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Relationship Between Bayesian and
Frequentist Sample Size Determination

Lurdes Y. T. INOUE, Donald A. BERRY, and Giovanni PARMIGIANI

Sample size determination is among the most commonly en-
countered tasks in statistical practice. A broad range of frequen-
tist and Bayesian methods for sample size determination can
be described as choosing the smallest sample that is sufficient
to achieve some set of goals. An example for the frequentist is
seeking the smallest sample size that is sufficient to achieve a de-
sired power at a specified significance level. An example for the
Bayesian is seeking the smallest sample size necessary to obtain,
in expectation, a desired rate of correct classification of the hy-
pothesis as true or false. This article explores parallels between
Bayesian and frequentist methods for determining sample size.
We provide a simple but general and pragmatic framework for
investigating the relationship between the two approaches, based
on identifying mappings to connect the Bayesian and frequentist
inputs necessary to obtain the same sample size. We illustrate
this mapping with examples, highlighting a somewhat surprising
“approximate functional correspondence” between power-based
and information-based optimal sample sizes.

KEY WORDS: Lindley information; Prior information;
Probabilities of Type I and Type II errors.

1. INTRODUCTION

1.1 Overview

Sample size determination is among the most commonly en-
countered tasks in statistical practice. It is a routine compo-
nent of the design of both clinical trials and epidemiologic
studies, and it plays a critical role in the evaluation of most
biomedical research proposals. A common approach is to use
frequentist operating characteristics of hypothesis testing pro-
cedures. For example, one chooses the smallest sample size suf-
ficient to achieve specified power and significance level. This
approach is deeply engrained in statistical practice. Moreover,
many Bayesian statisticians—including the authors—take this
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approach. Have we abandoned our statistical philosophy in so
doing? In this article we give a negative answer.

The purpose of this article is to explore parallels between
Bayesian and frequentist sample size calculations. We seek func-
tional relationships. Obviously, a Bayesian and a frequentist
statistician can come up with the same sample size for partic-
ular assumptions about the parameters of interest. The ques-
tion we address is whether the two will continue to agree if
those assumptions change. We provide a simple but general ap-
proach for investigating the relationships between the two ap-
proaches by identifying mappings that connect the Bayesian
and frequentist inputs to sample size calculation. In the pro-
cess we clarify the differences between Bayesian and frequen-
tist approaches to sample size determination. Our message is
ecumenical: Bayesians and frequentists are not very different!

1.2 Framework

In problems of sample size determination one seeks to achieve
a balance between the cost of the experiment and the quality
of the final analysis. As a result, a broad range of frequentist
and Bayesian methods for sample size determination can be
described as choosing the smallest sample size that is sufficient
to achieve, in expectation, some set of goals. An example for the
frequentist is seeking the smallest sample size that is sufficient
to achieve a desired power for a specified significance level. An
example for the Bayesian is seeking the smallest sample size
necessary to obtain, in expectation, a desired rate for correctly
identifying a hypothesis as true or false. When the goal of a
study is estimating a parameter, goals can be, for example, the
widths of confidence and probability intervals, respectively. We
will furnish a common formal structure that will help identify
differences between these two approaches, and we will establish
correspondences between them.

We formalize the sample size selection goal by specifying
a goal function G. Examples of this function include power,
information, mean squared prediction error, size of confidence
interval or probability interval, and classification error. We use
subscripts B and F to denote Bayesian and Frequentist analyses,
respectively. The functionG depends on the sample size and also
other user-specified inputs. The vector u denotes a frequentist
input (say significance level, target value within a composite
alternative, desired size of confidence interval, etc.). The vector
v denotes a Bayesian input (prior distribution of the hypotheses
or parameter of interest, loss from incorrect classification, etc.).
Sampling to achieve a prespecified criterion that increases with
n can then be represented as finding the smallest n such that

GF(n,u) ≥ G∗
F frequentist (1)

GB(n,v) ≥ G∗
B Bayesian, (2)
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Table 1. Summary of Illustrative Examples Considered Here

Likelihood Hypothesis Goal Section

Normal simple vs simple power/classification error 2.1
Normal composite vs composite power/classification error 2.2
Normal point null vs composite power/classification error 2.3
Bernoulli simple vs simple power/classification error 2.4
Normal composite vs composite power/information 3.2
Bernoulli simple vs simple power/information 3.3

where G∗
F and G∗

B denote, respectively, the desired levels of the
frequentist and Bayesian goal functions.

Algorithmically, both Bayesian and frequentist approaches
define a mapping from the set of user-specified inputs to an
optimal sample size. Formally, solutions to the sample size min-
imization under constraints (1) and (2) exist when GF and GB
are monotonic functions ofn and we can write the two mappings
as

n∗
F = min{n ∈ N : GF(n,u) ≥ G∗

F}
= F (u) frequentist (3)

n∗
B = min{n ∈ N : GB(n,v) ≥ G∗

B}
= B(v) Bayesian. (4)

Here N denotes the set of integers. The functions F and B rep-
resent the algorithms for sample size determination, and depend
on the specified objectives of experimentation.

For equal sample sizes, the functionsF andB implicitly define
two subsets of values of u and v such that n∗

F = n∗
B = n∗. If the

prespecified goals G∗
F and G∗

B are kept constant, then varying
n∗ and keeping n∗

F = n∗
B = n∗ defines two parallel partitions

of the two sets of inputs. The family of such partitions reflects
the relationship between the two algorithms.

As an example, consider testing a null hypothesis θ = θ0
against a simple alternative θ = θ1. Suppose a frequentist uses
power to determine n∗

F(θ1) and a Bayesian uses expected in-
formation to determine n∗

B(θ1) and that the resulting sample
sizes are equal. There is nothing particularly surprising about
this circumstance because there are potentially many frequen-
tist/Bayesian pairs in which both would choose the same sample
size. However, if θ1 changes, thenn∗

F(θ1) andn∗
B(θ1) change ac-

cordingly and one expects that they will be different. But suppose
that n∗

F(θ1) = n∗
B(θ1) for all possible θ1. That would demon-

strate a remarkable stronger equivalence between using power
in a frequentist approach and using information in a Bayesian
approach.

1.3 Earlier Work and Outline of the Article

Choosing the sample size for an experiment lends itself
naturally to decision-theoretic approaches. The first explicit
decision-theoretic modeling of sample size determination is fre-
quentist and can be traced back at least to the minimax approach
of Wald (1950) and the fiducial approach of Grundy, Healy, and
Rees (1956). The common frequentist approach of seeking the
sample size to achieve a desired power at a specified signifi-
cance level also has decision-theoretic roots (Neyman and Pear-

son 1933). Desu and Raghavarao (1990) provided an extensive
discussion of frequentist methods to sample size determination.
Fully Bayesian approaches to the sample size choice are in the
context of utility-based optimization (Raiffa and Schlaifer 1961;
Berger 1985; and Lindley 1997). Bayesians who take this per-
spective do not recognize themselves immediately in the “goal
sampling” approach described earlier, although there are strong
similarities between goal sampling and a constrained multi-
objective decision problem in which one minimizes cost subject
to a constraint on the expected quality of the final analysis.

Most recent literature on Bayesian sample size determination
follows the framework outlined in Section 1.2 (see, e.g., Spiegel-
halter and Freedman 1986; Joseph, Wolfson, and Berger 1995;
Adcock 1997; Weiss 1997; and Pham-Gia and Turkkan 2003).
We address a different issue. Despite philosophical differences
between Bayesians and frequentists, could they agree when de-
termining sample size? The answer seems obvious given the par-
allels between the two at the inferential stage when Bayesians
use noninformative priors. But, at the design stage, data are yet
to be observed. We illustrate that substantial agreement can oc-
cur and that it is not restricted to the class of noninformative
priors.

In the remainder of the article we illustrate important parallels
between frequentist and Bayesian sample size determination in
simple and commonly encountered applications, as summarized
in Table 1. We will explore two types of parallels between B and
F: (a) parallels based on B and F that are derived from the same
underlying goals, to highlight differences induced by the type
of approach chosen; and (b) parallels based on B and F that are
derived from goals that are apparently different.

In Section 2 we assume that GF is power and GB is the rate of
correct classification. These are both related to controlling error
rates in repeated sampling. In the normal case, for all three sce-
narios considered, we identify a simple relationship between the
prior distribution in a Bayesian analysis and the target alternative
value in a frequentist analysis.

In Section 3 we compare frequentist power to Bayesian infor-
mation. In 3.1 we introduce the notion of Lindley information
and use it in Sections 3.2 and 3.3 for Bayesian sample size de-
termination. In Section 4 we provide a final discussion.

2. CONTROLLING CLASSIFICATION ERROR

Consider a random sample x1, . . . , xn from N(θ, σ2), the
normal distribution with unknown mean θ and known variance
σ2. The sample mean, x̄, is a sufficient statistic. Using conven-
tional notation, let H0 and H1 denote, respectively, the null and
alternative hypotheses. Type I and Type II error rates are, respec-
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Table 2. Loss Function: No Loss is Incurred With a Correct Decision, but
a Loss of 1 is Incurred if H0 is not Rejected When in Fact H1 is True, and

a Loss of K is Incurred if H0 is Rejected When in Fact H0 is True

H0 is True H1 is True

Do not Reject H0 0 1
Reject H0 K 0

tively, α and β and zα is the α-quantile of the standard normal
distribution, that is, Φ(zα) = P (Z ≤ zα) = α.

A standard frequentist approach to sample size determina-
tion in many biomedical applications is to specify α and β and
a “relevant difference,” δ, between the null and the alternative
hypotheses. In testing a simple hypothesis against a simple al-
ternative, δ is the difference of the hypothesized values. For
composite alternative hypotheses, δ is chosen to lie somewhere
within the alternative set. We take this to be the reference fre-
quentist approach throughout this section.

2.1 Simple Versus Simple Hypotheses

We want to test the hypothesis H0 : θ = θ0 versus H1 :
θ = θ1, where θ1 > θ0. Under the frequentist approach, when
testingH0 versusH1 at level of significanceα, the critical region
is x̄ ≥ θ0 − zα

σ√
n

. When using power as the frequentist goal
function, we find the sample size nF so that the test has power
1 − β at the alternative hypothesis and obtain

nF = (zα + zβ)
2
(σ
δ

)2
, (5)

where δ = θ1 − θ0. In terms of the notation of Section 1.2, the
frequentist input for sample size determination is u = (α, δ, σ).

Under the Bayesian approach, uncertainty about θ is repre-
sented by its prior distribution. Assume a priori that P (θ0) =
1 − P (θ1) = π. A Bayesian decision between H0 and H1 is
based on their posterior probabilities. Suppose that the null hy-
pothesis H0 is not rejected if the posterior probability of the null
hypothesis is at least 1/(1 + K). This cutoff for the posterior
probability is consistent with a 0 − 1 − K loss function shown
in Table 2 and minimizes the posterior expected loss (Berger
1985). Moreover, this cutoff implies that the null hypothesis is
not rejected if

x̄ ≤ σ2 log(K π
1−π )

nδ
+

θ1 + θ0

2
.

In this example we choose the Bayesian goal function to be the
rate of correctly classifying a hypothesis as true or false. Using
again the notation of Section 1.2, the Bayesian input for sample
size determination is v = (π,K, δ, σ) and the Bayesian goal
function can be formally calculated as

GB(n,v)
= KP (H0)P (correct decision|H0)

+P (H1)P (correct decision|H1)

= KπPθ0

(
x̄ ≤ σ2 log(K π

1−π )
nδ

+
θ1 + θ0

2

)

+(1 − π)Pθ1

(
x̄ >

σ2 log(K π
1−π )

nδ
+

θ1 + θ0

2

)

= KπP

(
Z ≤ σ log(K π

1−π )√
nδ

+
δ
√
n

2σ

)

+(1 − π)P
(
Z ≥ σ log(K π

1−π )√
nδ

− δ
√
n

2σ

)
, (6)

where Z is the standard normal.
The Bayesian goal function in Equation (6) relates to the

Bayes risk (Berger 1985) and weighs the probability of mak-
ing a correct decision by the prior probabilities of reaching each
decision. Moreover, the utility of correctly accepting H0 is not
necessarily the same as that of correctly rejecting it as this de-
pends on the value of K.

A Bayesian finds the sample size to ensure a minimum rate r∗

of correct classification. Note that there are common elements
between this approach and the frequentist approach of control-
ling Type II error given Type I error. However, instead of using
frequentist error rates α and β, the Bayesian goal function uses
a prior probability π for the null hypothesis, a cutoff determined
by K for testing the hypotheses and a cutoff r∗ for ensuring
some desired rate of correct classification.

To illustrate sample size determination under both ap-
proaches, suppose that σ2 = 1 and that δ = .10. Assuming
α = .05, β = .10, a frequentist obtains nF = 857. A Bayesian
assuming that π = .5,K = 1 and r∗ = .9283 finds nB = 857.
Computationally, this is obtained by using Equation (6) for
varying increasing sample sizes until Equation (6) is equal to
r∗ = .9283. Similarly, suppose that δ = .05. The sample sizes
are equal to nB = nF = 3,426. In fact, the equality nF = nB
holds for all values of δ. To see this, note that when setting
n = nF in Equation (6), we obtain

GB(n = nF ,v) = KπP

(
Z ≤ log(K π

1−π )
|zα + zβ | +

|zα + zβ |
2

)

+(1 − π)P
(
Z ≥ log(K π

1−π )
|zα + zβ | − |zα + zβ |

2

)
, (7)

that is, GB(n = nF,v) is algebraically constant as a function
of δ. This is an example of a formal correspondence between
frequentist and Bayesian inputs.

2.2 Composite Hypotheses

We now consider composite hypotheses H0 : θ ≤ θ0 versus
H1 : θ > θ0. The frequentist sample size is given by Equation
(5) with δ equal to the minimum difference to be detected with
power 1 − β. In a Bayesian analysis it is common to adopt pri-
ors that are symmetric around θ0, as they assign the same prior
probability to the null and alternative regions. If we assume θ is
a priori N(θ0, τ

2), it facilitates the illustration of the the rela-
tionship between the two approaches. The posterior distribution
of θ is N(m1, v

2
1), where m1 = θ0σ2+x̄nτ2

σ2+nτ2 and v2
1 = σ2τ2

σ2+nτ2

(DeGroot 1970). A Bayesian does not reject the null hypothe-
sis when the posterior probability is at least 1/(1 + K). This
means that H0 would not be rejected when x̄ ≤ yn where

yn = θ0+z K
1+K

σ√
n

√
1 + σ2

nτ2 . The rate of correct classification
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Table 3. Sample Size and Correct Classification Rate GB as Functions of the Difference δ. The frequentist sample size (nF ) is determined with
α = .05, β = .10, and σ = 1 up to the nearest integer. Rates GB( n = nF ,v = v1), GB( n = nF ,v = vCδ) for C = .5, 1, 2 assume n = nF and that,

respectively, τ = 1 and τ = Cδ, for C = .5, 1, 2.

δ nF GB(nF,v = v1) GB(n = nF,v = v.5δ) GB(n = nF,v = vδ) GB(n,v = v2δ)

.01 85638 .999 .857 .895 .925

.02 21410 .998 .857 .895 .925

.03 9515 .997 .857 .895 .925

.04 5352 .996 .857 .895 .925

.05 3426 .995 .857 .895 .925

.06 2379 .993 .857 .895 .925

.07 1748 .992 .857 .895 .925

.08 1338 .991 .857 .895 .925

.09 1057 .990 .857 .895 .925

.10 856 .989 .857 .895 .925

.20 214 .978 .857 .895 .925

.30 95 .967 .857 .895 .925

.40 54 .957 .857 .895 .925

.50 34 .946 .857 .895 .925

is

GB(n,v) = K

∫ θ0

−∞
Pθ(x̄ ≤ yn)π(θ)dθ

+
∫ ∞

θ0

Pθ(x̄ > yn)π(θ)dθ. (8)

It is shown in Appendix A.1 that,

GB(n,v) =
1
2
+ KΦ

(
z K

1+K

σ√
nτ

)

−(1 + K)
∫ ∞

0
Φ

(
−u

√
n

σ
+ z K

1+K

√
1 +

σ2

nτ2

)

× 1√
2πτ

e− u2

2τ2 du. (9)

Again, as in Section 2.1, u = (α, δ, σ) is the frequentist input.
Fixing the values of α, β, and σ, the frequentist approach would
produce different sample sizes for different values of δ. This is
illustrated in Table 3 with the sample size nF calculated under
the frequentist approach with α = .05 and β = .10 for some
values of δ and assuming that σ = 1.

Suppose a Bayesian wants to find the sample size to ensure a
minimum rate r∗ of correct decisions. The Bayesian input set is
v = (τ,K, σ), as seen from Equation (9) which is constant in δ.
When setting n = nF, the Bayesian goal function is no longer
constant in δ, because nF depends on δ. This is shown in the
third column of Table 3 assuming that τ = 1 and K = 1. When
δ changes, GB(n = nF,v = v1) changes accordingly.

To establish a correspondence between the two approaches
with n = nF = nB, then just as the frequentist power is constant
over all values δ, the Bayesian goal function should also be
constant over δ. This is achieved by taking τ2 = Cδ2 (where C
is a positive constant), that is, by assuming that the prior variance
depends on δ. By setting n = nF from Equation (5) along with
τ2 = Cδ2 in the goal function, it can be shown (see Appendix
A.2) that

GB(n = nF,v) =
1
2
+ KΦ

(
z K

1+K√
C|zα + zβ |

)

−(1 + K)
∫ ∞

0
Φ

(
− t|zα + zβ |

+z K
1+K

√
1 +

1
C(zα + zβ)2

)
1√
2πC

e− t2
2C dt. (10)

The above expression brings out a parallels between the two ap-
proaches by establishing a relationship between the (Bayesian)
prior variance and the (frequentist) target difference. The last
three columns of Table 3 give the rates of correct classification
GB(n = nF,v = vτ ) calculated with nF and τ = Cδ for
C = .5, 1, 2. We see from Table 3 that when τ is a function of
δ, the rate of correct classification is constant as a function of δ.

2.3 Simple Versus Two-Sided Composite Hypothesis

Consider now the simple null hypothesis H0 : θ = θ0 versus
the two-sided composite hypothesis H1 : θ �= θ0. The mini-
mum frequentist sample size to detect a difference δ with fixed
probabilities of Types I and II errors is

nF = (zα/2 + zβ)2
(σ
δ

)2
, (11)

only slightly different from Equation (5). Define P (H0) =
1 − P (H1) = π and assume that θ ∼ N(θ0, τ

2) under H1.
A discussion of the choice of priors for testing two-sided hy-
potheses was provided by Berger (1985). Accepting the null
hypothesis when the posterior probability is at least 1/(1 +K)
means accepting when x̄ ∈ I = (−yn + θ0, yn + θ0) with

yn =
σ√
n

√
2

(
1 +

σ2

nτ2

)(
log
(
K

π

1 − π

)
+

1
2

log

(
1 +

nτ2

σ2

))
.

The rate of correct classification is

GB(n,v) = KπPθ0(x̄ ∈ I)

+(1 − π)
∫ ∞

−∞
Pθ(x̄ �∈ I)π(θ)dθ. (12)

Expression (12) is equivalent to

GB(n,v) = [1 + (K − 1)π] − 2KπΦ
(

−yn
√
n

σ

)
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+ (1 − π)
∫ ∞

−∞

[
Φ
(
(−yn − u)

√
n

σ

)

−Φ
(
(yn − u)

√
n

σ

)]
1√
2πτ

e− u2

2τ2 du.(13)

(see Appendix A.3).
The frequentist input set is again u = (α, δ, σ). A Bayesian

seeking the minimum sample size with rate r∗ of correct de-
cisions requires, from (13), the input v = (π, τ,K, σ). If we
consider again the case τ2 = Cδ2 with n = nF in Equation
(11),

GB(n = nF ,v)
= [1 + (K − 1)π] − 2KπΦ(−A) + (1 − π)∫ ∞

−∞
[Φ(−A − tB) − Φ(A − tB)]

1√
2πC

e− t2
2C dt,

(14)

where

A =

√
2
(
1 +

1
CB2

)(
log
(
K

π

1 − π

)
+

1
2
log (1 + CB2)

)

and B = |zα/2 +zβ | (see Appendix A.3 for details). Again, this
is constant as a function of δ and depends on zα/2 and zβ .

2.4 Simple Versus Simple Hypothesis—Bernoulli Data

Consider a random sample x1, x2, . . . , xn from the
Bernoulli(θ) distribution and let y =

∑n
i=1 xi. We want to

test H0 : θ = θ0 versus H1 : θ = θ1. Desu and Raghavarao
(1990) derived the frequentist sample size by taking the arc sin
transformation of the sample proportion y/n and the fact that
2
√
n(arc sin

√
y/n− arc sin

√
θ) has asymptotically a N(0, 1)

Table 4. Sample Size in the Bernoulli Example. The frequentist sample
size nF is determined with α = .05, β = .10, θ0 = .01, θ1 = δ + θ0 and
rounded to the nearest integer. The values of GB( n = nF ,v = v.5 ) cor-
respond to the rate of making the correct decisions computed assuming

π = .5 and with n = nF .

δ nF GB(n = nF,v = vπ=.5)

.001 88927 .928

.002 23244 .928

.003 10771 .928

.004 6302 .928

.005 4187 .929

.006 3012 .929

.007 2289 .929

.008 1809 .929

.009 1474 .929

.010 1230 .929

.020 392 .929

.030 210 .932

.040 137 .933

.050 99 .932

.060 77 .935

.070 62 .929

.080 52 .929

.090 44 .936

.100 38 .938

distribution. They obtained

nF =
(

zα + zβ

2(arc sin
√
θ1 − arc sin

√
θ0)

)2

. (15)

Suppose a priori that P (θ0) = 1 − P (θ1) = π. Accepting
the null hypothesis when the posterior probability is at least
1/(1 + K) is equivalent to accepting it when y ≤ yc with the
cutoff point

yc =


 log

(
K π

1−π

)
− n log

(
1−θ1
1−θ0

)
log
(

θ1
θ0

)
− log

(
1−θ1
1−θ0

)

 .

The rate of correct decisions is

GB(n,v) = KπPθ0(Y ≤ yc) + (1 − π)Pθ1(Y > yc). (16)

Under the frequentist power-based approach to sample size
determination the input is u = (α, θ0, θ1). When sample size is
determined on the basis of the rate r∗ of correct decisions, the
Bayesian input is v = (π,K, θ0, θ1). Table 4 shows the frequen-
tist sample size nF determined with α = .05, β = .10, θ0 = .01
and θ1 = δ + θ0. The values GB(n = nF ,v) correspond to the
rates of correct decisions assuming π = .5 and with n = nF.
The function GB(n = nF,v) is not constant as a function of
δ. Similar to the approach taken in Section 2.2, we can further
establish a relationship between the prior probability π and the
value of δ being tested to obtain a constant goal function. In
the above example, the prior probabilities that are necessary to
achieve a constant goal function with the Bayesian approach can
be calculated numerically. Figure 1 shows the prior probability
π as a function of δ. Under these prior probabilities the Bayesian
goal function is approximately constant and equal to r∗ = .93.
The figure shows that the prior probabilities decreases as the
target difference increases.

3. COMPARING ERROR RATES AND
INFORMATION

3.1 Lindley Information

Consider observing X from the distribution p(x|θ). Lindley
(1956) proposed to measure the amount of information about θ
provided by the outcome of the experiment using the quantity:

I ≡ E{log π(θ|X)} − E{log π(θ)}
= E

{
log
(
π(θ|X)
π(θ)

)}
, (17)

where expectations are taken with respect to the joint distribution
of θ and X . Expression (17) quantifies the difference between
the knowledge available on θ before and after the experiment,
represented by the prior distribution π(θ) and by the posterior
distribution π(θ|X), respectively.

There are two standard justifications for (17). One is decision-
theoretic: I is the expected utility of reporting a density on the
unknown quantity θ, when the utility function is the logarithm
of the density. See Good (1952), DeGroot (1984) for additional
details, and DeGroot (1962) for the information derived with
different utility functions. The other is information-theoretic: I
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Figure 1. Prior probability π as a function of δ = θ1 − θ0 in the Bernoulli example. The prior probabilities are numerically calculated to keep a
rate r ∗ = .93 of correct decisions when n = nF and using the normal approximation to the binomial probabilities in Equation (16).

is the difference in entropies between the prior and the posterior
distribution. Both interpretations are consistent with viewing I
as quantifying the information provided by an experiment.

Lindley (1956) considered the sequential sampling problem
and suggested that experimentation should continue until ob-
taining enough information I about the parameter of interest.
Bernardo (1979, 1997) provided asymptotic results on informa-
tion, and applied them to determining sample size. Parmigiani
and Berry (1994) developed general first-order conditions to
obtain optimal designs. In another application, Verdinelli and
Kadane (1992) derived designs for certain hierarchical linear
models by maximizing the expected utility expressed as a lin-
ear combination of expected information and expected value of
some function of the outcomes of the experiment.

In this section we use information to investigate parallels be-
tween Bayesian and frequentist approaches to sample size de-
termination under different goals. As in the previous section, the
frequentist goal function GF is power. Now the Bayesian goal
function GB is Lindley information. With these rather differ-
ent goals, one can identify close correspondences between the
frequentist and Bayesian inputs which lead to the same sample
sizes.

3.2 Information and Sample Size—Normal Data

When a random sample of size n is taken from a N(θ, σ2)
distribution and θ has a prioriN(µ, τ2)distribution, the expected
information for the experiment (Lindley 1956) is

I =
1
2
log
(
1 + n

τ2

σ2

)
. (18)

From Equation (18), the Bayesian sample size nB to achieve a
fixed amount of expected information I∗ is

nB = (exp(2I∗) − 1)
(σ
τ

)2
, (19)

and the Bayesian input is v = (τ, σ).
Note that the expected information I is not constant in δ when

setting n = nF in Equation (18), where nF is the frequentist
power-based sample size based on the inputu = (α, δ, σ). When
n = nF, assuming that τ2 = Cδ2 (for C > 0) makes I constant
in δ and it follows from Equations (5) and (19), nB = nF if and
only if (exp(2I∗) − 1) = C (zα + zβ)

2
, which implies

I∗ =
1
2
log
(
1 + C(zα + zβ)2

)
. (20)

3.3 Information and Sample Size—Bernoulli Data

Consider independent and identical Bernoulli(θ) observa-
tions and assume that θ takes only two values, θ0 and θ1, with
P (θ0) = 1 − P (θ1) = π. The frequentist sample size nF is
determined as in Section 2.4 with input u = (α, θ0, θ1).

If a Bayesian seeks the sample size giving expected informa-
tion I∗, the input is v = (π, θ0, θ1). Using n = nF (with nF
calculated with α = .05, β = .10, θ0 = .01 and θ1 = δ + θ0),
Figure 2 shows that the expected information is nearly constant
as a function of δ for a broad range of prior probabilities. Again,
if a frequentist and a Bayesian agree on a sample size for one δ
then they will be close to agreeing for all δ.

4. DISCUSSION

In this article we provided a simple but general framework
for identifying mappings between the frequentist and Bayesian
approaches to sample size determination. We also provided ex-
amples of how this correspondence can be used in standard situ-
ations. By way of illustration we focused on the correspondence
between the “target difference” δ in the classical approach and
the prior standard deviation in a Bayesian approach. Showing
that one can translate a sample size calculation made according
to one philosophy into the other philosophy will help convey a
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Figure 2. Contour plot of the expected information as a function of δ = θ1 − θ0 and π. The expected information is calculated with n = nF . The
frequentist sample size nF is calculated with α = .05, β = .10, θ0 = .01, θ1 = δ + θ0 .

greater understanding of the appropriateness of any particular
sample size choice and for the method that derived it.

Bayesian and frequentist approaches to sample size determi-
nation differ in philosophy and goals. However, both provide
algorithms for determining a sample size from specified criteria
and inputs. Sample size determination is a critical aspect of the
evaluation of proposed research funding and regulatory evalua-
tion of proposed drug and medical device trials. Reviewers can
reasonably criticize the inputs. But in view of our simple obser-
vation, there is no philosophical basis for criticizing a proposed
sample size. If a different philosophical approach is deemed to
be more appropriate, it is possible to derive a set of inputs in that
alternative approach in which the sample size is the same as the
one proposed.

An increasing number of marketing approval applications for
drugs and medical devices are being submitted for regulatory
approval using a Bayesian approach. Many reviewers object
to mixing frequentist and Bayesian philosophies in the appli-
cation process. One of the problems in Bayesian submissions
is that there is no standard method for calculating sample size
from a Bayesian perspective. Another is that reviewers do not
understand Bayesian sample size calculations as well as they
understood Bayesian analyses. Our results lend credence to fre-
quentist sample size calculations from a Bayesian perspective
and allow companies to use standard frequentist methods while
still claiming to be Bayesian.

We have focused on a special design consideration and ex-
plored correspondences between frequentist and Bayesian ap-
proaches. A related question is, once data have been collected,
how to perform the analysis? There are correspondences at the
analysis stage when the Bayesian uses a noninformative prior.
Using conditional frequentist hypothesis testing as discussed by
Berger, Brown, and Wolpert (1994) and Berger, Boukai, and
Wang (1997) leads to equivalent inferences under the Bayesian

approach. Our article indicates that there are correspondences
between the two approaches at the design phase as well as at the
inferential stage.

APPENDIX

A.1 DERIVATION OF GB FROM SECTION 2.2

Let yn = θ0 + z K
1+K

σ√
n

√
1 + σ2

nτ2 and suppose that θ ∼
N(θ0, τ

2). The probability of making the correct decision is
given by

GB(n,v) = K

∫ θ0

−∞
Pθ(x̄ ≤ yn)π(θ)dθ

+
∫ ∞

θ0

Pθ(x̄ > yn)π(θ)dθ

= K

∫ θ0

−∞
Pθ(x̄ ≤ yn)π(θ)dθ

+
∫ ∞

θ0

(1 − Pθ(x̄ ≤ yn))π(θ)dθ

= P (θ ≥ θ0) + K

∫ θ0

−∞
Pθ(x̄ ≤ yn)π(θ)dθ

−
∫ ∞

θ0

Pθ(x̄ ≤ yn)π(θ)dθ

Adding and subtracting K
∫∞

θ0
Pθ(x̄ ≤ yn)π(θ)dθ

= P (θ ≥ θ0) + K

∫ ∞

−∞
Pθ(x̄ ≤ yn)π(θ)dθ

−(1 + K)
∫ ∞

θ0

Pθ(x̄ ≤ yn)π(θ)dθ

= P (θ ≥ θ0) + KP (x̄ ≤ yn)

−(1 + K)
∫ ∞

θ0

Pθ(x̄ ≤ yn)π(θ)dθ. (A.1)
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We have P (θ ≥ θ0) = 1/2. The predictive distribution of x̄ is
N(θ0, σ

2/n + τ2). Thus,

P (x̄ ≤ yn) = Φ

(
yn − θ0√
σ2/n + τ2

)
= Φ

(
z K

1+K

σ√
nτ

)
.

(A.2)
Furthermore,∫ ∞

θ0

Pθ(x̄ ≤ yn)π(θ)dθ

=
∫ ∞

θ0

Φ
(
yn − θ

σ/
√
n

)
π(θ)dθ

=
∫ ∞

θ0

Φ

(
θ0 − θ

σ/
√
n

+ z K
1+K

√
1 +

σ2

nτ2

)
π(θ)dθ.

Let u = θ − θ0

=
∫ ∞

0
Φ

(
−u

√
n

σ
+ z K

1+K

√
1 +

σ2

nτ2

)
1√
2πτ

e− u2

2τ2 du.

(A.3)

Thus,

GB(n,v) =
1
2
+ KΦ

(
z K

1+K

σ√
nτ

)

−(1 + K)
∫ ∞

0
Φ

(
− u

√
n

σ

+z K
1+K

√
1 +

σ2

nτ2

)
1√
2πτ

e− u2

2τ2 du.

A.2 DERIVATION OF GB FROM SECTION 2.2
ASSUMING τ = Cδ AND N = NF

As in A.1 suppose that yn = θ0 + z K
1+K

σ√
n

√
1 + σ2

nτ2 and

θ ∼ N(θ0, τ
2). Furthermore, assume that τ2 = Cδ2 and n =

nF . This implies from Equation (A.2) that

P (x̄ ≤ yn) = Φ

(
z K

1+K√
C|zα + zβ |

)
. (A.4)

From Equation (A.3)∫ ∞

θ0

Pθ(x̄ ≤ yn)π(θ)dθ

=
∫ ∞

0
Φ

(
−u

√
n

σ
+ z K

1+K

√
1 +

σ2

nτ2

)
1√
2πτ

e− u2

2τ2 du

=
∫ ∞

0
Φ

(
−u|zα + zβ |

δ
+ z K

1+K

√
1 +

1
C(zα + zβ)2

)

× 1√
2πCδ

e− u2

2Cδ2 du

Let t = u
δ

=
∫ ∞

0
Φ

(
−t|zα + zβ | + z K

1+K

√
1 +

1
C(zα + zβ)2

)

1√
2πC

e− t2
2C dt. (A.5)

By combining Equations (A.4) and (A.5) into (A.1)

GB(n = nF ,v) =
1
2
+ KΦ

(
z K

1+K√
C|zα + zβ |

)

−(1 + K)
∫ ∞

0
Φ

(
− t|zα + zβ |

+z K
1+K

√
1 +

1
C(zα + zβ)2

)
1√
2πC

e− t2
2C dt.

A.3 DERIVATION OF GB FROM SECTION 2.3

Let x̄ ∈ I = (−yn + θ0, yn + θ0) with yn =
σ√
n

√
2
(
1 + σ2

nτ2

) (
log
(
K π

1−π

)
+ 1

2 log
(
1 + nτ2

σ2

))
define

the acceptance region for H0. The probability of making the
correct decision is

GB(n,v) = KπPθ0(x̄ ∈ I)

+(1 − π)
∫ ∞

−∞
Pθ(x̄ �∈ I)π(θ)dθ (A.6)

Observe that

Pθ0(x̄ ∈ I) = 1 − 2Φ
(

−yn
√
n

σ

)
. (A.7)

Furthermore,∫ ∞

−∞
Pθ(x̄ �∈ I)π(θ)dθ

= 1 +
∫ ∞

−∞
[Pθ(x̄ ≤ −yn + θ0) − Pθ(x̄ ≤ yn + θ0)]π(θ)dθ

= 1 +
∫ ∞

−∞

[
Φ
(
(−yn − (θ − θ0))

√
n

σ

)

−Φ
(
(yn − (θ − θ0))

√
n

σ

)]
π(θ)dθ

Let u = θ − θ0

= 1 +
∫ ∞

−∞

[
Φ
(
(−yn − u)

√
n

σ

)

−Φ
(
(yn − u)

√
n

σ

)]
1√
2πτ

e− u2

2τ2 du. (A.8)

By combining Equations (A.7) and (A.8) into (A.6)

GB(n,v) = [1 + (K − 1)π] − 2KπΦ
(

−yn
√
n

σ

)

+(1 − π)
∫ ∞

−∞

[
Φ
(
(−yn − u)

√
n

σ

)

−Φ
(
(yn − u)

√
n

σ

)]
1√
2πτ

e− u2

2τ2 du. (A.9)

Assuming that τ2 = Cδ2, setting n = nF as in Equation (11)
and using the transformation t = u/δ in the integrand,

GB(n = nF,v) = [1 + (K − 1)π] − 2KπΦ(−A)

+(1 − π)
∫ ∞

−∞
[Φ(−A − tB) − Φ(A − tB)]

1√
2πC

e− t2
2C dt,
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where

A=

√
2
(
1 +

1
CB2

)(
log
(
K

π

1 − π

)
+

1
2
log (1 + CB2)

)

and  

B = |zα/2 + zβ |.

[Received April 2002. Revised September 2004.]
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