of proportionality that
best describes the data for all the networks considered. In total,
data for 14 mesh networks with numbers of nodes spanning the
range and average degree of node spanning the
range were included [2], [7], [10]. We find that
the expectation value of the number of hops for these networks
with uniform demand may be expressed semi-empirically by the
relation

(14b)

with a standard deviation of approximately 10%, and more
accurately by the semi-empirical relation

(14c)

with a standard deviation of approximately 5%.
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We remind the reader that these approximate formulas may
be applied to the case of uniform or random demand, and for
fixed network topology clearly we expect the average number
of hops to decrease for distance-dependent demand models that
weigh shorter distance demands more heavily than longer dis-
tance demands. Note also that for nominally linear networks,
such as a ring , the number of hops scales as N.

The estimate of the mean number of hops for our example
network of nodes and links using (14c)
is , which may be compared with the actual mean
of . For the example network consisting of
nodes and links, the mean number of hops using (14c)
is approximately .

2) Variance and Standard Deviation: The variance of the
number of hops may be computed from [ ] using (13); however,
we have not found a need to compute explicitly for the
analyses that follow. We note that the range of hops extends
from 1 to some maximum number , which is often referred
to as the diameter of the network.

F. Demands on Link

1) Mean Value: It is evident that as a demand is routed
across the network between terminating nodes ( ) that the de-
mand occupies a unit of transmission capacity on each of the
links connecting the nodes. The minimum number of links oc-
cupied by a demand is, of course, the minimum number of hops

from node to node . Consequently, the average number of
demands carried on a link in the absence of extra capacity for
restoration is

(15a)
which may rewritten in the convenient form

(15b)

using (11b) and (13b). This important new result is exact and
valid independent of the demand model; however, the value of

is implicitly dependent upon the demand model, as dis-
cussed previously. In the cases of uniform or random demand, if
an approximation for such as (14b) or (14c) is used to com-
pute , then of course the result is also approximate, and
the relative error of determines the relative error of .

For uniform demand, we may substitute for using (11c)
in (15b) to obtain

(15c)

Using (15c), the mean number of channels carried on a link for
the first example network of nodes and links
( , and ) is estimated to be .
Similarly, the mean number of channels on a link for the second
example network of nodes and links (

, and ) is estimated to be .
2) Variance and Standard Deviation: As suggested by the

dependencies on , , and expressed in (15b), variations
in the number of channels carried on the individual links of the
network may arise from differences in the number of demands

terminating at the nodes connected to the links, the degrees
of the nodes connected to the link, and also the routing con-
straints and algorithms. Here, we consider the case of uniform
demand and first consider the fluctuations that may arise when
the demands are routed across the network under the constraint
of minimum hop routing. We observe that, in general, for any
pair of terminals, there will be one or more routes of minimum
number of hops between the nodes. Consequently, the variation
in the number of channels carried on a link will depend upon the
selection criteria for choosing from among the set of minimum
hop routes, which we refer to as hop-degenerate routes. If we
assume that the path is selected at random from the hop-degen-
erate routes and the probabilities of selecting a link from among
the hop-degenerate routes are equal, then we may estimate a ref-
erence variance using statistical methods. In particular, for the
scenario we have just described, the distribution of the demands
among the minimum hop routes may be described by the bino-
mial distribution [16]. We then derive an approximate reference
expression for the variance of considering random routing
over paths of equal numbers of hops.

Referring to (15a)–(15c) and using (13b), we may write the
mean value for the number of channels on a link for uniform
two-way demand explicitly as

(15d)

For a given node pair (i,j), we now consider all the paths of
minimum hops between them, and let denote the total
number of distinct links among the set of hop-degenerate routes.
We label these distinct links using the subscript and let
denote the probability that a link is selected. By construction,
the set of probabilities satisfies

(15e)

and consequently, . As an example, consider an
illustrative case when there are three link-disjoint routes
of four (minimum) hops between a pair of nodes. In
this case, . As the paths are assumed
to be disjoint, we may use (15e) to solve for with the result

for each link.
Substituting (15e) into (15d), we then may write

(15f)

Using the properties of the binomial distribution, the corre-
sponding variance is

(15g)

which may be rewritten as

(15h)

using (15f) and (15e).
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To evaluate the sums, we next group the sum over the
nodes into sets of constant numbers of hops . Let there be
nodes of hops, and label each node by the index . For each
node, the number of distinct links among the possible routes of

hops is denoted . If is the largest value of the set of
minimum number of hops, then (15h) for the variance may be
written as

(15i)

The expression (15h) is exact under the assumption of uniform
demand and random routing.

To carry this result further, we next derive an approximation
for a planar network of average degree . In this case, the
maximum number of hops satisfies

(15j)

and the value of is related to by . We focus
on a single node within the network. The nodes that may be
reached in minimum hops can be identified, and they are ap-
proximately in number. We next consider the options for
routing from the node under consideration to each of the other
nodes minimum hops away. There is a least one possible route,
and we denote the number of hop-degenerate routes as . Next,
we identify and count the number of distinct links among
these hop-degenerate routes. We observe that for the planar
network, the number of distinct links is less than , the
latter being the number in the situation when the hop-degenerate
routes are link-disjoint paths. Consequently, the probability any
one link is selected when choosing a path randomly from among
the hop-degenerate routes of the network is greater than 1/ , i.e.,

(15k)

If we assume that all links among the hop-degenerate paths
are selected with equal probability, which is not necessarily the
case, this expression for the probability a link is selected permits
us to formally bound the variance of the number of channels.
Substituting (15k) in (15i), carrying out the sums, and using
(15j) yields

(15l)

and

(15m)

The form of the variance in (15l) is that of a binomial distri-
bution with probability . Thus, we formally approximate
the actual distribution by the corresponding binomial distribu-
tion , which is given by

(15n)

with

(15o)

(15p)

and

(15q)

The binomial tail probability may be determined
using the incomplete beta function.

Using (15l), the standard deviation of the number of chan-
nels on a link for our example network of nodes
and links ( and ) is estimated
to be . Recall the mean number of channels on a
link was estimated to be for this network. Again
using (15l), the standard deviation of the number of channels on
a link for our second example network of nodes and

links ( and ) is estimated to be
. The mean number of channels on a link was es-

timated to be in this case.
In the above consideration of the variation of , we have

recognized that usually when traffic is routed and the network
is optimized, paths are selected based on criteria such as the
minimum number of hops, the shortest distance, or more gener-
ally the minimum cost. However, routing solutions that may be
proven to be optimal are possible only for relatively small net-
works, and therefore, additional heuristic constraints are often
imposed as strategies to ensure low cost. To minimize the cost
of survivable networks, for example, algorithms to balance the
traffic among the links are often introduced [7], [8], [10]. By
its definition, load balancing deliberately seeks to dampen the
variation of the number of channels carried on a link. Clearly,
if load balancing is effective then the selection of paths from
among the hop-degenerate routes is not random, and
should be reduced relative to the value specified by (15l). As
a corollary, the ratio of the achieved variance to the value ob-
tained for random routing may be considered a measure of the
success of the load-balancing algorithm.

The variance of the number of channels carried on a link de-
rived above is a network global expectation based on routing
decisions. We may also consider a local view of the variations
and the number of channels carried on a particular link ( ) and
their relationship to the terminating traffic and degrees of the
local nodes. We postulate a form for based on (15b) and
an heuristic argument based upon the routed traffic. We begin
by noting that (15b) may be written to identify the local traffic
terminating at the nodes connected to the link (both ends) and
the through traffic that passes by both nodes, viz.

(15r)

We observe that the first term corresponds to the division of
the terminating traffic among the various links connected to the
terminating nodes. Assuming minimum hop routing, to a good
approximation, the terminating traffic is equally distributed
among all the links connected to the node. This implies a direct
correlation of the first term of (15r) to the local degrees of nodes
connected to the link. The second term, however, corresponds
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to the many channels traversing the link that have destinations
distributed across the entire network. For the moment, we
consider that the traffic is routed to minimize the number of
hops, but otherwise no preference among the individual links
is imposed. Under these circumstances, we hypothesize that
the second term has negligible correlation to the local degrees
of nodes and is best described by a combination of the mean
value and variations randomly distributed across the network.
Therefore, we write the number of channels on a link ( )
formally as

(15s)

with

(15t)

(The “ 1” on the right-hand side in (15t) ensures the proper
accounting of the demand between the terminals of node and
node .) The variable includes random variations in the
number of through channels and satisfies

(15u)

The variance of may be estimated using the statistical
formalism described previously in (15l) with replacing

, and replacing .
It can be verified by direct computation that the expectation

value of (15s)–(15u) yields (15r) in the case of lo-
cation-independent demand, as required. As the second term of
(15r) is locally uncorrelated with the first by our hypothesis, the
variance of may therefore be expressed as

(15v)
We have already estimated the variance associated with routing
decisions implicitly assuming no variation in using (15l). Now
we may also estimate the relative size of the variance in
attributable to variations in the degrees of the nodes. The vari-
ations correlated to the local degrees of nodes, i.e., the second
term of (15v), can be computed directly from the network graph.
For the present we note that for uniform demand and

(15w)

Using (15t) and (15w), the mean and standard deviation of
the number of A/D channels terminating at the two ends of a
link are estimated to be and ,
respectively, for the larger example network of nodes
and links ( , , ).
The mean number of channels not terminating at either end of
a link is approximately for this network. For
the smaller example network of nodes and
links ( , , ), the mean and
standard deviation of the number of A/D channels terminating
at the two ends of a link are estimated to be and

using (15t) and (15w). The mean number of
channels not terminating at either end of a link is approximately

for this example. As required and expected, for
both examples, the values of and sum to the
respective value of .

If the terminating demands are not uniformly distributed but
instead randomly distributed, then the first term in (15v) propor-
tional to , i.e., , also contributes to the variance of

, and we have

(15x)

To close this section, we remind the reader that the expressions
for ((15b) and (15c)) are exact and independent of our
estimations of .

G. Restoration Capacity

1) Mean Value: The additional capacity added to links to
ensure mesh network survivability depends upon the types of
failures considered, the restoration strategy, and the blocking
characteristics of the cross connects used to redirect the affected
traffic over alternate routes. For the purpose of architectural
comparisons, network survivability is very often defined in
relation to single link failures, i.e., the network is designed and
minimally sufficient capacity is deployed to ensure the network
can support the traffic and is survivable against all single link
failures. As explained previously, this implies the network has
sufficient extra capacity to restore all of the simultaneously
failed demands sharing the common failed link. Extra capacity
is counted in units of additional channel links and is most
often reported as a fractional increase above the total number
of channel links. Using that convention, the average number
of channels on a link including extra capacity for restoration
is written as

(16a)

Here, we have introduced the superscript designation to to
remind ourselves that the expression accounts for extra capacity
for restoration. This expression is independent of the demand
model. In considering the individual failure of all the
links that are connected to the two nodes at the ends of link ( ),
we model the number of channels on an individual link ( ),
including the extra capacity for restoration as

(16b)

where and are given by (15t)–(15v) and (15s), re-
spectively. The mean value of this model for yields (16a),
as required. Hereafter, we develop formulas for and as
functions of the input network variables.

Precisely determining the amount of additional capacity re-
quires a detailed network analysis and is a nontrivial exercise for
large mesh networks. Obtaining exact results for general mesh
networks when the number of nodes is more than about 20 is
presently not practical because of the magnitude and duration
of the numerical computations. Thus, some form of heuristic
algorithm for routing traffic and assigning restoration capacity
is usually employed for large networks [3]–[12].

In considering the extra capacity that must be deployed to
ensure survivability against single link failures, a general inverse
dependency upon the degree of the nodes is readily recognized
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and explained qualitatively [17]. For example, for uniform
demand a ring network—which by definition has an average
degree of node equal to 2—with dedicated protection requires
100% extra capacity relative to the minimum capacity necessary
to carry the traffic demand. For this reason, a qualitative
relationship between the fractional increase in capacity on a
link and the degree of the node to which the link is connected
is

(17a)

However, a strict interpretation of (17a) as an equality can
under-predict by one third or more the necessary extra capacity
for planar mesh networks and unit, uniform demand when
is greater than 2. To assess the feasibility of using an analytic
equation to model the extra capacity, we have fitted the extra
capacity determined by detailed calculation and simulation of
mesh networks with uniform demands for the case of strictly
nonblocking cross connects using the expression

(17b)

where and were parameters to be determined semi-
empirically.

We considered the results for the extra capacity for path-dis-
joint shared mesh restoration using a heuristic favoring a small
differential path length between working and restoration paths
for eight mesh networks [10] and also imposed the condition
that for . The mesh networks had numbers of
nodes in the range of , average degree of node
in the range of and required an average extra
capacity in the range of [7], [10]. The con-
straint to describe the ring network exactly using (17b) requires

. The best value of was then determined to be .
Within the accuracy of the fitted results, the func-
tional form for the extra capacity can be considered to be

(17c)

For completeness, we note one expression for the extra ca-
pacity on the individual links that results in the expectation value
of the extra capacity given by (17c) is

(17d)

and

(17e)

or more explicitly . (As an aside based on (17e),
we note the property that . However, in gen-
eral, , except for regular networks of constant
degree or as an approximation.)

A slightly more accurate semi-empirical representation
of the values of the extra capacities of the networks

considered was found to be

(17f)

for which the corresponding local extra capacity is

(17g)

In both cases, it is clear there is a strong correlation between the
efficient use of spare capacity for survivability and the degrees
of the nodes. Finally, we point out that the additional capacity
required for dynamic networks, such as for provisional and/or
survivable networks, will be larger if the cross connects are not
strictly nonblocking. For example, in the case of wavelength-
division-multiplexed line systems and cross connects without
wavelength interchange except at the terminations, the increase
of the extra capacity for restoration above the minimum value
for strictly nonblocking cross connects is typically in the range
of only 5–20%, although the management complexity is greatly
increased [5]–[10].

For the example network of nodes and
links , the mean value of the extra capacity to en-
sure survivability under single link failures is estimated to be

. As the mean degree of node for the second example
network of nodes and links is nearly identical
to that of the larger network by design, , the estimate
for the mean value of the extra capacity to ensure survivability
under single link failures is also nearly the same at .

2) Variance and Standard Deviation: In the previous sec-
tions, we have modeled the extra capacity on individual links
in a manner that is both intuitive and consistent with empirical
observations of the total extra capacity. The model for de-
pends only upon the degrees of the nodes , and consequently,
it is a function of the input network graph , as stated explicitly
in (13a). The variance of , , can now also be computed
straightforwardly using the definition of the variance (13) and
the relations for (17). For example, for defined by (17d),
we have

(17h)

Note also that the deployment of restoration capacity can have
the tendency to equalize the capacity allocation on the links,
as links with larger working capacity and smaller restoration
capacity are able to restore traffic carried on links with smaller
working capacity and larger restoration capacity, and vice versa.

H. Traffic on Link

1) Mean Value: The average traffic carried on a link is
the product of the average number of demands on a link
and the bit rate per demand , i.e.,

(18a)
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This direct proportionality is independent of the demand model.
In Fig. 5, we plot the mean traffic on a link including idle restora-
tion channels for uniform demand as a function of the number
of nodes and total network traffic .

For our example network of nodes, links,
and 5 Tb/s, the mean value of the traffic carried on a link
including extra capacity for restoration is 284 Gb/s.
In comparison, the mean value of the traffic carried on a link
including extra capacity for restoration for the smaller example
network of nodes, links, and 1 Tb/s is

116 Gb/s.
2) Variance and Standard Deviation: Based on the pre-

ceding sections, the variance of is determined by the variance
of with the result that

(18b)

I. Number of Ports and Capacity of a Cross Connect

1) Mean Value: Among the key attributes of cross connects
are the port count and total capacity . The average number
of ports on a cross connect in a mesh network can be determined
by counting the number of ports that each demand occupies as
it traverses the network, tallying the number of ports for all de-
mands and then dividing by the number of cross connects. By
design, a cross connect—of which an ADM is considered a spe-
cial case—is placed at each node of the backbone network to
manage transport bandwidth, and so the number of cross con-
nects is given by the number of nodes .

Note that, as illustrated in Fig. 3, the number of output ports
is usually equal to the number of inputs. In addition, a
cross -connect, which has inputs and outputs (or P I/O
ports), supports connections among two-way channels. We
first calculate the average number of one-way input ports .
Referring to Fig. 6, consider a directed demand that enters, or
is added to, the network via the cross connect of the node on
the left. Adding the demand requires one input port. Eventually,
this demand exits the network. Dropping from the network is
accomplished by entering and exiting the cross connect at the
destination node, which may be considered the node on the right
of Fig. 6. Thus, dropping the demand also requires one input
port. In addition, in traversing the network, the demand under
consideration occupies input ports at the cross connects of the
intervening nodes. Having defined as the number of internodal
hops, the number of intervening cross connects that the demand
enters is . Consequently, a one-way demand occupies

(19a)

input ports. The total number of input ports occupied by all
demands is therefore

(19b)

Fig. 5. Mean traffic on link. The mean traffic on a link �� ��� � �� for
uniform demand with restoration is graphed as a function of the number of
nodes � and total two-way traffic � under the constraint ��� � ��� using a
contour plot.

Fig. 6. Demands and cross-connect ports. The figure serves as a guide to count
the number of cross-connect ports occupied by a demand as it traverses the
network. The relationship among the local add, drop, and through channels
is also depicted. Here, the numbers of add and drop demands, each � � �,
specifically correspond to the uniform demand model.

and the average number of input ports occupied on a cross
connect at a node is

(19c)

Equations (19a)–(19c) are valid independent of the demand
model, while as before the value of is implicitly dependent
upon the demand model. For the case of a mesh network with
uniform demands, we substitute for using (11c) to obtain

(19d)

where may be approximated using (14b) or (14c).
For completeness, here we also compute the average number

of two-way ports for a cross connect of the same network. The
number of two-way terminations for a two-way demand is 2,
one at each terminus. The average number of two-way through
ports occupied is , and the total number of two-way
ports occupied is

(19e)

Thus, the average number of two-way ports is

(19f)

We observe that by substituting for using (10c)

(20a)
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which may be appreciated by again considering Fig. 3. This
result is independent of the demand model and may also be
structured to explicitly indicate the add, drop, and through ports.
Considering Fig. 6, we write

(20b)

where

(20c)

and

(20d)

Note that

(20e)

which reminds us that every demand occupies both a ter-
mination-side port and a line-side port on each of the two
cross connects at the opposite ends of the demand. Another
common partitioning of ports is between termination-side ports
and line-side ports. In this case, we write

(20f)

where

(20g)

and

(20h)

In this analysis, for the average number of ports, we have not
introduced the extra transmission capacity and extra cross-con-
nect ports that are required for network survivability. As dis-
cussed previously, for single-link failure scenarios, the link, or
line-side, capacity is increased by the fraction . Thus, the
total number of cross-connect ports for shared line-side restora-
tion of mesh networks is obtained by introducing the extra ca-
pacity factor into (20h) and (19c), which yields

(21a)

We note the same result is also obtained considering that the
total number of ports is the sum of the number of channels car-
ried on each of the links connected to the node and the number
of channels terminating at the node. The former is given by the
product of and , and therefore

(21b)

Using (13b) and (15b) and the definition of , it can be shown
that (21b) equates to (21a).

To appreciate how scales with the number of nodes, we
may consider (21) for uniform traffic in the limit when is
large compared with 1. In that limit and using (11c), (14c), and
(17c) for , and , respectively, (21a) becomes

(22a)

For networks with in the range of , the term in
(21b) dependent upon is within 15% of unity, and for

, the coefficient differs from 1 by less than 5%. Consequently,
we observe that

(22b)

Thus, if the number of nodes in the network is approximately 25,
then the average number of ports required is about 125. When

is about 100, then ; and when is about 200,
then . Similarly, the average traffic cross section
carried on the route between adjacent nodes is

(23)

when is large compared with unity.
The average traffic handled by a cross-connect , measured

in bits per second for example, is now computed straightfor-
wardly from the average number of ports and the commu-
nication bandwidth, either or , associated with the basic unit
of demand. Of course, the former corresponds to the case when
the channel utilization is 100%, and the latter may correspond
to a particular system increment or industry standard. Thus, we
have

(24a)

or

(24b)

These direct proportionalities are independent of the demand
model. In Fig. 7, we graph the mean cross-connect traffic in-
cluding idle restoration capacity for uniform demand as a func-
tion of the number of nodes and total network traffic .

For the larger example network of nodes,
links, and 5 Tb/s traffic, the mean number of ports on a
cross-connect including ports for restoration is estimated to be

. The corresponding mean cross-connect traffic is
1072 Gb/s. For the smaller example network of nodes,

links, and 1 Tb/s traffic, the mean number of ports
on a cross connect including ports for restoration is estimated to
be . The corresponding mean cross-connect traffic
is 469 Gb/s.

2) Variance and Standard Deviation: To compute the vari-
ance of we must determine the number of ports required for
the individual nodes. In the preceding sections, we have formu-
lated expressions for the number of channels on the individual
links, namely (15d)–(15g), (16b), and (17d). Consequently, it is
necessary only to add the termination-side channels to the sum
of the channels on the links connected to an individual node

to obtain the sum of the ports, . Formally, we may write

(25a)

Hence, the variance of may be computed using this expres-
sion and the definition of the variance, (13d). In the spirit of
clarifying the dependencies of the variance of , we now illus-
trate an example where the local extra capacity for restoration
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Fig. 7. Mean cross-connect traffic. The mean traffic entering a cross-connect
�� ��� � �� for uniform demand with restoration is graphed as a function of the
number of nodes � and total two-way traffic � under the constraint ��� � ���
using a contour plot.

is specified by (17d). In this scenario, the number of ports on a
local cross connect is

(26a)

where for the total extra capacity associated with ports at node
, we have used the approximation

(26b)

Considering (26a), we observe there is a correlation between
and that is moderated by the variations in . The vari-

ance of for uniform demand is given by

(26c)
If instead we use (17g) to specify the extra capacity on a link,
then the total extra capacity associated with ports at node is

(27a)

and the total number of ports is

(27b)

In this case, there is a contribution to the number of ports from
the extra capacity that is anti-correlated with the main
term that is proportional to . Thus, we expect the variance of

in this scenario for the extra capacity (17g) to be somewhat
less than the variance obtained using the first form (17d).

To illustrate the variance of , we consider the situation in
which the variance of is small and may be neglected. In this
case, (26c) reduces to

(28a)

For our example network of nodes and
links, the mean and standard deviation of the degree of nodes is

and . Using (28a), the standard deviation

of the number of ports on a cross connect attributable to the vari-
ance of the degrees of nodes is estimated to be .
Recall the mean number of ports including restoration capacity
was estimated to be for this network. We expect
that the fractional deviations for our smaller example network
of nodes and links will be similar, as the
statistics of the degrees of nodes are nearly the same by de-
sign. Again using (28a), the standard deviation of the number
of ports on a cross-connect for this smaller network is esti-
mated to be . For this smaller network, the mean
number of ports including restoration capacity was estimated to
be .

In summary, in this and the preceding section, we have
shown that the network global expectation model can be used
to understand and predict the mean and variability of the number
channels carried on links and present at the nodes, including
the effects resulting from network survivability. The reader
will appreciate that while we have applied the model to the
case of uniform demand in this section on the variance of
the number of ports, the methodology is directly applicable
to other demand profiles.

J. Percentage Add/Drop

1) Mean Value: Another important characteristic of the net-
work is the percentage of add and drop traffic at a node. Refer-
ring to Fig. 6 and the one-way input ports on the cross connect,
we observe that the average number of input ports occupied by
traffic being either added or dropped at the node is

(29a)

The average number input ports occupied by traffic passing
through the node is

(29b)

By definition, the average ratio of the number of local A/D ports
to local total ports is

(30a)

which may be computed by substituting expressions for both nu-
merator and denominator. However, another practical and useful
definition of the A/D ratio average is the ratio of the network
total number of A/D ports to network total ports. In this second
case

(30b)

and therefore

(30c)

Note that we have derived this relationship between and
without reference to a model for the demands ; consequently,
it is a general result and not restricted to the case of uniform
demands. If we explicitly account for extra capacity for line-side
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restoration, then the ratio average of the number of A/D
ports to total ports (21) is

(30d)

The estimated A/D ratios for the example network of
nodes and links without and with extra capacity

for restoration are and using (30c)
and (30d), respectively. In comparison, the estimated A/D ratios
for the example network of nodes and links
without and with extra capacity for restoration are
and using (30c) and (30d), respectively. This trend
of the fraction of the through traffic increasing as the number of
nodes is increased is a general characteristic of networks having
a mean degree of node less than and fully interconnected
terminal-to-terminal demand. In the limit, when is large com-
pared with 1 and the average degree of node is in the range

, the total number of ports is given by (22b) and the
A/D ratio average becomes

(30e)

Thus, for a mesh network of 25 nodes with shared restoration
capacity, the ratio of A/D to through channels is approximately
40% on average, and the percentage decreases as the number
of nodes increases. Of course, this estimate is for the average
node, and the percentage for a particular node can be larger or
smaller, depending upon the details of the network demand and
topology.

On a separate note related to the A/D ratio, it is also worth
pointing out that (30c) may be inverted to express as a func-
tion of , viz.

(31)

Like (30c), (31) is a general result and is not a function of the
demand model.

2) Variance and Standard Deviation: The ratio of the A/D
traffic to total traffic for an individual node may be formulated
using (25) and (29a). For example, if we consider the case when

is negligible, the result using (17d) for the extra capacity
is

(32a)

When is large compared with 1 and is in the range of
, we may approximate (32a) by

(32b)

and so in this case

(32c)

In addition,

(32d)

Thus, given that may range from 2 to 8, we conclude that the
A/D ratio can conceivably range from one half to two times the
mean value.

IV. NETWORK COST

A. Node and Link Architecture

In the previous section, we have derived expectation values
for the quantities of key NEs and NE subsystems required to
carryout a basic cost analysis for a transport network. In this
section, we will introduce the concept of the cost structure of
NEs in relation to both the NEs and NE subsystems. With an
assumed cost structure, we may then compute the total cost of
the network as well as categories of costs, such as for transmis-
sion and bandwidth management. We also illustrate by example
how we may compare the network costs using different combi-
nations of technology, such as electronic and optical bandwidth
management, using the network global expectation model.

For the purpose of outlining the general principles of com-
puting network costs using the network global expectation
model, here we consider rudimentary cost structures for the
optical line system (OLS), EXC, and OXC. The architecture
of these systems from a perspective near a node is illustrated
in Fig. 8. Client-side traffic enters the network at a node via
the EXC where it is groomed, i.e., switched and multiplexed,
into the fundamental units of internodal bandwidth destined for
specific nodes of the network. The groomed output channels
from the EXC then enter the OXC, where they are directed to
line systems placed along the internodal links of the network
according to the traffic routing scheme determined by either
a centralized or distributed management system. In the archi-
tecture considered here, the interfaces between NEs are optical
translators (OTs), which ensure that the cost comparisons are
under conditions of fixed network capability (features) and
network performance.

B. Transmission Cost Structure

A cost structure often used for optical fiber transmission is
the average cost of transporting bandwidth ( ) over distance ( ).
Here, we represent this cost structure as a cost coefficient, which
we denote as . The units of are dollars per gigabit
per second per kilometer ($/Gb/s/km). According to Gawrys, an
approximate value for network transmission cost of a two-way
channel is

30 Gb/s/km (33)

based on historical data and projections [18].
Considering this cost structure, the individual and mean cost

of a transmission link of a survivable mesh network are

(34a)

(34b)
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Fig. 8. Bandwidth management architecture using both OXCs and EXCs. For
a cross connect using only electronic bandwidth management, a single EXC
replaces the combination of OXC and EXC.

where for the model of uniform demand under present consid-
eration is given by (16) with given by (17c) and is
the expectation value of the link length. The expectation value
of the link length is given by

(35a)

where the set are the physical lengths of the individual links.
If the link lengths are known, then the expectation value is
quickly computed. Here, for purposes of illustration, without in-
troducing a specific set of link lengths, we note that for two-di-
mensional mesh networks, to a good approximation the average
link length scales inversely with the square root of the number
of nodes and is proportional to the square root of the geographic
area A covered by the network. Thus

(35b)

The total cost of transmission is

(36a)

where it should be clear that is an analytic function of
only the independent input network variables ( , the number of
nodes; L, the number of links; , the total ingress/egress traffic;
and , the geographic area covered by the network) and there-
fore is easily computed. Consequently, when is large com-
pared with 1, and is in the range of ,
may be approximated by

(36b)

At present, the yearly time-averaged traffic carried by a
combined voice and data backbone network in the continental
United States is approximately 1 Tb/s [19], [20]. The daily
and annual peak traffic load that the network must support
is estimated to be 5 the average traffic [20]. Thus, as an
example, we consider 5 Tb/s. The geographic area of the
continental United States is approximately km .
Thus, the approximate cost of transmission system equipment

to support the present traffic is approximately 400 $M.

The approximate cost of transmission represented by (36b) is
obviously an over simplification as it contains no dependency
on the number of links. That behavior is not because of a
shortcoming of the global network expectation model but, rather,
is attributed to our assumption of the cost structure, (33) and
(34). Clearly a more realistic model of the cost structure for
the link should include an explicit dependency upon the cost
of trenching, the cost of optical fiber cable, the cost of end
terminals, the cost of OTs, the cost of amplifiers, and the cost
of amplifier pumps, for example. Realizing this, a refined cost
structure for a link takes the form

(37a)

The expectation value for the cost of a link is then

(37b)
where the first term containing reflects fixed costs for a
link, such as the cost of the terminal equipment bays; the
second term containing includes costs that depend directly
upon the number of channels carried, such as the number of
OTs, the third term containing includes costs that depend
upon the distance traversed, such as the cost of trenching,
cost of fiber, and the cost of amplifiers; and the fourth term
containing includes contributions that grow as the product
of distance and wavelength, such as the cost of growth pumps
and premium for specialized high capacity, long-distance fiber,
e.g., dispersion-managed cable. The total cost of transmission
is then

(37c)
Of the expectation values contained in (37), in this paper, we

have previously computed all except for . As we have ob-
served before, the number of channels on a link for the case of
uniform demands is nearly independent of the particular link.
Thus, to a good approximation and the total
cost of transmission is

(37d)
The above approximation is further validated when we consider
that under real-world circumstances, the coefficient is small
compared with the other coefficients, and rarely are the optical
line systems loaded to their maximum channel carrying capacity.
In this case, to gain a better appreciation for how the total
transmission cost depends upon the basic network variables,
we consider dropping the last term. Upon substituting for the
remaining expectation values in (37d), the cost of transmission
is then

(37e)
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Here, the fixed startup costs, i.e., those independent of the traffic
carried , are evident in the first term, which is proportional to

or ( , (13b)). We leave it to the reader to apply
(37d) to specific network designs by substituting values for the
cost structure coefficients .

C. Bandwidth Management Architectures and Cost Structure

1) Electronic Bandwidth Management Only: The network
global expectation model provides the flexibility and ease of
implementation to compute the NE variables and total network
costs for a wide range of network sizes, total traffic, and a va-
riety of architectural options. Here, we illustrate how the costs
for two different models of bandwidth management at the net-
work nodes may be constructed. We first consider the case when
an EXC is used for both sub-rate grooming and cross-connect
functions. In this case, the total cost of bandwidth management
is the cost of the EXC, and so

(38)

The total cost of the EXCs may be written in terms of the ex-
pectation value of the cost of the nodes as

(39a)

which follows directly from (8). An estimate of the current cost
of high-speed electronic switching engines is

1 K/Gb/s (39b)

which corresponds to a cost structure of the local EXC of

(39c)

The corresponding expectation value is

(39d)

having made use of (24a). Substituting for in (39a) and
using (12a) and (21a), we have

(39e)

Note that we may also construct a more refined form for the cost
structure of the EXC, or IPRs, that includes a start-up term and
a growth term, viz.

(39f)

In this case

(39g)
We note these expressions for costs are valid independent of the
demand model.

2) Electronic and Optical Bandwidth Management: Here,
we consider a single-tier network using both optical and elec-
tronic bandwidth management. By this, we mean that all traffic
passes through the optical layer cross connect and additionally
all terminating traffic also passes through an electronic layer

fabric for the purpose of channel grooming. Such an architec-
ture is attractive when the cost of an optical port is significantly
less than the cost of an electronic port for a given data rate. The
total cost for bandwidth management is thus

(40)

In the following subsection, we construct the individual terms
for the EXC and OXC costs.

a) Cost of electronic ports for client-side traffic: As be-
fore, we assume that the cost of the electronic switch consists
of a start-up term and a term proportional to the traffic handled;
however, here only the terminating traffic traverses the EXC.
Thus, the mean cost of an EXC is

(41a)
which may be rewritten as

(41b)

using (12) for . Consequently

(41c)

b) Cost of optical ports for through and A/D traffic: The
total cost of OXCs using the network global expectation for-
malism is

(42a)

An estimate of the current cost of high-speed optical switching
engines is

2.5 K port (42b)

Based on this cost structure and the architecture under consid-
eration, which specifies that both through and client-side traffic
pass through the OXCs, the individual and mean OXC costs may
be expressed as

(42c)

and so

(42d)

Substituting variables to obtain an expression that is indepen-
dent of the demand model, the total cost of the OXCs is

(42e)

where is the number of two-way demands.
As in the other examples, we may also consider a cost struc-

ture for the OXC consisting of a start-up term and a growth term,
such as

(42f)

In this case, the mean and total cost of the OXCs are

(42g)
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Fig. 9. Illustrative comparison of bandwidth management costs. The total
cost of bandwidth management using the combination of optical and EXCs
is compared with the total cost of bandwidth management using only an
EXC by plotting their ratio as a function of number of nodes � and two-way
traffic � . In the case of the E&O architecture, it is assumed that all traffic
follows through the optical switch fabric and additionally that all terminating
traffic flows through the electronic switch fabric. These calculations are for
uniform demand with restoration under the constraint ��� � ���. The cost
structures ��� used for the OXCs and EXCs for this example are $2.5 K/port
and $1 K/Gb/s, respectively. Note that these cost structures and values are
rudimentary, intended to be illustrative, and should not be interpreted as
definitive.

and

(42h)
Summing the electronic and optical bandwidth management
costs, we have

(43)

3) Comparison of Costs for Example Node Architec-
tures: As an illustration of the application of the network
global expectation model, we compare the total costs for
bandwidth management for the two-node architecture exam-
ples just described, namely electronic plus optical bandwidth
management and electronic-only bandwidth management, as
a function of the number of nodes and traffic for a fixed
mean degree of node. The results of the calculations using
the coarse cost structures for the EXC and OXC costs, (39b)
and (42b), are graphed in Fig. 9. We observe that the model
may be used to identify the region of the network parameter
space where optical layer cross connects may be introduced
in conjunction with electronic layer cross connects, or IPRs,
to economic advantage. The model accounts not only for the
different characters of the cost structures as a function of traffic,
but also the changing ratio of A/D to through traffic as the
number of nodes and links change.

We observed for a fixed value of the number of nodes for
greater than about 15 that the total cost of bandwidth man-

agement using the electrical and optical architecture decreases
and becomes less than the cost of the electronic-only solution
as the total traffic increases. This is attributed to the assumption
that the cost of an optical switch port is independent of channel
bit rate, while the cost of an electronic switch port is directly
proportional to the channel bit rate. We also observe for fixed

Fig. 10. Total network equipment cost. The sum of transmission and
bandwidth management equipment costs � ��� � � is graphed as a function of
the number of nodes � and total two-way traffic � using a contour plot. Again,
the calculations are for uniform demand with restoration under the constraint
��� � ���. The cost structures used for the optical line systems, EXCs, and
OXCs are $30/Gb/s/km, $1 K/Gb/s, and $2.5 K/port, respectively. The reader
is again cautioned that these cost structures and values are intended only to
illustrate the capabilities and possibilities of the global expectation model.

total network traffic that the cost of the electronic and optical
solution increases and becomes more expensive than the elec-
tronic-only solution as the number of nodes is increased and the
mean degree of the nodes is held constant. This is because the
traffic demand bit rate decreases as the number of nodes is
increased for fixed mean degree of the nodes (see Fig. 4) and,
consequently, below some channel bit rate, the fixed cost of an
optical switch port becomes more expensive than an electronic
switch port.

Of course, the details of the cost crossover depend upon the
particulars of the technology price points (cost structure and
coefficients), and consequently the particular graph of Fig. 9 is
intended only to demonstrate the capabilities and possibilities of
the global expectation model and not to make a definitive rec-
ommendation. The reader is also cautioned that here we have
implicitly assumed via the cost structures that the respective
cross connect technologies are capable of providing the required
switch and backplane capacities. In the absence of more refined
cost structures that account for these limitations, one may use
other equations and graphs of the model, such the total number
of required ports (21b) or the mean cross-connect traffic (Fig. 7),
to identify regions of the network traffic-node space that are be-
yond the capabilities of a particular architecture or technology.

D. Total Network Costs

1) Static Network Cost: The total network cost can be
computed by summing the cost for transmission and band-
width management using the formulas we have derived. For
completeness, we explicitly restate (4) here as

(44)

Clearly, a useful attribute of the model is that the relative cost of
transmission and bandwidth management can easily and quickly
be determined.

To illustrate the utility of the network global expectation
model, in Fig. 10, we present a calculation of the total cost of a



720 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 3, MARCH 2004

TABLE I
KEY ANALYTIC EXPRESSIONS. KEY RESULTS OF PRESENT FORMULATION OF THE NETWORK GLOBAL EXPECTATION MODEL AND THEIR

CORRESPONDING TYPES AND DOMAINS OF APPLICABILITY ARE SUMMARIZED

mesh network with uniform demand as a function of the number
of nodes and total traffic . The results are for the case
where the nodal bandwidth manager consists of a combination
of OXCs and EXCs and the geographic area corresponds to
the continental United States. In the accounting we have used
(33), (34), (39b), (39c), (42b), (42c) for the cost structure of the
transmission links, EXCs, and OXCs, respectively.

Among the features that may be observed by considering
Fig. 10 is the impact of the cost of bandwidth management as
the number of nodes increases. A qualitatively similar result is
obtained for the case of electronic-only bandwidth management.
Considering (22b) for total number of cross-connect ports
and (30e) for the A/D ratio, we interpret the large cost for
large to be a consequence of the single-tier architecture.
In effect, single-tier (flat) networks can not practically scale
to a very large number of nodes because as the number of
nodes increases, an increasing fraction of the traffic processed
at each node is through traffic destined for other nodes. It
is for this reason that the voice and packet networks are
organized hierarchically based on geographic communities.
The underlying phenomenon may also be the driving factor
behind the more broadly observed scaling behavior of networks
and biological systems [21]. Clearly, there are performance
and operational tradeoffs between single-tier and multi-tier
networks, and network operators will adjust the number of
nodes and architecture in the backbone depending upon the

costs for transmission and bandwidth management; changing
cross-connect, line-system, and technology price points; and
the evolution of traffic demand.

2) Refinement of Cost Structure and Evolution of Network
Cost: Here, we take the opportunity to mention additional
ways in which the cost structure may be refined and the
model may be applied. First, the cost structure may be modified
to account for the real-world implementation limits affecting
maximum system capacities. Examples of such constraints are
the maximum number of channels or wavelengths an optical
line system is engineered for, or the maximum throughput of
a switch fabric or backplane in the case of a cross connect or
router. Such hard bounds to NE capacity occur for any physical
realization and have the effect of introducing quantum steps
in the cost structure. When the required capacities exceed the
system capabilities, additional systems are generally deployed
in parallel, and additional corresponding start-up costs are
incurred. Having developed a framework for the evaluation of
the variances and distribution functions of key network variables
previously in this paper, we have provided the foundation to
estimate the number of additional systems that are required
given the network requirements and system bounds. Note too
that in some instances the result of introducing these additional
systems is to effectively increase the number of links or nodes
of the network. Second, the model may be used for sensitivity
analyses of the dependency of requirements and costs upon
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primary and secondary network and NE variables. Third, the
network global expectation model may be used to compute
the constituent and total network costs as a function of time.
This requires only a model for how the total network traffic,
number of nodes and links, and technology costs are expected
to change, such as have been described in other works [18],
[20].

V. CONCLUSION AND SUMMARY

Here, we have described a network global expectation model
as a comprehensive and structured framework for estimating
the number of NEs, NE characteristics, and costs of communi-
cation networks using analytic formulas. The model includes
the calculation of both the mean value and variance of all
key network quantities and may be applied to a wide range
of topologies, architectures, and demand profiles. Currently,
we have formulated the general approach, have applied it to
single-tier mesh networks and location-independent demands,
and have also shown that many of the results are valid and
applicable independent of the demand model. For uniform
demands, we have shown that the number of nodes, the de-
grees of the network nodes, the total ingress/egress traffic,
the geographic extent of the network, and the equipment cost
structures are sufficient to estimate the network variables and
costs of interest. We have also formulated either exact or
semi-empirical functions and closed-form expressions for the
network variables, which are easily incorporated into software
spreadsheet calculators. For the convenience of the reader, key
results of the model are summarized in Table I.

This analytic tool naturally and accurately relates the global
(network) and local (NE) views of the communication system
and thereby can quickly provide insight and roughly correct re-
sults for preliminary network evaluation and design. Further,
it can provide valuable guidance in the areas of NE feature
requirements, costs, sensitivity analyses, scaling performance,
comparisons, product definition and application domains, and
product and technology roadmapping. It is adaptable to both in-
creasing and decreasing levels of detail and sophistication of
the cost structures. Because of the analytic nature of the model,
the estimates of quantities may be computed much faster than is
possible with detailed routing solvers, and so the model is ide-
ally suited to network analyses in dynamic operating and tech-
nological environments. We suggest that the uncomplicated and
transparent accounting of NEs, systems, and costs inherent in
the model can constitute a framework for the cooperative ex-
change of critical planning information on evolving network
needs across the many sectors of the communication business.
In future work, we plan to refine and extend this approach to a
wider set of networks, architectures, demand profiles, and cost
structures.
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