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Modelling: the classical approach
E. F HARDING

Department of P Mathematics and Mathematical Statistics, Statistical Laboratory,
Cambridge University 16 Mill Lane, Cambridge, (B2 1SB, U.K.

Abstract. The kernel of the ‘classical approach’ to statistical modelling is the use of procedures inspired
by the ‘classical’ objecties of Hypothesis Testing, Confidence Intaly; and Parameter Estimation, in the
context of statistical models formulated (usually) in a highly specifig,\and esaluated by the techniques

of Sampling Theory.

Used sensitely, intelligently and flgibly, these proceduresfef a powerful and adaptable approach to
statistical problems arising in scientific contexts (though as usually taught, these methods appear limited
and rigid). Their power lies in that th@ermit sharp focus on specific aspects of a thebgjr flexibility
in that thg offer a wide choice of aspects to examine; but these are only realised when the corresponding
statistical models are continually resliated in the wider logic of the scientific coxtte Theseremarks
are illustrated with a variety of examples.

Introduction

Given the dverse and sometimes fragmentary character of ‘modelling’ as practised, the
opening contributors a keen askd to attempt unifying presentations from three main
theoretical standpoints: ‘Classical’, ‘Likelihood’ and ‘Bayesian’.

Modelling is setting up a relationship between thedaya and reality | shall interpret
classical as denoting mainly tests of significanceiptthesis-testing and confidence
intenvals, and estimatior-classicalin almost the musical sense of a refelyi traditional
stylistic formalism, well understood, familiar and easily assimilated.

| must try not to pre-empt what Professor Aitkiwill say about likelihood, or
Professor Smith about Bayesian metho@assical modelling is often (though by no
means alays) non-Bayesian, but use of the likelihood function isvaigable; | shall
use it, howeer, in a quite classical way.

The approach adopted here will use examples to demonstrate the power of the
classical approach, point out some limitations and dangers,xantpléy its methods.

A theme of the Conference is that users seeklels developed from and supported
by data, leading to an increasingly crucidlleofor Statistics in the modelling pcess

| do not take this to mean that a model is good merely becausevés g god fit

to the data: a sata€tory relationship with ideas and theories specific to trestigation

is also essential. On the other hatfie use of Statistics within modellingll be a
constant feature.

Foundations

The logical kernel of the classical approach is the significance test of aypathésis,
and its extension to hypothesis-testing within a family of altamdipotheses.

Let Hy be a hypothesis to explain déig, and A(D,; Hy) a measue of dscrepancy
betweenD, and H,: the lager A, the more remotél, as explanation oD,. WhenH,

T Was Aitken in the original
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holds, letA(D; Hy) havea definite distribution wherD varies randomly undeH,,, and
let 35=A(Dg; Hp).

The specification ol induces a nested structure on the sample space,viar idj,
in terms of subsets such that each subset contains all atisesvD for which
A(D; Hp) 2 6 for some value ob. Corversely, given a family {H} of hypotheses, and
observed dat®, a rested structure is induced oHY according taA(Dg; H) = 4.

To each subset in the sample-space nesting can be attached its probability

a= PHO[A(D; Hp)20]
under Hy. Therefore there is anvarse monotonic relationship between the defining
discrepancy-feel o and the probabilityr: the smallerr, the greatep. This is the basis
for a test of a gien hypothesisH,, since when datd,, are observed and we alsovba
for sufficiently small gien a,

Py [A(D; Ho) 28] = By [A(D; H))2A(Dg: Hy)l < @

then we can assert that the obsdndatum belongs to an extreme (discrepant) class
whose total probability is implausibly small, suclypbtheses being ‘rejected at
significance leel a’.

Corversely, given a family {H} of hypotheses, each possible datlgmaps into the
subset of H} not rejected at leel o by the test based a(D,; H) whenH is taken as
null hypothesis. Thiset of typotheses is a confidence set atllgp=1-a, since if ary
Ho O{ H} is true, then the probability is at legsthat the set so constructed contaitys

The abee formulation is clearly very general andxilde, in that the choice of
discrepang function A(D; H) is open, and no fied level of significance &) or of
confidence §) is set. When'powerful’ test procedures areailable, these are embraced;
but ad-hoc or epedient procedures, non-parametric or distribution-free methods, and
approaches to the testing of one dimension of a multiple parameter arevateal co

| regad the abwe dualism between hypothesis tests and confidence aiteas
primary in the classical approackstimation (while it may be the main objeetion a
given occasion) is a derétive procedure. Byestimationl mean the production of
‘point estimates’ as such: if theare accompanied by appraisals of precision
(e.g. standard deviations), then (implicitly) the formalism of (possibly approximate)
confidence intervals is being used. From this standpoint, an appropriate point estimate is
a parameter value common to confidence intervals at all confideree. le

Mode of Application

In the abwee formulation, all discrepagcmeasures which are one-to-one monotonic
functions of a gien measure) are equialent in that thg will, for a given hypothesisH,
give 1ise to the same nested structure of subsets of the sample space, and to the same
assignment of probabilities to the subsets; and élise on a family {H} of hypotheses
is induced, for gien data D, aways the same nested family of confidence sets with the
same confidencevels p.

In short,

a(Dg; Hp) = PHO[A(D; Ho)2A(Dg; Hp)l
is itself a measure of discrepgnend can be taken as canonical represemtafi the
set of all equialent measured. This amounts to transforming avgn measureA to a

‘universal’ scale, that of the probability, and this scale also has a wasal
operational interpretation, namely the chance (wltgn is true) that so large a
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discrepang as A=4, should occur From this point of vies there is no essential
difference between equaent measureA.

In applications, haever, a gven measure of discrepapd will not arise arbitrarily:
it will represent or summarise what thevestigator perceies as leing releant and
important features of the relationship between data and re#fitghe course of an
extended or compleinvestigation, the releant features considered will vary kaleido-
scopically as the problem is viewed under different aspects. Vestigator will choose,
among equidlent measures, one that immediately reflects his iméuitr reasoned
perception of the current aspect.

The rde of the lypothesisH may be multiple. On the one hanti may be
formulated in terms from the domain of realion the other hand it may be an abstract
label specifying a particular probability diswifion. Oftenit has both ttes. Bydefini-
tion, a statistical hypothesiss a sentence specifying a unique probability distidn
(as a probability model).Two such sentences V& the same meaning, as probability
models, if thg specify the same distriltion evzen when, expressed in different real terms,
they havedifferent real meanings.

For instance, the tavsentences:

(A) Events occur in a unit inteaV as a homogenous Poisson process whoseurate

has a Gamma distribution with indexand scale parametg:,

(B) events occur in a unit interval as a Poisson process whosg edtémet, given

thatr events hare dready occurred, isgen by u=A +yr;
both imply

(C) theprobability ofn events in the interval is

Py =(77" ) pea-p (=02,

i.e. a ngdive bnomial distribution, where we ke
(A) p=a  p=@+p)*
A _
(B) p=— p=¢€"’.
Yy

Thus (A) and (B) are the same statistical hypothesis, but laite different real
meanings, and cannot be distinguished by dataalone.

It is a commondllagy to gart with one hypothesis stated in real terms (such as (A))
and deduce a statistical hypothesis (here (C)), verify the fatgeddness of fit, and
complacently infer that (A) is the truth. It is also common to choose a distribution (C)
because its fit is good, and infer that a mechanism (such as (A)) thavesggator
knows about is the case, not suspecting that there is a statisticallaleyi hut
really different mechanism (B). There is no theoretical way out of such dilemmas,
which can only be resodd by understanding of the real terms of theestigation,
or by taking account of further data of a different kind.

The fypothesisH, then, on the one hand expresses tlag the real features of the
problem influence the data, and on the other hand specifies the probability model for the
influence of sampling on the variability of the data.

The pure dgnificance test

A pure significance test primarily addresses the quest®rthee anything thee?

Hacknged textbook examples are archaic and non-distec#pplications which flatter
the classical approach include goodness-of-fit and simulatidle. shall consider
an example of each.
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The pure significance test, based\dd ; H), refers explicitly to only oneyipothesid,.
What constitutes departure from, is subsumed in the form di. It follows that
significantly large values oA(D;H,) evoke implicit alternative hypothesesH, for
which such dat®' should be more probable undéy than undeH,,. For given A, only
such alternaties ae potentially ‘visible’.

This ability to irvoke dternatives is a \aluable aid to modelling, and is fundamental
in the context of an actualviestigation. Inthis respect the classical approach shares
the spirit of modern ‘Data Analysis-indeed was its precursefand is chiefly mar&d
by explicit dependence on a calculated significaneel le (largely eschewed in the
procedures of ‘Exploratory Data Analysis’).

Example 1. Goodness of fit and tyfetest

Data Dy =(n,...,n,) are the numbers out af falling into each ofk categoriesC;
(i=1,...,K). The hypothesisi, asserts that

A, thenitems assort independently of each other
A, the probability that an item falls @©; is p;(6)
A; this probability is the same for all items.

The goodness of fit question is whether the data-frequengiearg compatible wittH,,
for somed, i.e. to test the composite/pothesisH ={H,:6 0Q}. For H, define the
discrepancy

& (0 —np(6))*
— 2 — i
A(6) = x4(0) = i; (@)

and forH let the discreparycbe
A(D; H) =min[A(8): 6 0Q]

Then it is a classical result that if for sodell of A, A, and A; hold, thenA(D; H)
has, for lage n, asymptotically the mathematically definad distribution onv=k-1-r
degrees of freedom, wheres the dimension d@. Symbolically:

AOAOA; O A~ x2.
Note thatA(D; H) is invaiant under permutation of the category labé}s Clearly A is
formulated to directly xpress differences between;f and {np(6)}. If A, and A5 hold,
but the probabilities are 7}, then (asymptotically for lae n) the distribution of
A(D;H) is the non-centrab(ﬁ(dz), where the non-centrality is

2oy B
iZi B

and the {g;} may be taken as thep{(9)} that minimises?.

Significantly lage A are evidence agnstH. If A and A; are maintained, ariation
of H corresponds toariation of A,, hence ofs2. H corresponds 62 = 0, and the usual
usage of they? test of goodness of fit amounts to a significance test of the null
hypothesiss?=0. Dually the values o2 which, as null hypotheses, are not rejectéd at
significance leel a for given dataD,, form a confidence set fo at level p=1-a, and
can be re-expressed in terms of a confidence regionfer f§}, i.e. for the dgree of
departure of {z} from H. Likewise, a confidence set forzf} is the set not rejected
when adopted as values qf,{6)}.

f[not in the original: ‘(i.e. dat® such thairis large)’] ~ *[was asn the original]
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Less amiliarly, rejection ofH becausé\ seems not to ha te x2 distribution neyates

the abee implication and implies the getion of it first term, viz.

not(A~ x2) O (not A;) O(not A,) O(not Ag),
expressing the fact that when gpothesis is under testvery element is vulnerable,
not just the one of prime interest. The formal symboligaien is a list of all the ays
(not mutually &clusive) for the lypothesisH to fail and, again, the classicatgothesis
tests capacity to explicitly generate alterna$ is a weful and powerful aid to
modelling.

A classic instance of the latter reasoning is Fish€t936) re-examination of
Mendels data. Mendeb inheritance hypothesis implied whole-number ratios for
expected numbers of phenotypes, such as 3:1, 9:3:3:1 and 27:9:9:9:3:3:3:1 for
uni-, bi- and tri-factorial heterozygous crossings respagti on the assumption that
the parental genotypes are fnofor certain.Using x2, Fisher @aluated the goodness of
fit of Mendels dbsenations, and obtained smaaHZ values such as would beceeded
on typically more than 95%, andyerall, on more than 99.9% of occasionBhis fit is
‘too good to be true’, anti should be rejectedBut A, is certainly not contradicted;
therefore A; or A; must go (or both). When allence is made for uncertainty of
genotype due to finite numbers of test progeifferent frequencies are to bepected
from which the obseed frequencies no differ significantly Fisher concludes that
Mendels results were, in one way or anothfalsified so as to agree closely with his
expectations. Such process is a failure of,.

Example 2. Quantograms and simulation

The significance-test formalism can be used for data where there is no clearly appropriate
objectve smpling model, if applied to results of suitable computer simulations.
The illustratve example will be Kendalls ‘cosine quantogram’ originally applied to the
search for a possible quantum of length (theddithic yard’) in the diameters of
megdithic stone circles (Kendall, 1974), as proposed by Thom (see, e.g., Thom, 1955,
1967). In this particular application the ‘experiment’ istrinsically unrepeatable

(as historical eents generally are). The data are diamef¥s...,X,), and the simplest
quantal hypothesis is of the form

X=Mqg+e

whereM is an intger, q the ‘quantum’ of length, and a perturbation. Analternatve
non-quantal hypothesis is that is distributed somehwo ‘smoothly’ oszer the whole
range. Esting one against the other by wemtional means requires precise specification
of the distributions, which could be discussed at length and incorgijuéhis question

is thoroughly treated by Kendall).

Alternatively, consider working with a measure of discrepabetween the data and a
‘non-quantal’ typothesisH, whereA is chosen to immediately reflect a potential quantal
structure. Themplied near-periodicity of the distribution of thé&values suggests the
‘cosine quantogram’

N
or) =(2/N) Z cog2mrX7)
j=1

wherer =1/q. Thusg(r) is dfectively the Fourier cosine transform of the sample, and is
the real part of the empirical characteristic function. The cosine quantogram of a lattice
distribution (i.e. one with an xact quantum) will gie a J-function peak at the
corresponding frequencr. If there is no quantum fett, ¢(r) will be distributed (for

large N) like N(Q,1) for ary fixed r. The rang€r,, ;) of r-values should correspond to
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the range ofa priori reasonableg-values (in this application, say=1ft to q=10ft)
but should be no wider than necessaffhe computed course of the empirical cosine
quantogram can then be takerdasived primary dat€D) for further analysis (Fig. 1).

&

Fig. 1. The empirical cosine quantogragr) computed from diameters of 169 stone circles from
Scotland. England and Walesaples 5.1 and 5.2 of Thom (196%yaw, not ‘unrounded’ data) for
ranging from 0.09 to 0.59. The highest peak occuis=dt/ 7 =5.44ft. On the left of the figure the
two horizontal bars she the two greatest values of maximum peak height in 200 simulations (From
Fig. 9of Kendall, 1974), and the rectangle wische range of values of maximum peak height attained
in the remaining 198Thus the maximum peak height for the real deda exceeded only once in 200
simulation trials of the ‘non-quantal’ hypothesis (note that Kendall used ‘unrounded-hatait.).

It is nov natural to tak as neasure of discrepand (Dy; H) between the empirical
quantogranD and a non-quantal hypothesisthe quantity

A(Dg; H) = max[(r): <t <15].

Calculation ofD does not depend on specifyitt Howeve, in order to @auate its
significance a precise specification must be made approximateN(0,1) distribution
for fixed gcannot be used for aled maximisingg(l/q), sinceq has been selected by
the data.Kendall’s solution was to ta& “a ‘random’ set of data, similar in all respects to
the actual data sa mly in definitely not having ary underlying quantal effect”, and
subject it repeatedly to simulation, where the stated qualifications amount to

(i) usingthe sameN (though this is not critical),

(ii) ensuring a gmilar coarse-grained structure, as exhibited by a spline-transform

smoothing of the r& data.

Then random datd =(¢;,...,&y) are repeatedly generated according to a suitable
distribution, andA (D; H) is calculated each timeThe situation of the obsesdA (Dy; H)
within the distribution of the simulated values then provides an estimate of

a =P,[A(D; H)2A(Dy; H)1.
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Kendall (with mary refinements of the alke agument) then obtaing = ca. 0.01to

a = ca. 0.07for various sets of stone circles in England and Wales, and in Scotland, the
obsered peak quantogram generally occurring atca. 5.4 ft. He can thus conclude that
although the evidence that thése quantum is less conclua than one wuld wish, it is
nonetheless strong enough to justify the expense of irepprand more accurate swey

of the sites. He also repeats the simulation with artificial data simulated according to a
guantalhypothesis, and obtains an estimated standard deviatiéndo0.0181t., all 25
simulated estimates being in the range (5.41, 5.50), i.e. within 1 inch.

The question receed a Bayesian analysis by Freeman (1976). He states that
“a Bayesian approach is unable to encompass a clear test of whether or not a quantum
exists, owing to the lack of an alternati model for the data in the absence of a
guantum”. Theconclusion may be right, but surely such an alteraatbdel is just what
Kendall used (granted an element of judicious choice in the precise form of the
“null distribution”).

The fundamental ditulty is absence of a prior probabilityr) that the quantum
exists. ABayesian analysis could at besfeofr; (the posterior probability) as a function
of m, in the typical form

"= rrOB

17 A+my(B-A)
where

A=P{X} Q)

is the probability of the data assuming no quant@ &nd
B=[P({X}0Q:a)g(@) dq

is the probability of the data assuming a quantum, in wi{ghis the prior distrilution

of the quantung and P({ XJ-} 0Q:; q) is the distribution of the datagn a quantum equal

to g. If there is strong evidence ofyahkind in the data for the existence of a quantum,
then /; will be near 1 except for small values mf. This explicit trade-dfbetweenrr,
and g is a potentially useful feature of the Bayesian appro&ah.the other hand, the
significance leel of a ‘classical’ test of the no-quantum hypothesis is an absolute figure,
appropriate for assessing whatasgyiori, Smply an open question.

As for estimation ofg, assuming a quantum to exist, the results of Freeman and of
Kendall agree closelyoth in estimated values and in estimated precision. Reasgns wh
this should be so arevgh by Slverman (1976), who sk that Freemas’ posterior
density is closely related to Kendaltuantogram.

Example 3. lansient effects in experiments yielding time-series

The classical approach is especialiperhaps uniquely-appropriate when deliberate
randomisation has been don€he use of the ‘randomisation distribution’ in analysing
data from standard randomisexperimental designs is well known; this example will
exhibit its use in a less tractable application, the typical context being a biological or
medical experiment to study the effect of a treatment on a time-dependent quantity.
Consider a medical experiment in which say blood pressure, breathing rate or urine
production is being monitored, or a biological or psychologiggeement where the
variable being observed is say rate of occurrence of neural action potenti@memd
of an animal, rate of performance of a task, or some other measurevij.adtithe

T Here, and in the following line; (original) has been changeprfor consisteny.
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variable is simply passely recorded, the result will be a fluctuating time series which
may hae a omplex structure for which there is no obvious model. At some moment,
the experimenter inteenes—tanject a drug, apply a stimulus, etc. Does the treatment
have an efect? Ifso, it may be transient, and difficult to distinguish from a fluctuation
that might hge accurred anyway at that moment.

If there is a model for thexpected effect, and also a model for the serial stochastic
structure of the series, then standard approaches to signal detection in the presence of
known noise could be used. Suppose such models arealabke.

The irvestigator examining the data series, may be able to identify certain features of
the record that look li possible effects; should these occur within a reasonable time lag
after the treatment, there is a suggestidut no more—that the treatment has had
an efect. Hav can a significance V@l (a) be asociated with such an obsation?

The problem is that there is no known distribution to use for calculating

But in mary experiments one can be imposddet (0, T ) be he interval of obseation
of one individual subjectLet (T;, T,) be within (0,T). Apply the treatment at a random
momentX chosen according to a distributidg(x) on (T, T,).

Next, let the entire record be analysed by areans likely to respond to the presence
of an efect in the record. This may be as simple as a running mean, or some more
comple filter. In some cases, thevsstigator himself must, by inspection, judge whether
a gven dretch of the record is potentially arfesft (but if it is done this ay, the moment
of treatment,X, must be concealed from him). Inyapase, the result will be a series of
measurementd,(...,t,) marking the onsets ofvents in the record which agandidate
effects The {t;} are the statistics, determined from the record and from background
knowledge, and from nothing else.

The analysis ne turns on the inteals {(X, t;)}. Normally (except in situations where
the subject might anticipate the treatmevert) momentd; with t; <X can be ecluded
as not corresponding to possiblefeefs. Considerthe remainder and define
the lags

=t -X.

Suppose there is a (possibly parametrised) digioib (t; 6) for the time lag between
treatment and effect (if presenth mary applications, a reasonable distribution for the lag
may be more readilyvailable than explicit models for thefe€t or for the time series.
On the null lypothesis ) that the treatment has ndegft, X has the null distribtion
fo(x) on (T;,T,). On an alternatie hypothesis K,) that with parameter alue 6
one of thet; marks the true effect, armbnditional on the entir record the distrilution
of X is given by
0 = 20X -Xi6)
J’z fo(X) @(t; - X; 6) dX
= fo(X) [B(X; 6), say,

[wherey(t) is the distribution of the lagAdded 8 November 20Q9)
summing @er the remaining; and integratinger (T;, T,).

Using the Ngman-Pearson Lemma, the most powerful tedtl pfrersusH, is to reject
H, if the likelihood ratio f;(X; 6) / ,(X) is sufficiently large, i.e. ifG(X; 6) exceeds a
critical level A. ChooseA so that the ingral of fy(X) over the x-values for which
G(X;8)= 1 is equal to the desired size of test,

When 6 is unknown and has to be estimated from the data, maximefiirbld
estimation may be used, choosiago maximiseG(X; 6); it may be necessary to use
records from seeral subjects. A desired sizea may sometimes be approximately
achieved as dove, integratingfy(X) oyer{X: G(X;8)=}ford = 4. Ingeneral, allwance
must be made for the dependencé oh X. Conditionally on theecord i.e. on the {;},
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this can be straightforavdly achieed by smulation since, with fixedt{}, there is no need
to simulate different possible records.

Further complications include the possibility that an effect might be masked by an
intrinsic (treatment-independentyeat in the record. This could be approached by
incorporating a probability of such masking as an additional parameter to be estimated,
but then may records may be required.

In the simplest possible case, there is only one candidate effedt tireeknown, and
X has been chosen according to a uniform distributio(raiT,). Thelikelihood ratio
criterion is theny(t-X)= A. Let L, be the total length of the set on which this is
satisfied; the size of the testas= L, /L, whereL =T, -T,. In this case the dominant
design consideration becomes cldaghould be as large as possible.

Confidence sets for parameters
Turning to confidence sets, the next example willwshww the duality between

hypothesis tests and confidence sets can be applied to produce a solution in classical

terms to a problem which has, in the past, generated considerablevesgtmmong
‘classical’ statisticians. It will also exhibit a typical likelihood-based analysis.

Example 4. Calibration

Data (4, y;) - - - (X, ¥,,) are obtainedThe x-values are, typicallgontrolled (i.e. there is no
stochastic model for theiralues). Thecorresponding/-values are random, according to

Y =a+Bx+g (i =1..,n)

where theg; are independent ‘random errors’, each vit(®, o?) distribution.
A further independent obsation Y is made ofy, corresponding to an unobsed/
value X of x, for which

Y =a+pX+¢

It is required to infer plausible values ¥t given the dataxy, ), ... (X, ¥,) adY.

An obvious estimate oiX is obtained by ‘reading the regression iverse’ as
X =(Y-4)/3, but its sampling distribtion has neither mean noanance. Anearly
discussion of the problem is in Berkson (196%rutchkoff (1967) suggested the
apparently improper procedure ofjressingX onY, and began a mntroversy which still
rumbles. Ithas been treated by a Bayesian approach in Hoét®&0) and in Hunter &
Lambagy (1981), an empirical Bayes approach in Lwin & Maritz (1982), bgliliood in
Minder & Whitney (1975) and by structural inference in Kaptd971). Bravn (1982)
reviews the contreersy and the various approaches and considers thevanialte case;
his result (1.2) is equilent to a result dered below and underlies the solution proposed
here which is a directly derd likelihood-based confidence interval.

The unobserd X will be treated as if it were thealue of a parameter in the problem,
so that there are four parameters, {4z, 2, X ). A set of plausible values for parameters
will be interpreted as a set ailues, all with sufficiently high values of a likelihood function
for those parametersvgn the data.

The likelihood function foiX will be obtained here as

L(X) = {supy g0z L(@, B, 0% X)} 1{SUp g 2.5 L(a, B, 0% X)}
(Maximum Relatve Likelihood or Profile Liklihood). Onthe typothesis thatX has
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ary specific \alue X, the likelihood L(X,) has a fixed distrition. L(X) is in fact a
function of a ratio of quadratic forms in the ‘erroeg... &, ande, and does not depend
at all on the true values of, 8 ando?. Therefore, on theypothesis thak = X, and
for ary given valueL between 0 and 1, the probability

P(L(Xg) > Lg) = p(Ly)
depends only ot If, therefore,L is chosen so thap(L,) is any desired confidence
level py, say, we @n calculate from the data the limits on the seXefalues such that
L(X) > Ly. Then this set oK-values contains the trué-value, X, (whatever it may be),
if and only if L(X,) > Ly; an event which has known probabilitp,. Therefore the set of
X-values such thak(X) > L, is a confidence set for the trualwe X,, at mnfidence
level py, and contains allX-values which, gien the data, hee sifficiently high
likelihood. Itcan appropriately be calledikelihood-based confidence set

This confidence set will usually be a simple (and preferably short) intewvil, b
sometimes it may consist of iwdisjoint semi-infinite intervals, orven the whole real
line. This arises when the original data are insufficient to establish a well-defined
calibration, or when th¥-value is well outside the range for which the calibrati@s w
established. Irary case, it is a clear indication that the data are inadequateécagi
satisfactory estimate of the unknown valuexaforresponding to the observéevalue.

For the given data, assuming grgiven parameter-alues &, g, o2, X ), the likelihood is

- 10
o (“+1>exp{ _ﬁ-zl(y‘ -a-px)? - (Y-a-pX)/20°
=

For simplicity, set the origins ofx and y at the meansx and y, of x;,...,x, and
Yi»-- -, SO that thex; andy; sum to zero.The Maximum-Likelihood Estimates (MLES)
of a, B, 0% and X are then gien by

a=0

R n n o,

B =3 XYl X
i=1 i=1

X=VYIB

>
N

S
= migl(yi B%;)
On the other hand, for an arbitrary fixed valueXpthe MLEs are gien by
- _1 no,
az—{YZXi—XZXiyi} [1]
Dl % i%1

1 n
B = —{(n+1) > XY +nXY}
D is1

—»_ 1 ]2 = = Euy2
g~ = m[IZl(yl a 'BXI) +(Y a IBX) ]
where

n
D = (n+1) ¥ x2+nx?
i<1

- __ 1|~ ) .
[f] The originalhada = 5{ > xi2 -Xy xiyi} which wrongly omitted theY’.
%1 is1
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The likelihood ratio is therefore mogiven by
L(X) = (6/5)"*!
and so the construction of the confidenagice as abee cepends on the properties of
the ratio
R(X) = 821 5.
A confidence region foK, will be the set ofX-values such thaR(X) exceeds a gen
value Ry, and the confidence Vel p, associated with it will be the probability
P(R(Xg) > Ry) = po.

calculated on the hypothesis that the true valué isfX,.
It can be established that

~2_ -2
g°-& 1-R(X)
-2)—— = (N-2)———
(=2)= 25— = (=275
has theF-distribution F,.,_5. Therefore the hypothesis that the unknox corre-
sponding to the obsexdY has a particularalue X can be tested using this distrtton:
a ggnificantly laige value of this ratio is evidence against the hypothetalabwX. The

set of allX-values not rejected at avgh sgnificance leel a constitutes a confidence set
of values ofX, acceptable at a confidenceéep=1-a.

Table 1. Fisheries research data used for Example 4 (Calibration) and Fig. 2. Estimatechgpa
biomass X) and larval abndance inde(y) in successie years. Gien for illustrative purposes only

Spawvning Lanal
biomass abndance
(000 tonnes) index
(%) ()
2130 484
2210 372
1940 204
1230 112
150 88
670 52

As an example we shall analyse the hypothetical case in which the daahleflT
are gven, together with an ‘obseation’ Y =500, and we seek a likelihood function
and confidence intervals for the corresponding
Fig. 2 is a composite diagram in which the data and the results are displayed. The data
are plotted relate © the (X,Y) axes, and the likelihood functiob(X) given by (3.5) is
plotted withY =500 & a kaseline, relatie o a sale forL(X) on the right of the figure.
The 50%, 75%, 90%, 95% and 99% confidence intervals were calculdteid.boundary
points correspond to Vels of L(X) which are shown on the figure, labelled with
the corresponding confidencevédis and projected down onto the base line towsho
the X-values.

Example 5. Estimating stock-recruitment relationships in fisheries @sear

In modelling the population dynamics of fish stocks, an important factor is the dependence
of future recruitmentR) on aurrent stock leel (N). A cornvenient general form is

R = a(N)IN.
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Fig. 2. Likelihood functionL(X) for the calibration problem. The data (fromble 1) are plotted in
the lower part of the figure. ThalueY =500 5 gven and the corresponding value &f is to be
inferred. Supportedn the lineY =500 & the graph ofL(X) (scale ofL on the right) and the MLE
of X is marled with %’. The 50%, 75%, 90%, 95% and 99% confidence iratsrior X are shan,
as dewed fromthe l@els of L(X).

(It may be appropriate to disaggeee N according to age-group, but in nyaoases
this is not necessajy The multiplier a(N) is a ‘density-dependent recruitment rate’,
and cannot be constant if the stock is to be stablethermore, the degree of non-
linearity, as expressed byr(N), is an important indeof the capacity of the stock to
sustain intensie exloitation. Introductorydiscussions of this question can be found in
Pielou (1977), Hoppensteadt (1982) andaitierlg (1972). Cushind1975, Chapter 7)
discusses it at length.

A variety of parametrised functional forms has been proposed of which haae
been summarised by Mat al. (1978). Theirrange of behdours can be emulated by
the single form

a
1+(N/M)B
depending on the value &, which has been discussed by Shepherd (1982). d@he v
of a gives the exponential rate of growth of a small stock, and the pararkikisran
index of the ‘carrying capacity’ of the ivonment. Asstock sizeN - oo, recruitment
grows indefinitely or tends upwards to an asympt¢teM ), or rises to a maximum and
then tends denward to O, according 88<1, 8 =1 or 8 >1 (Fig.3), all being biologically
possible. Thgreater the value ¢f, the greater the resilience of the stockexploitation. Twas‘of

As an element in fishery management, therefore, the estimation of parameters,
especiallys, must be assessed. Theotwost important parameters ak and g and,
not unepectedlythey are somewhat lingd.

Fig. 4 shows data for North Sea herring for the years 1952—-1974 fhegatonnes,

R in billions). The tw highestR-values are exceptional and will not be included in the

a(N) =
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o T

o 1 2

Fig. 3. Curwes llustrating the StockRecruitment relationship in dimension-free form as

y=x/(1+x#), wherey=(R/aM) and x=(N/M)." The curves AF
£=05,1.0,1.5,2.0,3.0,4.0.

orrespond to values of

T [The original erroneously had=(P/M). Also,the scale-mark ‘1’ on th¥-axis should be ‘0.5']

o T

1

Fig. 4. Stock-Recruitment data for North Sea Herring (1952-1974, except 1956 and 1960), shown for

2

illustrative purposes only Abscissa: spawning population biomass dah@nnes); ordinate: numbers

of recruits €10%).

analysis. Thebove law was incorporated into a stochastic model assuming multipicati

error, so hat the model can be written
logR = loga +logN —log(1+(N/M)?) +¢

Assuming for working purposes thathas anN(0, o2) distribution, likelihood contours
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[Notation trivially dhanged
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for M and g were obtained by maximising the likelihood with respectrtoThey are
shaown in Fig. 5.

2]
e
s
0‘5;
10 2:0 3.0

Fig.5. Likelihood contours for the parametgrandM in the Stock-Recruitment modelContour Ieels
are chosen from thgg distribution corresponding to confidencevds P = 0.05 (innermost), 0.1,
0.25, 0.5, 0.75, 0.9 and 0.99. Abscissa: valugs;@rdinate: values oM.

These contours are approximate confidence set@Mipp) jointly, according to the
following agument. Letary given point (M, 8) be tken as a null ypothesisH; the
parameter space then has one dimensiom(forAs alternatve hypothesisH, let (M, )
be unrestricted, giving three dimensions in dlhe Wilks likelihood ratio test statistic is

/‘(Mlﬂ) = 2{|Og|.(&,|\7|,[§)-|09|.(5,M,ﬂ)}

whered is the maximising value af for fixed (M, 8) and @, M, ) are the maximising
values for (a, M, B) unrestricted. Br large samplesji(M, 8) has asymptotically a
x2 distribution, wherev is the difference in dimensions &f, and Hy, in this case 2
(Kendall & Stuart 1l, 1979, section 24.7).

Let UV’p be such thaP[ )(5 < vap] = p. Then to within the approximationvalved
in using the asymptotic distribution, if

AM,B) < U,

then Hg is not rejected at significancevéé1 - p, and therefore belongs to a confidence
set, confidence &l p, consisting of all suchalues M, 8). Thereforethe contours of
(M, B) on the figure are the boundaries of approximate confidence sets; on the figure
these hee keen labelled with the values pfderived fromU,, ..

It is clear thatM and B are near-aliases, and that acceptable valueg ¢fvith
corresponding values dfl ) range fromg < 1.0 to 8 > 3.0, since the 90% confidence set
extends beyond this rangeConsidering thatB is an important parametethe
stock—recruitmentelationship cannot be satisfactorily estimated from this series of
herring data.The (M, ) contour diagram permits rather a wide spectrum of curves to be
fitted to the data, with strong implications for using the model to assess sustainable
yields, and stability of the population.
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Classical methods in complex ivestigations
Example 6. Danish elvers

Boé&ius (1976) reports the results of observations orerak thousand elvers tehk
during the 1972 elver run at Hgjer and Esrom in Denmatiese hee keen analysed
(Harding, 1985) as part of axtended inestigation of the spawning of the European
eel @Anguilla anguilld (Bo&ius & Harding, 1985).Historically, an mportant issue as
whether the entire European eel population was, morphologicaitypletely homogenous.
The example provides a compland interesting illustration ahe deployment of classical
methods in probing for possible explanations of a phenomenon.

The Hgjer samples were taken at three stages of thel,rlin I{l ) and subdiided
according to fie devdopmental stages as determined by pigmentatiorE(A—

B0 B0

2 ' = .ra %1 B - 1D

76 76+ |
t t

74 4 o 744 *‘,, :

224 o 724 H I

704 +¢ 704 ] L

68 BB

T T T T T
o 12 14 16 18

80 BO
1 ¢ - 1In 81 0~ 11D
76 76 4
74 4 74
i o - _
72 X { 72 + .-_..+
70 4 5* 70 - e
68 4 ‘ 658 <
JJ'U L:? 1]‘4 ];6 E{E ];El l;? U‘ﬂ 1;6 L‘Iﬁ
80 --i 80
%1 B= J1IC %1 F - ILIE
76 26 4
744 74 4
.i+ o +
72 4 thae® 724 ‘4
704 704 1 ¥
58 6B o

W U2 e e i 0 12 1 16 18
Fig. 6. Data for Hgjer samples: mean length and SD of the mean for each value of Total Number of
Vertebrae (TNV) (filled squares denote mean length; vertical bars exteriddandard deviation of
the mean; opesquares denote single specimens). Abscissa for each graph:Ortlisate for each
graph: length (mm).
Graphs correspond to samples angeligpment stages as follows:
A: Samplel, Stage A C: Sampldl, Stage A E: Sampldll, Stage C
B: Sampld, Stage D D: Sampldl, Stage D F: Sampldll, Stage E
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Fig. 6 shows mean length)vs. total number of vertebrae (TNV) for Hgjer subsamples
IA, ID, lIA, 1ID, IIIC and lIIE (4289 specimens in all). Fig. 7 shows the same for the
Esrom sample (2150 specimensjeveral explanations could be suggested for the
obsered dependence:

g6
944
92 4
CLE
g6 | {
g6 o f

84

+
87 *

80

78 4 \
78 -
74 4
724
70 1

B8 4

T T T T T T
o ou2 14 16 18 1D
Fig. 7. Data for Esrom sample. Interpretation of the graph as for Fig. 6.

(A) Simple proportionality: the more segments to an individual, the longer it is (other
things equal).

(B) Individuals with higher genetic potential for gitn have hgher numbers of
vertebrae.

(C) Numbersf vertebrae increase as growth proceeds.

(D) Applicationof criteria for determining the tailmosesebra may sometimesvgi
different results according to length, as a consequence of morphological changes
occurring during growth (structures in the tail tip are compia variable).

The hypothesis that the slopes of the 6 Hgjer regressiohsoof TNV are equal is
rejected ar = 0.006, and the Esrom slope is significant#yydifferent from the Hgjer
slopes. Theseesults weigh heavily against explanation (A), which isdver roughly
compatible with the Hajer samplés.

[Also, in general the growth of fish is more a function of their sizejigctiood consumption and sade
areas of internal gens than of precisely homary vertebrae thehave Note added 21 October 20P9

Explanation (C) seems unély for so definite a structure as vertebrae, and there is no
relationship between mean length or mean TNV and sub-sample, wiicll Wwe
expected if (C) held.Explanations (B) and (D) cannot be directly tested. There isyin an
case interest in finding an explanation of the data which petntiisbe independent of
TNV in elvers of common origin. Such a one is:
(E) TheHgjer specimens are a mixture of distinct groups, where in each grasp
independent of TN\but the groups differ in distribution of length and in disitibn
of TNV. In such a mixture,L can hae a vey closely linear relationship with
TNV (Fig. 8).
A hypothesis such as (E) is in fact directly suggested by inspection of histograms of
length for each TNV (Fig. 9).There is a central peak in a constant position for
TNV =113-116(mean=ca. 72.5 mm), the length distributions for TNM\112-114are
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Fig. 8. Graph to illustrate the nearly linear dependence of rifeamX when (X, Y) is sampled from
a mixture of two normal distributions, in each of whick andY are independent.

The two crosses mark the means of theistributions in which:

(@) X ~N(1,1),Y ~N(0,1);

(b) X~N(2 1), Y ~N(1 2);
The cure is he expected value df given X in a random sample from an equal mixture of (a) and (b).
The vertical bars are proportional to the standard deviations of the sampleglies when the
X-values are equally grouped, taking into account the frequencies of occurrehce of

negaively skew, and positvely skew for TNV = 116-118. The mixture model adopted
attributes the ngative kewness to a component with reledy low mean TNV andL,
and the positie kewness to a component with reladly high mean TNV and., in each
case in the presence of a component with intermediate TN\L afdhus the probability
that a specimen will ha length= L and TNV=V can be written as

P(V,L) = mPy(V) QL) + m,P,(V) [Qy(L) + mP4(V ) [Q4(L)

where ther; are the proportions of the three components, andPifé), Q;(L) are
grouped normal distriltions. Therere 14 parameters in this model.

Fitting the parameters is complicated by the fagigent from Fig. 9, that certain
lengths are dvaured wer their neighbours, an artefact probably due to observer bias.
Fitting such a model depends delicately on fine detail of the shapes ofutiistisb
Initial approximations were determined by a samat elaborate procedurevaiving
probability plotting, components of variance, and fitting by moments (see Harding, 1985),
and then an iteratt rocedure was entered in which the parameters were intetacti
varied so as to increase the likelihood on each iteration. Care wasttakrrest iteration
when the resulting fitted distributionsdaa to be unduly influenced by the ariftual
irregularities noted in the length distributions.

The resulting fit is shown superimposed on the original histograms in Figh®.
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Fig. 9. Histograms of the length distributions for each T/ the Hgjer material (all three samples
pooled). Orthe left: TNV On the right: observed numbers of specimens for each.TN&ights of
histogram bars are proportional to absolute numbelistogram for TN\E119 (three specimens
only) not shown.

shapes are well matched. On the right are expected numbers for each TNV calculated from

Ey = 4289 (mPy(V) + m,Py(V) + mP5(V))

The agreement is close x2 =4.98 for 8 classes (but on womary degees of
freedom..?).

In conclusion, it ispossible at least, to represent the Hggample as a mixture of
three distinct thoughwerlapping components, in each of which length is statistically
independent oT NV, and thus account for the dependenceé.ain TNV. If this tripartite
representationis the explanation, then all three groups are present in all sub-samples
(though, as further analysis can whan dightly different proportions), since the
length—TNVrelationship is equally manifest in all.

Therefore, on this hypothesis, the tripartite structun®is. mnsequence of the fact that
the Hgjer specimens were taken on three separate occasions, and would imply that there
are present three groups that, at leaste lperienced different environments in early
development and may possibly va keen spawned in different places. Suclypdthesis
is of great interest for the major vestigation, since Johannes Schmsdt’
Sagasso Sea theory requires the utmost morphological homogeneity in the entire Euopean

population (Schmidt, 1922).
[It is known, experimentally that the number of vertebrae in a fish ofegi ecies is influenced, for
instance, by temperature during embryonigeltepment in the eggNote added 21 October 20P9

T [A duplicate of this sentence has been reedd

The Statisticiar{1986) 35, pp. 115-134 18 (132)



118 35
117 217
116 673
115 1171
114 1217
113 715
112 225
111, — 37
b0 70 B0 mm

Fig. 10. The fitted ‘mixture’ model described in the text, superinposed on the histograms of®ig.9.
the right: expected numberB\f) calculated as explained in thete

Discussion

The ‘classical’ statistical procedures ofplothesis testing, confidence intervals and
estimation, based on sampling properties of statistics, often appear as rigidly formulated
ends in themselves, with limited scope, and yielding conclusions of limited interest, as
encountered in standard courses and textbooks.

The general formulation presented at the start of this paper allows freedohiljtfle
and power in applications of classical statistical methddeir power lies in that tlye
permit sharp focus on specific aspects of amsitigation, their fleibility in that they
offer a wide range of aspects to examine.

These properties of classical methods just mentioned are valuable tools for therglisco
formulation and verification of feasible models, but their full power and flexibility are
only realised when the problem is repeatedly re-examined underedif aspects, and
the corresponding statistical models are continually re-stated in the real terms of the
investigation.

These remarks ka teen illustrated by a variety okamples. Fulldiscussion of an
one of these would exceed the space of the present papehope that, taken together
they give a good impression of the scope, limitations and, on occasion, dangers of the
classical approach.

Some examples were chosen to exhibit the cenfiel ptayed by the liglihood
function in mamy applications, conjoined with appropriate sampling theory (as
opposed to direcinterpretation of the likelihood function itself). Some reference to
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Bayesian approaches has been made, buiutdiabe inappropriate to go further into the
relative merits and scope of Bayesian and non-Bayesian methods.

Finally, an aknowledgment, long due, should be mad€ognoscenti will hee
recognised George Barnasdihfluence on the more formal parts of this presentation.
For this, and for his xample in flexible and intelligent application, my thanks and
appreciation. (Aparfrom presentations in lectures, the only published accountw kno
is in Barnard (1962), especially pp.-4®.)
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