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uccessful publication of a research study usually re-
uires a small p value, typically p < 0.05. Many clinicians
elieve that a p value represents the probability that the
ull hypothesis is true, so that a small p value means the
ull hypothesis must be false. In fact, the p value
rovides very weak evidence against the null hypothesis,
nd the probability that the null hypothesis is true is
sually much greater than the p value would suggest.
oreover, even considering “the probability that the null
ypothesis is true” is not possible with the usual statis-
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ical setup and requires a different (Bayesian) statistical
pproach. We describe the Bayesian approach using a
ell-established diagnostic testing analogy. Then, as a
ractical example, we compare the p-value result of a
tudy of aprotinin-associated operative mortality with
he more illuminative interpretation of the same study
ata using a Bayesian approach.

(Ann Thorac Surg 2009;87:1337–43)

© 2009 by The Society of Thoracic Surgeons
P values are a practical success but a critical failure.
Scientists the world over use them, but scarcely a

tatistician can be found to defend them. Bayesians in
articular find them ridiculous, but even the modern

requentist has little time for them [1].”
A value of p � 0.05 is usually considered essential for the

uccess of scientific studies, ensuring the publication of
esearch reports and enabling the advancement of aca-
emic careers. But p values do not provide a good measure
f evidence against the null hypothesis. You would be
orgiven if you think that they do, because p values as
imilar as p � 0.06 and p � 0.04 can make grown men weep,
r academic careers flourish, respectively. A recent article
rguing that p values exaggerate the evidence against the
ull hypothesis [2] begins with these two attention-getting
uotations: “The most important task before us in develop-

ng statistical science is to demolish the p-value culture,
hich has taken root to a frightening extent in many areas
f both pure and applied science, and technology” [3], and
My personal view is that p values should be relegated to
he scrap heap and not considered by those who wish to
hink and act coherently” [4]. To complete the process of
etting your attention on this important and widely misun-
erstood issue, here is another: “The null hypothesis sig-
ificance test should not even exist, much less thrive as the
ominant method for presenting statistical evidence . . . It is

ntellectually bankrupt and deeply flawed on logical and
ractical grounds” [5]. This last author cited 33 references to
upport his statements.

p-Value Primer

tatistics is not a unified science [6]. There are fundamen-
ally different approaches whose advocates argue, on phil-
sophical and epistemological grounds, about their relative
erits [5, 7, 8]. The typical study collects data to investigate
possible difference in an outcome variable that is caused
y a risk factor or intervention. The statistical conclusions
re reached indirectly—using inductive reasoning—by
disproving” a null hypothesis. The null hypothesis usually
tates that there is no difference in outcomes induced by the
isk factor or intervention tested, whereas the purpose of
he study is usually to establish that a difference does exist
y rejecting the null hypothesis.
The classical statistical approach (called “frequentist”)

roduces a p value, putatively to measure the evidence
hat the study data provides against the null hypothesis,
ith the smaller the p value, the more evidence for

ejection. The p value is the probability of observing (1)
he study data plus (2) data even more extreme than that
ctually observed, given that the null hypothesis is true;
nd, in most cases, it also includes the probability of (3)
bservations equally extreme that are in the other (op-
osite) direction (two-sided test).

True Story

e are among those fortunate biostatisticians who reg-
larly interact with scientifically sophisticated research
urgeons. So, when one of them makes a statistical
isstatement, we assume that many other clinicians
ould make the same mistake and consider it an oppor-

unity for an educational effort. Recently, it happened
gain: on a conference call in which we participated, one
f our senior surgeons was discussing a statistical test of
ignificance that resulted in a p value of 0.08, and he
ommented that “it is not significant, but, still, there is
nly an 8% chance that the null hypothesis is true.” The
ice president for medical science of a large pharmaceu-
ical company, to whom he was talking, agreed.

A p value is not the probability that the null hypothesis
s true, although many other clinicians apparently be-
ieve this interpretation [2, 9, 10]. The p value is not nearly
hat informative. Only a Bayesian type of analysis, the

tatistical paradigm arising from Bayes’ theorem [11], can

0003-4975/09/$36.00
doi:10.1016/j.athoracsur.2009.03.027
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rovide a probability statement about the null hypothe-
is. But the commonality of the above misinterpretation
hows that clinicians desire to know this probability, and
ence are “Bayesians” at heart. To facilitate a compact
xplanation, we must begin with a small bit of technical
argon and related notation.

onditional Probability

conditional probability is one that is modified by an “if
. .” or a “given that . . .” condition. The p value is a
onditional probability: It is the probability of observing
he observed data (plus other data that is at least as
xtreme as that observed) given that the null hypothesis
Ho) is true. This can be written in a compact notation: p
alue � Prob(data | Ho), where Prob means probability,
nd the vertical line means given. In words, this equation
ays that “the p value equals the probability of observing
he data if the null hypothesis is true.” This is not the
ame as the inverse probability: Prob(Ho | data), the
robability that the null hypothesis is true given the
bserved data, as our surgeon proclaimed it to be.
To easily appreciate that the quantities on the opposite

ides of the “given” symbol (vertical bar) in a conditional
robability cannot be reversed, consider this simple
xample. The probability that a given cardiothoracic (CT)
urgeon is female, Prob(female | CT surgeon), is about 2%
12]. But the inverse probability, that a given female is a
T surgeon, Prob(CT surgeon | female), is certainly much

maller than 2%. An even more elementary example is
he Dormouse’s comment at the Mad Hatter’s tea party
n Alice’s Adventures in Wonderland [13]: “I breathe when I
leep” is not the same as “I sleep when I breathe.”

Fictional Story

robability concepts are often illustrated with examples
rom games of chance—not inappropriately, because the
esire for gambling success sponsored the birth of proba-
ility theory [14]. In the familiar coin toss experiment, a fair
oin is defined as one with a 50% probability of heads
Ho—the null hypothesis). Suppose you undertook an ex-

ig 1. Probability distribution for a coin toss
xperiment: the probabilities of the number of
eads observed in 10 tosses, resulting in 1024
ossible (ordered) patterns. Our fictional story
bserved 9 heads (*), and the p value for the
xperiment was the sum of the probabilities of
, 1, 9, and 10 heads (black bars). The � signi-
es a probability of 0.001 that 1 of 1024 pat-

erns would have all 10 heads. The �� signi-
es 9 tails and 10 tails.
eriment to determine whether a particular coin was fair by a
ossing it 10 times, and the result was 9 heads. Is that
nough evidence to reject this hypothesis and declare the
oin biased? If so, you would be willing to pay a high price
or it to make money by using it to win future bets. The p
alue from this experiment—the probability of getting 9 or
ore heads or tails, from a fair coin—is p � 0.02 and is easy

o compute by deductive or direct reasoning using simple
ombinatory principles (Appendix 1, Fig 1). Thus, because p

0.05, the difference is statistically significant, and the null
ypothesis of a fair coin is rejected. Given this, our surgeon

riend would say, “The probability that the coin is fair is
nly 2%. It must be biased, so, yes, let’s buy it.”
But as we have seen, the probability of Ho (that the

oin is fair) is not equal to the p value; it is a bit more
ifficult to compute, because its determination requires
sing Bayes’ theorem and an estimate of the prior prob-
bility. To show how this is done, though, we must
bandon this coin toss example, and switch to another
tory. Why? Well, it turns out that it is not physically
ossible to make a biased coin if the coin toss is done
roperly [15]. So, even though the p value in our coin toss
xperiment was 0.02, which provides putative “signifi-
ant” evidence against the null hypothesis, the null
ypothesis is in fact true. The coin is not unfair (biased),
ecause biased coins do not exist in nature. So, a rare
vent occurred, that is all: to infer that this coin is
nfair/biased would be deception.

iagnostic Testing for Coronary Artery Disease

ecause we must abandon the coin toss example, where
hall we turn to continue our evaluation (devaluation) of
he p value? We have intimated that Bayesian analysis is
equired to produce the desired inverse probability. So
et us move to a well-accepted clinical application of
ayesian reasoning—diagnostic testing for coronary ar-

ery disease (CAD)—and take advantage of its close
onnection with hypothesis testing [16, 17]. We will
xamine a series of patient scenarios to determine the
nformation required to reach an appropriate conclusion
rom a diagnostic test about the probability that a patient
as CAD. This will give us insight into the information—

nd methodology—required to reach an appropriate
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onclusion from a hypothesis test regarding the proba-
ility of the truth of the null hypothesis.

atient A
uppose a patient tests positive for CAD with a new
iagnostic test that has a 95% specificity. Specificity is the

conditional) probability that a healthy person tests neg-
tive: Prob(Negative | Healthy). On the basis of this
ositive test, knowing only that the specificity is 95%,
ould you assume that your patient has CAD, reject the
ull hypothesis that the patient is healthy, and perform a
evascularization surgery? Of course you would not.

First, you do not know the sensitivity of the test, the
robability that a diseased person will test positive. To
ee why this matters, take the extreme case in which the
ensitivity is zero; that is, the test never produces a
ositive result when the patient has CAD. This would
ean that your patient has to be healthy because the only

ositives are false-positives (there is never a true-positive
ecause the sensitivity is zero). Such a crippled test is not
ealistic, but the thought experiment should convince
ou that the sensitivity of the test matters.
Let us see how this relates to interpreting a p value by

nvoking the parallel relationship between diagnostic test-
ng and hypothesis testing [16, 17]. The probability of a
alse-positive result (in terms of diagnostic) equals 1-spec-
ficity (0.05 in this case of 95% specificity). This is the
nalogue of (in hypothesis-testing terms) the probability of

type 1 error (Appendix 2). So, judging the evidence
gainst the null hypothesis (declaring statistical signifi-
ance) based on p � 0.05 alone is analogous to accepting a
ositive diagnostic test result based on its 95% specificity
lone.

atient B
uppose a patient tests positive for CAD with a new
iagnostic test that has 95% specificity and 90% sensitiv-

ty. Sensitivity is the analogue of power in a hypothesis
esting setup, the probability of finding a significant
ifference when it exists. So you now have a test with a p
alue of 0.05 and a power of 90%. Are you going to reject
he null hypothesis, declare the patient diseased, and
erform the surgery?
No, not yet. It is well known that the proper interpreta-

ion of a diagnostic test must incorporate the prevalence of
he disease, the patient’s pretest probability of disease [18,
9]. Sensitivity and specificity are attributes of the diagnos-
ic test. But more important for patient management is the
ositive predictive value (PPV) of the test, the probability

hat a patient who has tested positive has the disease: PPV
Prob(Disease | Positive). And the PPV depends on the

revalence of disease in the tested individual (Appendix 2).
hus, to guide proper decision making after a diagnostic

est, it is essential to know the patient’s pretest probability
f disease as well as the sensitivity and specificity of the test
20]. These can be combined, using Bayes’ theorem, to
rovide the PPV (Appendix 2). In terms of testing the
ypothesis, disease prevalence is analogous to the prior
robability that the null hypothesis is true.

The probability that the null hypothesis is true after p
tatistical significance has been declared is given by the
nalogue of 1-PPV: Prob(Healthy | Positive), and not by
he p value—Prob(Positive | Healthy) [21]. Let us see how
he prior probability (prevalence) of disease affects the
ssessment of a positive diagnostic test.

atient C1
uppose your patient tests positive for CAD with a new
iagnostic test that has 95% specificity and 90% sensitiv-

ty, and that CAD has 50% prevalence in the population
o which this patient belongs. Then, using the formula in
ppendix 2, PPV � 95%, so that Prob(Healthy | Positive)
1–PPV �.05, and the probability that the null hypoth-

sis is true does, in fact, equal the p value (1–specificity).
ut this unlikely scenario is the only one in which this
quivalence exists.

atient C2
uppose your patient tests positive for CAD with a new
iagnostic test that has 95% specificity and 90% sensitiv-

ty, and that CAD has a more realistic prevalence of 20%
n the population to which this patient belongs. Then,
–PPV � 0.18, which is almost four times larger than the
value (1–specificity) of 0.05.

atient C3
inally, suppose your patient tests positive for CAD with a
ew diagnostic test that has 95% specificity and 90% sensi-

ivity, and that CAD has 5% prevalence in the population to
hich this patient belongs. Then 1–PPV � 0.51; that is, the
atient is slightly more likely to be healthy than diseased,
nd the null hypothesis is more likely to be true than false,
ven though the p value is 0.05.

So, the rarer the disease, the greater the probability
hat your patient is healthy (the null hypothesis is true),
espite a positive result from a very good diagnostic test,
ith a 95% specificity (p � 0.05) and 90% sensitivity.

ayes to the Rescue

esides offering the proper paradigm for interpreting diag-
ostic tests, the Bayesian approach is equally essential in
valuating the results of clinical studies. The main objection
s that there is a subjective element. A prior distribution
eeds to be specified (prevalence) for the variable of inter-
st, before the study begins—and one study’s prior preva-
ence might be different than another’s—yet, good science
hould be completely objective. But Bayes’ methods are
ore practical, more logically sound, and are becoming
ore widely used in many disciplines.
The very fact that our surgeon asks the question about

he probability of the null hypothesis being true, after the
ata are collected, indicates he must therefore be pre-
ared to consider its probability before the study is
ndertaken, which is what the prior distribution is and
hich can only be considered by invoking the Bayesian

tatistical approach. Therefore, our surgeon must be a
ayesian by the very fact that he wants to know the

robability of the null hypothesis being true.
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perative Mortality With Aprotinin

he essence of the Bayesian approach is that the purpose of
n experimental study is to modify current beliefs rather
han to be interpreted in complete isolation of preexisting
nowledge and experience. We are allowed (obligated) to

nterpret current study findings in light of previous knowl-
dge, just like we all do in everyday life when we interpret
ew evidence in light of prior experience.
To exemplify, we will reexamine the results of a recent

tudy of the antifibrolytic drug aprotinin (Trasylol, Bayer,
ermany) used in cardiac operations to control bleeding.
e believe that the recent attacks against aprotinin, which

ave been successful in removing it from the market, may
ave been statistically unsound. The final nail in the coffin
as the BART (Blood conservation using Antifibrinolytics

n a Randomized Trial) study, which claimed that aprotinin
as associated with increased operative death [22].
The Statistical Analysis section of that article states

hat, “For the secondary outcomes of death and serious
dverse events, we conducted pairwise chi-square tests
o ascertain the relation between aprotinin and tranex-
mic acid and between aprotinin and aminocaproic acid”
22]. Yet, surprisingly, the results of these tests were not
iven: nowhere in the Results section or tables or sup-
lementary online material are any �2 tests found.
So, we performed these tests, using mortality data from

able 3 in the BART Supplementary Appendix. When the

ig 2. The three elements of a Bayesian analysis of the BART
Blood conservation using Antifibrinolytics in a Randomized Trial)
ata. Values to the left of the vertical dashed line (odds ratio � 1)
avor lower mortality for aprotinin, and values to the right of the
ertical dashed line favor lower mortality for aminocaproic acid. The
hree elements are (A) an initial (prior) estimate of the distribution
f the variable of interest; (B) a summary of the study data, called
he likelihood (the probability of the data, as a function of the study
arameter), and (C) combining (integrating) A and B to produce a
nal (posterior) estimate of the distribution of the study parameter.
ifferences between the mortality rates were tested using m
he Pearson �2 test, with continuity correction, no signif-
cant differences were found (p � 0.05). The p value for
protinin vs aminocaproic acid was 0.08, based on 1559
atients, and it was this p value that our surgeon was
iscussing in the conversation mentioned earlier, that
otivated this article.
Bayesian analysis proceeds through three steps:

. determining an initial (prior) estimate of the distribu-
tion of the parameter of interest;

. producing a summary of the study data, called the
likelihood (the probability of the data, as a function of
the study parameter), and

. combining (integrating) A and B to produce a final
(posterior) estimate of the distribution of the study
parameter [23–25]. (Note: the curves in Fig 2 were
derived using the log odds ratio [OR] scale because it
more closely follows the normal distribution [25], but are
plotted on the [untransformed] OR scale for easier
interpretation.)

. Prior Distribution: Merged Cardiac Registry Study
ur estimate of the prior probability of mortality risk comes

rom the Merged Cardiac Registry (MCR) data that we used
26] to refute the claims of an earlier study concerning renal
ailure [27]. Of the 23,105 MCR patients, 22% received
protinin and 42% received aminocaproic acid (patients
ho received both drugs were not included). We now reuse

his data set to investigate the mortality risk associated with
protinin compared with aminocaproic acid in the 14,887
atients who received just one of these two drugs. The
reoperative expected mortality risk of the aprotinin pa-

ients was almost double that of the aminocaproic acid
atients (Table 1), indicating that the nonrandom allocation
f these drugs was heavily skewed towards the use of
protinin in the riskiest patients.

Because the MCR patients were not randomized to these
wo drugs, we used the MCR risk model for operative

ortality (http://www.healthdataresearch.com/
ardiacrisk.htm) to risk-adjust the mortality comparison.
his model had good discrimination, with a c-index (area
nder the receiver operating characteristic curve) of 0.80 for

hese patients. The logarithm of the odds of the observed/
xpected (O/E) risk was used as an offset term [28] to derive
he risk-adjusted OR for each drug (compared with ex-
ected), and for their comparison to each other. Compared
ith expected mortality, both the O/E ratio and the OR
ere slightly less than 1 for both drugs, with lower values

or the aprotinin patients (Table 1). And aprotinin was
lightly protective for death (OR, 0.93) compared with
minocaproic acid (Table 1; Fig 2A).

. Likelihood: BART Data
he OR for aprotinin in the BART study is 1.55, and the 95%
onfidence interval (barely) includes the value 1 (Table 2).
ecause this was a randomized study, no risk-adjustment
as done. The likelihood function (probability of the BART
ata, as a function of the OR) exhibits wider spread than
oes the MCR data because there are only about 10% as

any BART patients as MCR patients (Fig 2B).

http://www.healthdataresearch.com/cardiacrisk.htm
http://www.healthdataresearch.com/cardiacrisk.htm
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. Posterior Distribution (Integrate A and B)
sing Bayes’ theorem, we derived the posterior distribu-

ion of the OR by multiplying the prior distribution with
he likelihood, and the result (Fig 2C) shows that there is
o evidence for a mortality difference between aprotinin
nd aminocaproic acid: the posterior distribution has a
ean OR of 1.01. It is this distribution that (finally) allows

s to make probability statements about the variable of
nterest, in this case the OR. For example, the probability
s 95% that the true OR is between 0.85 and 1.21. This 95%
robability interval is called a credible interval in Bayes’

erminology. It looks just like a confidence interval (CI),
ut whereas the (frequentist) CI has a convoluted and
nappealing definition, “A 95% CI will contain the true
alue on 95% of occasions if a study were repeated many
imes using samples from the same population,” the
efinition of a Bayesian credible interval is simply that
the probability is 95% that the true value is in the
nterval.” The latter is what we originally hoped to obtain
s a result of our study and, again, lobbies for the
onclusion that researchers are Bayesians at heart.

omment

ven before you started reading this expose of the
verrated p value, you must have wondered about some
f its readily apparent shortcomings:

1. Any small difference, no matter how clinically
unimportant, will be statistically significant (p �
0.05) if the sample size is large enough.

2. Any large difference, no matter how clinically
important, will be not be statistically significant (p
� 0.05) if the sample size is too small.

3. Because of 1 and 2, a low p value in a small study
is more evidential than the same p value in a large
study [29]. Moreover, the effect of publication bias
may be greater for small studies.

4. The p values add to the probability of the outcome

able 1. Merged Cardiac Registry Operative Mortality, 2000
o 2006

Aprotinin Aminocaproic Acid

perations, No. 5193 9694
bserved mortality, % 5.2 2.8
xpected mortality, % 5.6 2.9
/E mortality ratio 0.93 0.97
Ra 0.91 0.96
R (95% CI)b 0.95 (0.78–1.14)

Odds ratio, for each drug, of the observed mortality vs expected
ortality. Computed separately for each drug group, by exponentiation-

ng the intercept term from a simple logistic regression with the logit of
he expected mortality as an offset term, and no other risk factors [28].

Odds ratio of aprotinin vs aminocaproic acid after being risk adjusted
or varying expected mortality in the two groups. Computed using logistic
egression of the combined group, with an indicator variable for aproti-
in, and with the logit of expected mortality as an offset term.

I � confidence interval; O/E � observed/expected; OR � odds ratio.
that was observed (eg, 9 heads) the probability of
B
T

all outcomes more extreme (eg, 10 heads), even
though they were not observed.

5. The p values are usually two-tailed, meaning that
they also include the probabilities of other outcomes
that were not observed, in the opposite direction (eg,
9 tails and 10 tails), that are at least as extreme as the
outcome that was actually observed [30].

6. The arbitrary, yet entrenched, threshold level of
0.05 creates a false dichotomy between significant
and not significant. The significance value should
not be fixed, but should depend on the conse-
quences of the resulting decisions.

7. Some journals no longer accept p values [31], and
many insist on estimation (CIs) rather than hy-
pothesis testing [32].

8. For a continuous end point, the probability of the
usual simple null hypothesis, that the difference
between treatment means is zero, is actually zero;
there is virtually no chance that the treatments
would be exactly the same.

9. If one generates multiple hypothesis tests, the
resulting p values are anticonservative and the p
value for significance must be adjusted upward.
This is controversial and can be shown to be
somewhat silly [33]. Should a statistician adjust for
the number of p values she produced for this
study, or during this month, or in her lifetime?

0. The p value is not the probability that the null
hypothesis is true, although it is often interpreted
this way. Nor is it the probability that the alterna-
tive hypothesis is false—or any other such desir-
able information. The purpose of this article is to
emphasize this point and to show how such (de-
sired) probabilities can be obtained, using another
statistical paradigm—Bayesian analysis.

By demonstrating the effect that disease prevalence has
n the interpretation of a positive diagnostic test, we aimed
o convince the reader that without information about the
prior) probability of the null hypothesis, a significant (p �
.05) hypothesis test has little value in disproving the null
ypothesis. It has the same value as the result of a positive
iagnostic test whose only known property is 95% specific-

ty. For practical use with a given patient, the PPV is of more
mportance than the specificity of a diagnostic test. The
ignificance-testing analogue to this statement would be
hat the posterior probability of the null hypothesis is more
mportant than the p value. The probability that the null

able 2. BART Operative Mortality, 2002 to 2007

Aprotinin Aminocaproic Acid

perations, No. 779 780
bserved mortality, % 6.0 4.0
R (95% CI)a 1.55 (0.97–2.47)

Odds ratio of aprotinin vs aminocaproic acid. CI computed using a
ormula for the log OR [25], and transforming back to the OR metric.
ART � Blood conservation using Antifibrinolytics in a Randomized
rial; CI � confidence interval; OR � odds ratio.
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ypothesis is true is usually much larger than the p value.
his is a well-described, but perhaps not widely known,
henomenon. A classic, 50-year-old article [34] begins by
tating that a test of a null hypothesis can result in p � 0.05,
hile the posterior probability that the null hypothesis is

rue is as high as 95%.
What about a rejoinder? The fact that p values have

ecome so ubiquitous in reporting research results implies
hat there must be another side to the argument, something
ood to say in their favor. The case in favor of p values is
ifficult to make. A fairly balanced short article, but with 107
upporting references, concludes that, “Thus, despite the
act that p values are dead and buried (by some journals),
e would agree . . . that significance tests are ‘alive and
ell’.” [35]. A longer, thoughtful and balanced assessment,
ith commentaries, gives “heavily qualified” support, and
ses a nice phrase that sums up the situation: “the test of
ignificance gives significance too easily” [1]. (This article’s
itle is “Two cheers for P-values?,” but the author’s rejoin-
er to the commentaries suggests that “One cheer” is
erhaps more appropriate.)
For the substantive data result of this report, we did not

ccept the p value (p � 0.08) of the BART study at face value,
ut rather used the Bayesian formulation to modify our
revious beliefs. We derived the posterior probability for

he OR of aprotinin by evaluating 1559 patients from the
art study in the context of prior knowledge from a study of
4,887 patients. A potential limitation of this analysis is that
he risk model used to obtain the OR (Table 1) may not have
ontrolled for all confounders. A more complete analysis
ould consider the comparability of the patients in the
CR and BART studies, and perhaps partially discount the

ormer in comparison with the latter, so that a patient in the
CR study would contribute less influence to the posterior
R distribution than a patient in the BART study; that is,
ore variability would be introduced into the prior distri-

ution. The conclusion, in this case, however, should not be
ramatically altered.
We started with a quote, and will end with another one:

When writing for Epidemiology, you can also enhance
your prospects if you omit tests of statistical significance.
Despite a widespread belief that many journals require
significance tests for publication, the Uniform Require-
ments for Manuscripts Submitted to Biomedical Journals
discourages them, and every worthwhile journal will
accept papers that omit them entirely. In Epidemiology,
we do not publish them at all [31].
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ppendix 1

eduction: Coin Toss Experiment

here are two possible results—heads (H) or tails (T)—for the
rst coin; 2 � 2 � 22 � 4 possibilities for the first 2 coins (HH, HT,
H, TT); 2 � 2 � 2 � 23 � 8 possibilities for the first 3 coins, and
o on; up to 210 � 1024 possible patterns for all 10 coins. Only 10
f these patterns would consist of exactly 1 tails (1 in each
osition, if you think of the tossed coins as lined up in a row) and

hus 9 heads. So the probability of 9 heads is 10/1024 � 0.010
marked by the asterisk in Fig 1).

But the p value also includes probabilities of events more
xtreme than that observed, in this example, 10 heads. Only 1 of
he 1024 patterns would have all 10 heads, with probability 0.001
the � in Fig 1). So the probability of 9 or more heads is 0.011.
nd the (usual) two-tailed p value also includes the probabilities
f events in the other direction—in this case, 9 tails and 10 tails
�� in Fig 1). By symmetry, this doubles the p value to 0.022.

ppendix 2

nduction: Bayes’ Theorem in Diagnostic Testing

. Similarity of diagnostic and hypothesis tests:

Diagnostic test

True Condition

Healthy Diseased

ositive False positive (FP) True positive (TP)
egative True negative (TN) False negative (FN)

Hypothesis test

True Condition

Null hypothesis Alt hypothesis

ignificant Type 1 error

ot significant Type 2 error
. Definition of conditional probability:
Probability of A given B � Prob(A | B) � Prob(A and B)/
Prob(B)

. Definitions of diagnostic test attributes:
Sensitivity (true-positive rate) is the probability of a pos-
itive test result given the presence of disease: Sensitivity �
Prob(Positive | Diseased). Using the definition of condi-
tional probability, we can derive sensitivity from the
values in the table above as TP/(TP � FN).
Specificity (true negative rate) is the probability of a
negative test results given the absence of disease: Speci-
ficity � Prob(Negative | Healthy). Specificity can be de-
rived from the values in the Appendix Table as TN/(TN �
FP).

. Positive predictive value:
The PPV � Prob(Diseased | Positive) is more important
for patient management but cannot be derived from the
values in the Appendix 2 Table; it requires knowledge of
the prevalence of disease. To appreciate this, consider
the Appendix 2 Table and think of it filled in with the 4
numbers resulting from, say, 100 healthy patients (in the
first column) and 100 diseased patients (in the second
column). Using these 4 numbers, PPV � TP/(TP � FP).
But suppose we use the same test on another popula-
tion, with 1000 healthy patients and 100 diseased pa-
tients. Then, the numbers in the cells of the first column
would be 10 times larger than before, so the above
equation for PPV would give a totally different answer
for this same diagnostic test. To determine the PPV,
then, requires use of Bayes’ theorem.

. Bayes’ theorem:
Prob(A | B) � Prob(B | A) � Prob(A)/Prob(B)

. Derivation of PPV using Bayes’ theorem:
PPV � Prob(Diseased | Positive) � Prob(Positive | Diseased) �
Prob(Diseased)/Prob(Positive), and
Prob(Positive) � Prob(Positive | Disease) � Prob(Disease) �
Prob(Positive | Healthy) � Prob(Healthy).
Thus, in terms of the test attributes plus disease preva-
lence, PPV � Sensitivity � Prevalence/[(Sensitivity �
Prevalence) � (1–Specificity) � (1–Prevalence)]
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