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M Estimation of Multivariate Regressions 
ROGER KOENKER and STEPHEN PORTNOY* 

Robust alternatives to the seemingly unrelated regression (SUR) estimator of Zellner (1962) are proposed for the classical 
multivariate regression model. These weighted M estimators achieve an asymptotic covariance matrix analogous to that of the 
SUR estimator. Comparisons for the 11, least absolute deviation, case are made with the efficient estimator in the case of 
elliptically contoured distributions. An example reanalyzing the Grunfeld investment data using a smooth "11-like" M estimator 
is discussed in detail. In contrast to recent work of Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Rousseeuw (1987), and 
Oja (1983), the methods studied here are not affine equivariant; some remarks on the potential significance of this failing 
conclude the article. 
KEY WORDS: 11 estimation; Robustness; Seemingly unrelated regression. 

1. INTRODUCTION 

Consider the classical multivariate regression model 

Yi X1 0 ... ? fl ul 
Y2 = X2 ... O f2 + U.2 (1) 

with m equations and n observations on each equation, 
which we will express more succinctly as 

y = X/3 + u. 

When cov(u) = Ql 0 I and ,B is an unknown p = Si=1 Pi 
vector, it is well known that the ordinary least squares 
estimator,B = (X'X)-'X'y is inefficient relative to the 
(Gauss-Markov) generalized least squares estimator , = 
(X'(fV-1 0 I)X)-'X'(f1-1 0 I)y. The former has covari- 
ance matrix 

V = V(A3) = (X'X)-'X'(Q 0 I)X(X'X)-1, 
and the latter boasts 

V = V(p) = (X'(QY' 0 I)X) - 

The difference V - V is positive-semidefinite. Zellner 
(1962, 1963) contains the seminal analysis of this situation. 
See Srivastava and Giles (1987) for an exhaustive treat- 
ment of the recent literature on this subject. 

Similarly, it is easy to show under analogous conditions 
that the ordinary least absolute deviation (11) estimator, 
/B, which minimizes 

m n 

R(b) =E E lyij - xijbi 
i=1 j=1 

has asymptotic covariance matrix of the form V(,B), but 
with Q replaced by 

Q = (cvi)= E sgn(uik)sgn(uj1) 
4f1(O)fj(O) 

where fk denotes the (marginal) density of the coordinate 
Uk. The numerator of woij may be regarded as an 11 cor- 
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relation based on orthant probabilities between the errors 
in the ith and jth equation, and the terms in the denom- 
inator are the marginal densities of these error terms eval- 
uated at their medians. Since the latter are inversely 
proportional to the scale of the marginal distributions, Q 
may be regarded as an 11 covariance matrix. The bivariate 
version of the numerator was considered in Blomqvist 
(1950); see also Devlin, Gnanadesikan, and Kettering 
(1975). 

In light of the least squares results it is natural to ask: 
Can we construct a generalized 11 estimator that has an 
asymptotic covariance matrix of the form V(f,)? In the 
next section we investigate a rather broad class of weighted 
M estimators that achieve a generalized version of this 
objective, and we shall see that a particular weighted 11 
estimator is an important special case. Since these esti- 
mators use one-dimensional kernels, Section 3 investigates 
their efficiency compared with the fully multivariate 
asymptotically optimal estimators. We consider elliptically 
contoured error distributions and specialize specifically to 
multivariate t distributions. The basic conclusions are that, 
although the methods based on univariate kernels can have 
arbitrarily small efficiency, this tends to occur only when 
the error coordinates are highly correlated (and hence 
when the asymptotic variance is small). Thus the simple 
one-dimensional methods (particularly, the appropriate 11 
estimator) will generally achieve quite reasonable asymp- 
totic performance. Section 4 illustrates the methods by 
reestimating the well-known Grunfeld (1958) investment 
model. Section 5 concludes with some comments on the 
issue of affine equivariance. 

2. M ESTIMATION OF MULTIVARIATE REGRESSION 

Slight departures from Gaussian behavior of u can, of 
course, produce arbitrarily large disturbances in the be- 
havior of the least squares estimators referred to in the 
previous section. To achieve some degree of robustness 
against such departures from normality we might consider 
estimators that minimize 

m n 

RO(b) = P(Yij - xijbi). 
i=1 j=1 
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The ordinary l1 estimator is an important special case. 
Estimation of the m-variate location and scatter model is 
also an important special case, where Xi i-, an n-vector 
of ones, and ,B is an m-vector of location parameters. Un- 
der mild conditions on p, minimizing Ro(b) is equivalent 
to solving the equations 

n 

E V(yij - xijbi)xij= , i = 1, . . ., , 
j=1 

for tV = p'. We will refer to estimators that use such one- 
dimensional kernels as ordinary M estimators; in the lo- 
cation-scatter problem the terminology "coordinatewise 
M estimator" might be used. Like the ordinary least 
squares estimator, they can be computed one equation 
(coordinate) at a time. 

It should also be remarked at this stage that most of the 
attractive choices for p involve some scale estimation to 
achieve scale invariance. For example, for the leading case 
of the Huber M estimator, 

p(Z) = 2z2, z k, 
=klzl - 'k , lzl > k, 

we require some (scale-equivariant) scale estimators si: i 
= 1, . . , m, for example, the median absolute deviation 
from the 11-fit, which can be used to rescale the objective 
function. In these cases we should presume that 

p(yij - xijbi) = po((yij - xijbi)lsi) 
for some standardized po and the rescaling by si is implicitly 
subsumed into the function p defined previously. Of 
course, in the case of the 11 estimator, scale invariance 
requires no preliminary estimation of scale. The issue of 
scale estimation is treated in the illustrative data analysis 
of Section 5. 

To relax the implausible and potentially dangerous 
Gaussian hypothesis on u in Section 1 we will assume the 
following. 

Condition A]. The m-vectors uj = (Ulj, U2j, , Umj)' 

for j = 1, . . ., n are iid with joint distribution function 
F. 

Following Ruppert and Carroll (1980) and Jureckova' 
(1977), we also require the following. 

Condition P1. The function VI(u) is bounded and mon- 
otonically nondecreasing. 

Condition P2. The matrix 

R (0 1 = (E yV(Uik)yV(Uj1)) = (Pijbkl) 

is positive-definite. Either yV or the marginal densities fi 
for the marginal distributions Fi (i = 1, . . ., m) are 
absolutely continuous and satisfy 

-i tV(u) dFi (u) or -f v(u)f'(u) du 

for constants 0 < Xi < Qo, i = 1, . . . , rn, and B yI(Uik) 
= Ofori =1,. . .,rn; j =1,. . ., n. 

Condition Xl. Each design matrix Xi has first column 
equal to a vector of ones. 

Condition X2. n-1l2 maxlxijl = o(l) as n -> oo. 

Condition X3. For each i = 1,..., m, n-1X1X 
> Dii, where Dii is a positive-definite matrix. 

Note that in the least squares case p(u) = 2u2, so R is 
simply the usual covariance matrix of the ui, and i- 1. 
In the 11 case, R is the "orthant probabilities correlation 
matrix" of covariances of the signs of the errors, and O, 
= 2fi(0). 
The asymptotic theory of the ordinary M estimator is 

immediately obtained from the asymptotically linear rep- 
resentation of the M estimator for each equation, 

,B - A, = n(4iDii)-'X' Vti + op(n 
i=1,...,m, (2.1) 

where Di = lim n-IX'Xi and vi = (y,(ui1)), i = 1, 
. . .,m. The joint asymptotic normality of these vectors 

follows immediately as in single equation context. A typ- 
ical block of the covariance matrix is 
cov((/% - As), (flj - fI)) 

= -2101pijD- X XjD-1 + op(n-1) 

Thus the covariance matrix for the entire vector (,B - ,B) 
= ((A3 - pi)) may be written as 

V = (X'X)-'X'(z 0 I)X(X'X)-', 

where /v = F -1R.F-1 with F = diag(+;). It might be noted 
that we can also write 

V = (X'PX)-1X'(R 0 I)X(X'PX)-1, 
where P = 4 0 1. Clearly the block diagonality of X as 
well as the Kronecker product form of P is essential to 
the preceding "simplification". The latter form for the 
asymptotic covariance matrix of the 11 estimator has re- 
cently been derived by Kuester (1987). 

As we observed previously, it is natural to ask whether 
we can improve on the asymptotic performance of this 
ordinary M estimator, designing a generalized M estimator 
that would achieve asymptotic covariance matrix, 

V = (X'(A-1 0 I)X)-. 

This objective is easily achieved if we simply replace the 
"normal equations" of the unweighted objective function, 
which we may express in more compact form as 

X'yi(b) = 0, 
with the weighted normal equations 

X'P(R-1 0 I) V(b) = 0. (2.2) 

In cases where yV is not continuous, Theorem 2.1 will apply 
to any estimator satisfying X'P(R' 0 I)yV(b) = op(n- 12). 
A natural question at this point is whether or not there is 
an optimization problem that implies (2.2), but differen- 
tiating (2.2) with respect to b and noting that the resulting 
matrix is not symmetric resolves the question negatively. 
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Our main result is the following asymptotic representation 
of /3, the estimator solving (2.2). 

Theorem 2.1. In the multivariate linear model (1.1), 
suppose that Conditions A, P, and X hold. Then 

- -B = (X'P(R-' 0 I)PX)-1X'P(R-1 0) I)q/(O) 

+ o (n-1/2) (2.3) 

where V/ (0) = (st(uij)). 
Proof. Consider the normalized gradient, 

g(6) = n-112X'P(R - 1 0 I) (6) 
where I (() = (VI(uij + n-112xXj6i)), an mn-vector. Familiar 
arguments from Ruppert and Carroll (1980) and Bickel 
(1975) imply for fixed L > 0, 

sup IIg(6) - g(0) - E(g(6) - g(0))jj = op(l). (2.4) 
1161<L 

Further, os = n1/2(fl - fi) = Op(l), E g(0) = 0, and g(Q) 
= op(l). Finally, by expanding V(.), we have 

sup jIE g((5) - n1'X'P(R-1 0 I)PX611 = op(l), (2.5) 
11611<L 

so substituting j in (2.5) and then in (2.4) completes the 
argument for 11611 cI L. As in Ruppert and Carroll (1980) 
or Jureckov'a (1977), monotonicity of V/ completes the ar- 
gument. 

An immediate application of this result is the asymptotic 
normality of n1/2(/B - fi), which has mean 0 [since E q(0) 
= 0]. The asymptotic covariance matrix of (,B - ,B) is 

V = (X'P(R -1 0 I)PX)-1 = (X'(A-1 0 I)X)-. 

(2.6) 
Note that each component (/,i - /3') is expressed in Theo- 
rem 2.1 as a weighted sum of n independent components. 
Our design conditions ensure that these summands satisfy 
the Lindeberg condition; compare Koenker and Bassett 
(1978). 

It may be noted that, as in the classical case, if the design 
matrix is the same in all m equations then there is no 
efficiency gain in solving (2.2). Indeed, it is easy to see 
that any solution to the equation-by-equation M estima- 
tion problem will also solve (2.2) in this case. 

As in the classical least squares case it is important to 
consider the consequences of replacing P and R in (2.2) 
by estimates. Arguments similar to those in the classical 
context, however, yield an identical asymptotic theory pro- 
vided that A -> A in probability. In subsequent work we 
hope to explore the practical consequences of various es- 
timation schemes for A. 

3. COMPARISONS WITH OPTIMAL ESTIMATORS IN 
THE ELLIPTICALLY CONTOURED CASE 

Although solving (2.2) provides an asymptotic improve- 
ment over the naive M estimator, this method still depends 
on a one-dimensional kernel. Since the problem is inher- 
ently multidimensional, this poses the question of how 
much one is sacrificing for the sake of simplicity. Two 
comments can be made here. 

First, the results of Portnoy [see Portnoy (1977) and, 
especially, Portnoy (1979, sec. 1)] suggest that if there is 
only small dependence between the equations, a one- 
dimensional kernel with a small amount of redescent pro- 
vides the first-order correction to the optimal estimator. 
Thus there is little sacrifice of efficiency if the dependence 
is small. If the dependence is large, however, improve- 
ments can be made by using fully multivariate estimators; 
for example, the maximum likelihood estimator for model 
(1.1). Comparisons are somewhat difficult to make in the 
completely general case, but the elliptically contoured case 
provides relatively clear and simple comparisons. Consider 
u = (u1, . . , un) as a matrix of a sample of size n from 
a multivariate density, f, on Rm, which is elliptically con- 
toured with parameter A. That is, A1 is the "precision 
matrix," or, equivalently, A-12uj is spherically symmetric. 
The matrix A is not uniquely defined but is only deter- 
mined up to a positive multiplicative constant. Thus, when 
variances exist, we will generally specify the constant by 
taking A = cov(uj). Clearly, the results do not depend on 
having a finite variance, but this specification will permit 
direct comparisons to be made. The specific examples con- 
sidered here will take uj to have a multivariate t distribution 
(with covariance A) and will emphasize the case in which 
the dimension m = 2. 

The results may be summarized as follows. The optimal 
asymptotic covariance matrix is the inverse Fisher infor- 
mation matrix, which Theorem A. 1 in the Appendix shows 
to be 

V* = c*(X'(A-1 0 I)X)-1, (3.1) 
where c* is defined by (A. 1). Since the asymptotic covari- 
ance for the solution to (2.2) (the weighted M estimator) 
is of rather different form, we can simplify the comparisons 
by considering two stages. First, consider the case where 
we transform by A-112 to obtain spherical symmetry. Theo- 
rem A.2 shows that the asymptotic covariance for the 
weighted M estimator applied to the transformed data is 

Vtr = Ctr(X'(A-1 0 I)X)-1, (3.2) 

where Ctr is given by (A.2). Thus efficiencies of weighted 
M estimators applied to the transformed data can be read- 
ily computed by comparing Ctr with c*. As a specific ex- 
ample, consider the multivariate t distribution with q df 
(for q > 0) and dimensions m = 2, 5, 10, and scaled so 
that each coordinate has variance 1. In this case, values 
for c* and Ctr are calculated in Proposition A.1 of the 
Appendix [Eq. (A.3)]; efficiencies for the weighted 11 
estimator, C*/Ctr, are plotted in Figure 1, along with effi- 
ciencies for the least squares estimator (where the constant 
is c = 1). Note that although the efficiency of the 11 es- 
timator can tend to 0, it.does so only for extreme error 
distributions where the asymptotic covariance is already 
quite small. 

Finally, we compare the asymptotic covariances for the 
weighted 11 estimator applied to the original data with 
those of the same estimator applied to the transformed 
data in the case in which m = 2. Proposition A.2 computes 
the covariance matrix given in (2.6) under a bivariate t 
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Figure 1. Efficiencies for Li and LS. 

distribution with q df (again scaled to give variance 1): 
V = Ctr(X'(LV'(U) (0 I)X)', 

where A(u) = 14 _ p (3.3) - sin (33)7 

and where p is the correlation parameter in the specific 
example defined by (A.4). It turns out that A and A have 
the same diagonal elements (when m = 2), so Vtr < V (in 
the sense of having a positive-definite difference) iff det(A) 
< det(A). In fact, the ratio of these determinants is just 
the ratio of generalized variances, det(Vtr)/det(V). Thus 
e {det(A)/det(A)}112 is a measure of efficiency that is 
scaled as a ratio of variances. Direct computation shows 
that e monotonically decreases to 0 as pI -> 1. Further- 
more, e is moderately large unless there is substantial cor- 
relation among the equations, in which case the actual 
variance det(V) is already small. In particular, e > .82 for 
IPI C .7 and e ? .62 for IlP .9. 

As a final consequence, therefore, we can expect the 
weighted 11 estimator to be reasonably efficient unless V 
is already quite small. That is, inference based on the 
solution to (2.2) should be fairly good even though it does 
not take full account of the multivariate nature of the 
problem. 

4. AN EXAMPLE 

To illustrate the methods described previously, we now 
reconsider the well-known Grunfeld (1958) investment 
model. Grunfeld proposed and estimated a simple model 
in which a firm's investment in period t + 1 was linear in 
the firm's capital stock in period t and in the market value 
of the firm in period t. Grunfeld's data, which consist of 
annual observations on these quantities for several major 
U.S. corporations, 1935-1954, has been subsequently 
reanalyzed many times. See, for example, Boot and De 

Wit (1960) and the textbook treatment by Theil (1971) for 
the data and further details on the model. 

We will consider, like Theil, only two firms: General 
Electric (GE) and Westinghouse (WH). Thus we have a 
model of the form (1.1) with m = 2, n = 20, pI = P2 = 
3. For numerical stability we have rescaled the data so 
market values are in billions of dollars, and the investment 
and capital stock variables are in hundreds of million dol- 
lars. In Table 1 we report ordinary least squares (OLS) 
and normal theory seemingly unrelated regression (SUR) 
estimation of the Grunfeld model. The estimated covari- 
ance matrix for the SUR estimates is 

.066 .0180 

.018 .009,! 

which implies an estimated correlation between the errors 
of the two equations of .73. 

We choose to illustrate our methods with a smooth 41- 
like M estimator. This avoids some difficult computational 
problems in solving (2.2) when V/ is discontinuous and 
facilitates the computation of standard errors for reported 
estimates by avoiding the problem of sparsity estimation 
[e.g., see Welsh (1987)]. As in Amemiya (1982), we con- 

Table 1. Classical Estimation of the Grunfeld Investment Model 

Intercept Market value Capital stock 

OLS 
GE -.100 .266 .152 

(.313) (.156) (.026) 
WH - .005 .529 .092 

(.080) (.157) (.056) 
SUR 

GE - .277 .383 .139 
(.289) (.142) (.025) 

WH -.012 .576 .064 
(.074) (.143) (.052) 

NOTE: Standard errors appear in parentheses. 
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sider a logistic approximation to the 11 Vu-function v,(u) = 
sgn(u) as 

f = -(1 - 2/(1 + e-Au)), 

where A is a scale factor that controls the 11-ness of the 
approximation. As with any such M-estimation method, 
some concomitant scale estimation is required to achieve 
scale equivariance. We adopt the prevalent device of start- 
ing our iterations as the coordinatewise 41 estimate and 
using the mad scale estimate, that is, 

s = 2c median{jui - median{u,}|}, 

where c = .7413 is chosen to achieve (approximate) Fisher 
consistency at the Gaussian model. 

In Table 2 we present single-equation estimates as well 
as the starting values provided by the 41 estimates. The M 
estimates solve the equation 

n 

x jVl((yj - xjb)ls) = 0. 
j=1 

Since the Jacobian of this equation is easily computed 
analytically we employ the algorithm DZONEJ from the 
Port3 library (Fox 1984). To estimate standard errors we 
adopt a slight variation on one of the proposals of Huber 
(1981, sec. 7.6) for which we estimate the asymptotic co- 
variance matrix of the M estimate /l by Vn = H-'G,H- 
where 

Gn= E xi~XX2((y, - X/iJ)/S) 

and 

Hn= > 1XX'iy((yi - X)/s)(A1s). 

The scale factor A is analogous to the Huber k; we have 
chosen it in such a way that under Gaussian conditions 
20% of the observations would have I v,(u)I < .99. So the 
resulting M estimator behaves, roughly, like a 40% 
trimmed mean. In general, we may write 

log((a + 1)/(1 - a)) 
A = 

(- ?- '( - b) 

where a is a bound on the v-function and b is a desired 
level of trimming. Here we have set a = .99 and b = .40. 

Estimating the parameters of P and R as 
n 

Ri= n VA(uikISi)VA(uJkIS) (4.1) 
k=1 

and 
n 

P1i = n >E VA(uik/s1)(SX/Si), (4.2) 
k=1 

we obtain 

R .854 .518"8 (#5.39 0 "8 
R=y518 .865/p 4' = O 13.11/J 

The final M estimation of the two equations, obtained 

Table 2. Single-Equation M Estimation of the Grunfeld 
Investment Model 

Intercept Market value Capital stock 

GE -.110 .252 .150 
-.119 .252 .156 
(.072) (.028) (.020) 

WH .051 .397 .139 
.036 .417 .134 
(.060) (.096) (.041) 

NOTE: Line 1 in each table section contains the (I1) starting values, line 2 reports M estimates, 
and the numbers in parentheses are standard errors for the M estimates computed from Vn. 

by solving (2.2), is reported in Table 3, where we have 
computed standard errors in accordance with the expres- 
sion (2.6). Estimated standard errors are reported both 
by evaluating (2.6) at the initial estimates R and + and 
reestimating R and T using residuals from the multivariate 
fit. 

Since the matrix A-1 = (TR - IT)1- plays the role of 
the covariance matrix in our M estimation of multivariate 
models, it is worth noting that, after reestimating R and 

- [.022 .006 
[.006 .004J 

which, if viewed as a conventional covariance matrix, im- 
plies a correlation of .65, compared with the .73 for the 
corresponding classical SUR estimates. 

Since we are not privileged to know the true values of 
the parameters for this example, it is difficult to draw 
definite conclusions from the foregoing results. Clearly, 
the M estimates are quite stable with respect to the initial 
11 single-equation results, but rather substantial differences 
exist between this group of estimates and the SUR results. 
One way to illustrate the robustness of the M-estimation 
approach is to study the effects of introducing artificial 
contamination into an existing data set, like the Grunfeld 
data. 

We undertake two simple experiments of this type. In 
the first we select an arbitrary observation from the first 
equation and introduce additive contamination to it. More 
explicitly, we let Y1 12 = Y1,12 + d and study the resulting 
perturbation in our estimates as a function of the scalar 
d. The consequences of this contamination are displayed 
in sensitivity curves (Figures 2 and 3) and are quite dif- 
ferent in the two equations. In the first equation, the SUR 

Table 3. Multivariate M Estimation of the Grunfeld Investment Model 

Intercept Market value Capital stock 

GE -.114 .255 .151 
(.186) (.092) (.016) 
(.159) (.078) (.013) 

WH .051 .392 .109 
(A054) (.104) (.038) 
(.049) (.094) (.034) 

NOTE: Two sets of standard errors are reported. The first set of figures in parentheses is 
based on evaluating (2.6) at 4, 'Pgiven in (4.1) and (4.2), and the second row is based on 
reestimation of R, 'P. 
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Figure 2. Sensitivity Curves for GE Parameters. 

estimates appear essentially linear in d. So, as in OLS 
estimation, a single bad observation may create an arbi- 
trarily large perturbation in the estimates. In the second 
equation the situation is somewhat more complicated. The 
contamination in the first equation has the effect of in- 
flating the estimated variance of the first equation, thus 
decreasing its influence in the estimated parameters of the 
second equation. Correlation between the two equations 
diminishes but does not vanish. The net effect is a modest 

perturbation in the estimated parameters of the second 
equation, which gradually attenuates as the contamination 
becomes more extreme. 

In contrast, the effect of the contamination on the M 
estimates is barely perceptible. A slight perturbation oc- 
curs as the contaminated observation crosses the plane 
determined by the initial fit, but further more extreme 
contamination has no further consequences. 

In the second experiment we contaminate both obser- 

a _ 

0 
2 2 

2 . . . . . . . . . .. . . . .. . . . . --......-..--.-. -..... ..... . . .. ... ............. .... 

O F : ;~~~~~~~~~~~~~~~~~~~~~~~.::::.. ..................... -- ;... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 

- ..... MSUR 

SUR 

-6 -4 -2 0 2 4 

GE Perturbation 

Figure 3. Sensitivity Curves for WH Parameters. 
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Figure 4. Sensitivity Curves for GE Parameters. 

vations corresponding to a given year. Explicitly, Y}.12 = 
YI,12 + d, Y2*32 = Y2.12 + d. The results appear in Figures 
4 and 5. Now, the pair of contaminated observations grad- 
ually comes to dominate the correlation between the two 
equations, driving it to one. All of the SUR estimates 
behave linearly in d, for large values of Idl. In contrast, 
the MSUR estimates are completely insensitive to large 
values of the perturbation d. 

5. ON AFFINE EQUIVARIANCE 
To conclude, a brief apologia is required for the der- 

eliction of affine equivariance. Most of the recent work 
on robust multivariate analysis [see Rousseeuw (1987) and 
Hampel, Ronchetti, Rousseeuw, and Stahel (1986, chap. 
5) and references cited there] has restricted attention to 
estimators that commute with affine transformations. Sup- 
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Figure 5. Sensitivity Curves for WH Parameters. 
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pose that T(yj, . . ., yn) is an estimator of multivariate 
location based on observations {yi E RP: i = 1, . . ., n}. 
Then T is said to be affine equivariant iff 

T(yjA + b,. . . ,ynA + b) = T(yj, M . *yn)A + b 

(5.1) 

for any b E RP and nonsingular (p x p) matrix A. This 
property is particularly compelling in physical applications 
where, for example, the coordinate system for R3 is ar- 
bitrary. In many applications, however, the measured 
coordinates are meaningful-commodity bundles in 
economics, for example. Then, nondiagonal transforma- 
tions A are difficult to interpret. 

The methods suggested here satisfy (5.1) for diagonal 
A and, therefore, are affine equivariant coordinate by co- 
ordinate. They do not commute, however, with arbitrary 
nonsingular matrices A. Whether this failure is a mere 
peccadillo or a mortal sin seems debatable. Unless linear 
combinations of individual coordinates are meaningful 
quantities there appears to be little harm in restricting 
affine equivariance to be a coordinate-by-coordinate prop- 
erty. Unfortunately, the most appealing of the affine equi- 
variant methods, due to Oja (1983) and Rousseeuw 
(1987), are extremely difficult to compute; this may offer 
another, at least temporary, rationale for the methods 
suggested here. 

APPENDIX: THEORETICAL RESULTS FOR THE 
ELLIPTICALLY CONTOURED CASE 

Theorem A.1. Consider the aforementioned elliptically con- 
toured case. Define the function g on R+ by g(u'A- lu) = - log 
f(u) for u E Rm. Assume appropriate regularity conditions for 
the maximum likelihood estimator to have an (optimal) asymp- 
totic covariance matrix equal to the inverse of the Fisher infor- 
mation matrix. [For example, general conditions applicable to 
this SUR problem can be found in th. 4.2 (p. 194) of Ibragimov 
and Has'minskii (1981)]. Then this optimal covariance matrix is 
given by (3.1), where 

C =- ElUj1ll2(g'(IIuj112))2. (A.1) 

Proof. First consider the spherically symmetric case (A 
I). Using the coordinate notation of Section 1, the log-likelihood 
can be written 

-L(II,..., gm)= E (yij -xijA) 
j=l i=l 

For coordinates of Al, and /BA2 corresponding to different equa- 
tions, we have 

E B = 4 E Xiljkl Xi2j2 E(yilj - xijfAl)(yi2j - xi2,fl2)g"(i u11 2). 
afllk, af6i2k2 j=, 

This equals 0 since the expectation equals 0 conditional on llull2. 
For coordinates of ,A in the same equation, we have 

coy ( )aL = 4 - 
Xqj,Xgl2 E(y,1- x 1, .1)2(g'(IIu I2))2. 

This has the appropriate form (3.2). Since each coordinate of Uj 
has the same marginal distribution, the foregoing expectation is 

4 times 

E u,j(g'(uljll2))2 = ujll2(g-(llujll2))2- 

and the result in the spherically symmetric case follows taking 
inverses. For general A, simply transform to symmetry by A-12. 

Theorem A.2. Consider the aforementioned elliptically con- 
toured case and transform the problem so that the succinct form 
of model (1.1) becomes 9 = X/ + v, where 

j= (A-2 * I)y, 
X = (A-12 0 I)X, 

and 
V= (A-112 . 1u 

Assume that Conditions Al and A2 hold for the transformed 
problem. Assume, in addition, that the function qi is antisym- 
metric. Then the solution to (2.2) with y and X replaced by 9 
and X has asymptotic covariance matrix given by (3.2) with 

Xtr = E yl2(vlj)/(E qI'(vlj))2. (A.2) 
Proof. It suffices to compute the matrices (F and R given in 

Theorem 2.1 for the spherically symmetric random vector v C 
Rn". By spherical symmetry, for i $A j, the coordinates ( v, vi) 
have the same distribution as (vi, vj). Hence, for i = j, 

Ri, = E VI(vi)q(vj) = E y(-vi)V(-vj) = -E V1(vj)q1(vj). 
Whence Rij = 0. In addition, the coordinates of v have the same 
marginal distribution. Hence 

R(v) = (E y2(vl))I 

and 

?P(v) = (E l'(vl))I. 
The result follows immediately from Theorem 2.1. 

Proposition A.I. Consider the multivariate t distribution in 
m dimensions with q df and covariance A, scaled so that each 
coordinate has variance 1 [i.e., the distribution of Nm(O, A)! 
(Z2(q) (q - 2))1121. Then c* (A.1) and Ctr (A.2) are given by 

(m + q + 2)(q - 2) 
q(m + q) 

andC1 -r(q - 2)Fr2(q/2) (A3 and ctr = (2(( + -(q/) (A. 3) 
4F2((q + 1)1/2) 

Proof. First consider the optimal covariance. Let w = jjv112/ 
(q - 2). Then the density of w is 

f(w) = c(m, q)(1 + W)-(m+q)12, 

where 

(m q) = r((m + q)/2) 
c( rq (m/2)F(q!2) 

and c* will be (q - 2) times the value computed using this 
density. So the logarithmic derivative becomes 

g' (w) =(m +q) 1 
2 (1 + w) 

Therefore, from (A.1), 
1 4 (m + q)2 v V(m-1)12 

c*(w) m 4 Jo (1 + v)2 q + V)(q+m)12 dv 

-(m + q)2 c(m, q) -(m + q)q 
m c(m +2, q+ 2)(m+ q +2) ' 

from which (A.3) follows for c*. 
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The result for c,, follows easily from (A.2) and the calculations 
E w2(v) = 1 and E w'(v) = 2fv(O), where f, is just the density 
of a univariate t, distribution times (q - 2)1q. 

Last, we calculate V (2.6) in a special case of a (scaled) bivari- 
ate t distribution. In particular, let Uj E Rm be ((q - 2)lq)112 
times an observation from a bivariate t distribution with q df and 
covariance matrix A given by 

A [ 2p 4](A.4) 

for IPI ? 1. 
Proposition A.2. Under the foregoing scaled multivariate t 

distribution, the asymptotic covariance (A.2) of the weighted 1l 
estimator applied to the untransformed data is given by (3.3). 

Proof. We only need to compute R(u) and 4>(u) as given in 
Condition P2 for q,(u) = sgn(u). Clearly, the diagonal entries 
of R(u) are unity, and the off-diagonal entry is 

RJ2(u) = E sgn(u1)sgn(u2) = E sgn(z1)sgn(z2) = 2 sin'p 

from (3.3), where formula 26.3.19 from Abramowitz and Stegun 
(1964) has been applied. In addition, since the marginal distri- 
bution of u1j is the same t distribution as the marginal for vi1 
above, and u2j - 2v2j, we have 

I?(u) = C / 
?U tr [o I 

where ct, is exactly the same as in the expression for Vtr. There- 
fore, V has the desired form with A(u) = b-(u)R(u)?-1(u), 
from which (3.3) follows by direct calculation. 

[Received November 1988. Revised April 1990.] 
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