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Abstract

Objective: It is often repeated that a low P-value provides more persuasive evidence for a genuine effect if the power of the test is high.
However, this is based on an argument which ignores the precise P-value in favor of simply observing whether P is less than some cut-off,
and which oversimplifies the possible effect sizes. In a non-Bayesian framework, there are good reasons to think that power does not affect
the evidence of a given P-value. Here I illustrate the relationship between pre-study power and the Bayesian interpretation of a P-value in
realistic situations.

Study Design and Setting: A Bayesian calculation, using a conventional prior distribution for the effect size and a normal approxi-
mation to the sampling distribution of the sample estimate, where the datum is the precise P-value.

Results: Over the range of pre-study powers typical in published research, the Bayesian interpretation of a given P-value varies little
with power.

Conclusion: A Bayesian analysis with reasonable assumptions produces results remarkably in line with a more simple, non-Bayesian
intuition—that the evidence against the null hypothesis provided by a precise P-value should not depend on power. © 2009 Elsevier Inc.

All rights reserved.
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1. Introduction

P-values and statements of statistical power are familiar
features of reports in medical journals. But does power affect
the interpretation of P? “In the absence of bias,” wrote
Wacholder et al. in 2004, “‘three factors determine the prob-
ability that a statistically significant finding is actually
a false-positive finding”’—these factors were the P-value,
the fraction of tested hypotheses that are true, and “‘less ap-
preciated” the statistical power of the test [1]. Wacholder’s
article was widely read—a Web of Science citation search
showed that in the four years after its publication it was cited
an average of 1.5 times a week. An article in Nature from the
Wellcome Trust Case Control Consortium, for example,
made the point just as strongly—*“for a given significance
threshold, the probability of a true association depends on
the prior odds and crucially, the power” [2]. However, this
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“crucial” dependence of the interpretation of P-values on
power unravels under closer scrutiny.

2. The diagnostic testing argument

Wacholder et al. were adapting an argument previously
presented by Sterne and Davey Smith [3], which can be
traced at least as far back as a 1976 article by Peto et al.
[4]. The method, which is a simple example of a Bayesian
calculation, is familiar to anyone who has learned how
to evaluate the performance of a diagnostic test
[5—7pp430—432]. Suppose that 90% of all null hypotheses
tested are true—90% of the things we research (risk factors,
treatments, and so forth) have no real effect. Suppose also
that studies reported in the medical literature have an aver-
age statistical power of 50% at the 5% significance level.
Then the sensitivity and specificity of the result P < 0.05
are, by the definitions of power and significance, 50%
and 95%, respectively (see Table 1). We can then work
out the probability that there is no real effect given that
P=0.05, and we find it is 47% (Table 1)—nearly half
our “significant” results are false positives.
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What is new?

e From a Bayesian viewpoint, the evidence of a given
P-value is less convincing in studies with very low
power, and also in studies with very high power, but
within the range typically encountered in published
research, the power affects the interpretation of
P very little.

e From a non-Bayesian viewpoint there are also good
reasons to think that power should not affect the
evidence of a given P-value.

e Arguments made in the literature for higher-
powered tests being more convincing have gener-
ally been based on an over-simplified argument.
Readers can be reassured that the conventional wis-
dom still works well in most situations: the P-value
weighs the evidence for an effect, and the confidence
interval estimates how big that effect might be.

A more general formula can be derived using the same
method—if the proportion of null hypotheses which are
true is my, and the power to detect a clinically important
effect at the « significance level is (1—0), then the probabil-
ity that there is no real effect given that P<a«a is
amy/[amy + (1 — B8)(1 — mp)]. Figure 1 illustrates the rela-
tionship between power and this probability (assuming
o =10.05 and w5 = 0.9), showing that the probability of
no real effect decreases with increasing power—P < «
argues more persuasively for a genuine effect if the power
is greater.

3. Problems with the diagnostic testing argument

One problem is that the calculation described above is
only valid if we only know that P is below some fixed
cut-off . Other authors have pointed out that if we know
the precise P-value the situation is quite different
[8,9pp179—184]—in this case the null hypothesis becomes
increasingly more likely as the power increases, rather than
less, as Wacholder et al. implied—a counterintuitive result
known as Lindley’s paradox after a 1957 article in which it
was presented [10,11]. Note that the precise P-value is im-
plicit in our data (and usually easily obtained), and if we
only record that P < o we are throwing away evidence.

Wacholder et al. recommended substituting the observed
P-value for « in the formula in Section 2 above, but this is
not the same as making use of the precise P-value (observ-
ing P = p is not the same thing as being told that P < p).
Wacholder et al. later clarified that their method might be
considered as giving the lowest possible probability of no
real effect for a criterion that allowed the observed result
to be considered significant [12].

Table 1
Diagnostic testing analogy for interpreting P < 0.05
No effect Genuine effect Total
P=<0.05 45 (5%) 50 (50%) 95 Proportion of
“significant”
findings that are
false
positives =
45/95 =47 %
P> 0.05 855 (95%) 50 (50 %) 905
Total 900 (100%) 100 (100%) 1000
Specificity Sensitivity

(proportion of
true positives

(proportion of
true negatives

correctly correctly
identified by the identified by the
test) = 95% test) = 50%

The table shows the expected results of 1000 tests, only 100 of which
are tests of a genuine effect, assuming that the power to detect a genuine
effect is 50% at the 5% significance level.

The diagnostic testing analogy also assumes that the ef-
fect is either null or else precisely the value at which power
is calculated. To use the language of Bayesian statistics,
this “prior distribution” for the effect is a very strange
one, because actually if we believe in an odds ratio of 1.0
or 2.0, for example, then we surely entertain the possibility
that it might be 1.5 or 2.5, or other ratios in between [13]. A
Bayesian calculation, which I will reproduce below, assum-
ing a continuum of possible effect sizes, and showing that
Lindley’s paradox still applies at high powers, is presented
by Spiegelhalter et al. [14pp130—133]. They conclude that
“the pragmatic interpretation of P-values strongly depends
on sample size”” [14p136], in other words, on power—but
now (because of Lindley’s paradox) in the opposite sense
to Wacholder et al.

4. Non-Bayesian interpretation of P-values

Whatever the direction of the association, power is an
odd thing for our interpretation of P to depend on, at least
from a traditional, non-Bayesian statistical viewpoint.
Power is about our uncertainty over what P will turn out
to be—once we have our data this uncertainty evaporates.
Interpreting power after the results have been obtained is
a practice which, although common, has been criticized
[15,16]. Power is more useful at the planning stage of
a study, when it helps ensure a narrow confidence interval
and a good chance of finding evidence for an effect. In fact,
the post-study power (using the observed effect instead of
the smallest clinically significant effect in the power calcu-
lation) is always the same for a given P-value, at least in the
idealized testing situation described further below. For
example, if P is exactly 0.05 then the post-study power is
always 50%. This invariant post-study power suggests that
the pre-study power should not affect the interpretation of
the P-value.
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Fig. 1. Relationship between power and the probability that the null
hypothesis is true given that P < 0.05, according to the diagnostic testing
analogy, and assuming that 90% of all null hypotheses tested are true.

The idea of simply recording whether P < « was central
to the frequentist approach to statistics of Neyman and
Pearson, who argued that we should follow rules for mak-
ing inferences which mean making few mistakes in the long
run (« is the proportion of times in the long run where we
conclude there is an effect where none is present) [17].
However, Neyman and Pearson’s argument in terms of
long-run error probabilities has been shown to be circular
[18pp103—106], and contemporary medical statistics text-
books teach us that the precise P-value is a measure of
the strength of evidence against the null hypothesis
[7p72]. (Note, although, that P does not tell us about the
possible size of the effect, for which we need a confidence
interval [19].)

The tests we use to obtain P are often equivalent to tests
based on an intuitive measure of the strength of evidence
called the maximum likelihood ratio [7pp309—314], and
Wilks showed in 1938 that the maximum likelihood ratio
has the same approximate distribution under the null hy-
pothesis, that is, a given ratio leads to the same P-value,
whatever the power [20]. This is another strong hint that
power is not relevant to the interpretation of P. Of course,
a Bayesian researcher is more likely to be persuaded by
a Bayesian calculation, which I now present.

5. Bayesian calculation

The Bayesian calculation can be thought of as a more
elaborate version of the diagnostic testing argument, but
now based on the evidence of the exact P-value, rather than
the observation that P < «, and now assuming a continuum
of possible effect sizes.

5.1. Population effect

I assume there is just one parameter we are interested
in—the “effect” in the population, which might be a mean

difference between exposed and unexposed groups, or a log
odds ratio, for example. This is measured on a numerical
scale where zero represents no effect (the null hypothesis).
I will assume that under the alternative hypothesis the effect
can be either positive or negative, that is, the alternative is
two-sided (in an epidemiological study this means looking
for both harmful and protective effects of the exposure).
The units of the numerical scale are arbitrary—1I will re-scale
them so that an effect of 1 (or —1) is the smallest effect I
would describe as clinically significant, in other words, I
measure any effect as a number of clinically significant units.

5.2. Data

In a quantitative research study, the population effect is
estimated from sample data. I will make the simplifying as-
sumption that the sample estimate has a normal sampling
distribution, centered on the population effect, with known
standard error ¢. This means that the 95% confidence inter-
val for the population effect is the sample estimate *=1.96¢.
The sample estimate divided by its standard error gives
a z-statistic from which a precise P-value can be obtained
[7pp61—63].

5.3. Prior distribution

In a Bayesian framework, the prior distribution describes
my beliefs about population effects before collecting data
[14pp139—140]. Figure 2 shows the form of the prior dis-
tribution that I will consider. The graph shows how densely
distributed my prior belief is over different effects, and the
distinctive spike at zero represents that fact that the null hy-
pothesis—an effect of precisely zero—is considered to be
a distinct possibility a priori [21,22]. This favoring in

-3 -2 -1 0 1 2 3
Effect (in clinically significant units)

Fig. 2. Form of the prior distribution for the population effect. The graph
shows prior probability density (the area under the curve between any two
points on the horizontal axis is the prior probability that the effect lies
within that interval).
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particular of the hypothesis of no effect—this inclination to
believe in the simplest theory—is an application of Oc-
cam’s razor [23], and has been described as a form of ‘“ra-
tional cynicism” [3]. Diamond and Forrester may have
been among the first to use this kind of prior distribution
in the clinical literature [6], although they do not provide
explicit details of the form and parameters of their prior,
which follows Jeffreys [24]. The approach differs from that
of Brophy and Joseph, who assumed nothing special about
the null hypothesis [25]. In epidemiological research it has
been suggested that the prior probability of the null hypoth-
esis, which I will denote m,, is as large as 0.9—a 90%
chance of no effect at all [3]—but here I also give results
for a more optimistic 79 = 0.5.

Over non-zero effects (the alternative hypothesis) many
people would consider larger and larger effects to be in-
creasingly less plausible a priori, which suggests that we
use a prior distribution tailing off to zero in either direction
(indeed, it turns out to be a mathematical impossibility to
have the prior distribution continue at a uniform level up
to infinitely large positive and negative effects). Like others

mp=0.9
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before me [14p130,22], I have chosen a normal distribution
symmetric around zero. I will use the letter 7 to denote the
standard deviation of this normal distribution. As an indica-
tion of how sensitive my results are to the choice of 7, I re-
port results for two different values: 7 =1 and 7 = 2. To
understand what 7 means, consider that if the alternative
hypothesis is true, roughly 95% of our prior belief is con-
centrated on effects in the range —27 to 27, on a scale
where an effect greater than one is clinically significant.
Wakefield warns against setting 7 too high, to avoid the
possibility that we end up believing in the null hypothesis
just because the observed effect is smaller than anticipated
by the prior. However, he gives an example where 7 is
around 0.5 (i.e., half the clinically significant value) [22],
which seems unreasonably prejudiced against the possibil-
ity of a clinically significant effect in the population.

5.4. Pre-study power

I assume that pre-study power is calculated at the 5%
significance level, using the pre-study definition of clinical

T=2

I
I
0.0 |

Posterior probability of Null Hypothesis
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Pre-study power at the 5% significance level
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Fig. 3. Posterior probability of the null hypothesis plotted against pre-study power, for P = 0.05, 0.01, and 0.001. m is the prior probability of the null hy-
pothesis; 7 is the standard deviation of the prior distribution over the alternative hypothesis. If the alternative hypothesis is true, 95% of prior belief is con-
centrated on effects in the range —1.967 to 1.967, where an effect greater than 1 is clinically significant.
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significance. By “power” I mean the probability that the
two-sided P-value is less than 0.05, with a positive estimate
of the effect, given that the population effect is just clini-
cally significant. This can potentially range from 2.5% to
100%. Most studies are expected to achieve at least 80%
power, but literature reviews have suggested that much pub-
lished research fails this standard [26]. It is certainly un-
usual for power to exceed 95%, perhaps not only because
there are ethical objections to recruiting more subjects than
necessary [27], but also because the required sample size is
prohibitive. We typically see results of studies with a pre-
study power between 40% and 95% (for a given study de-
sign, the sample size varies more than four-fold over this
range of powers).

5.5. Posterior probability of the null hypothesis

Given the above it is possible to calculate the degree to
which we believe in a null effect given the data. In a Bayes-
ian framework this is called the posterior probability of the
null hypothesis (PPNH), and it is calculated using Bayes’
theorem [14p57] (details of all calculations are in the online
supplement, available on the journal’s website at www.else-
vier.com). By varying the standard error of the sample es-
timate, o, one can also show how the PPNH varies with
pre-study power.

Figure 3 shows PPNH plotted against power, for differ-
ent values of P and different choices of prior distribution.
Each PPNH curve has a characteristic flattened U-shape,
with a wide “operating range” of power over which the
curve is reasonably level, the exact shape and orientation
being sensitive to the choice of prior distribution. (A Micro-
soft Excel application for drawing the graph for any values

1.0 P =0.05

0.4

02 P =0.001

Posterior probability of Null Hypothesis

0.0 T T 1
1 10 100 1000

1/c?

Fig. 4. Posterior probability of the null hypothesis plotted against 1/6, for
P =0.05, 0.01, 0.001, assuming a prior probability of the null hypothesis
of 90%, and a standard deviation of the prior distribution over the alterna-
tive hypothesis of 1. 1/6” is proportional to the sample size.

of 7, my, and P is provided as an online extra, available on
the journal’s website at www.jclinepi.com.)

6. Discussion of the Bayesian solution

The flattened shape of the curves shows that under
reasonable assumptions, in a Bayesian framework, a low
P-value such as P =0.001 supports the hypothesis of
a non-zero effect to virtually the same degree whether the
pre-study power is 40% or 90%, or anywhere in between.

A non-zero effect should not be confused with a clini-
cally significant effect. For a given P-value a clinically sig-
nificant effect becomes increasingly less likely with
increasing power, because much smaller effects can be
detected. This is particularly important to remember if the
P-value is large but the power is low. You should always
look at the confidence interval to evaluate the possible mag-
nitude of the effect.

Spiegelhalter et al. plot a similar graph to my Fig. 3
[14p133] but with an apparently different conclusion. The
reason lies in their choice of horizontal axis, which shows
7%/¢* on a log scale, ranging from 1 to 1000 (for given 7,
/g will be proportional to the sample size). In Fig. 4,
as an example, I have re-drawn Fig. 3 for 7=1,
mo = 0.9, with P =0.05, 0.01, and 0.001, using this same
axis. Spiegelhalter et al. conclude that the interpretation
of P “strongly depends” on sample size [14p136]. How-
ever, their axis gives undue emphasis to very high powers:
by the mid-point of their graph, where 7°/0” = 30, the
power is already 99.98% assuming 7 = 1. The relationship
with power, as illustrated in Fig. 3, presents quite a different
picture.

Even outside the “operating range” of powers in Fig. 3,
it is arguable how much we should adjust our interpretation
of a given P-value. The increase in the PPNH at very high
powers has been called paradoxical [10]. At low power the
PPNH is raised because the estimated effect is larger than
the range anticipated in the prior, but this prior range is
a judgment call—a sensitivity analysis can always find
a value of 7 with which the estimate is consistent, causing
the PPNH to bottom out.

Note finally, and importantly, how high the PPNH can
still be given a low P-value—if P =0.05 and 7, = 0.9,
the probability of the null hypothesis is still at least
81%—a lot greater than the figure of 5% which some mis-
takenly assume [28]. This lack of persuasiveness of
P = 0.05 (whatever the power) has been pointed out before
[3,6,29].

7. Conclusion

A careful Bayesian analysis with reasonable assump-
tions produces results remarkably in line with a more sim-
ple, non-Bayesian intuition: that the evidence against the
null hypothesis provided by a precise P-value does not


http://www.elsevier.com
http://www.elsevier.com
http://www.jclinepi.com

R. Hooper / Journal of Clinical Epidemiology 62 (2009) 1242—1247 1247

depend on power. If you are interested in the potential size
of the effect then you should also consult the confidence
interval.
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