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Modelling: the classical approach
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Abstract. The kernel of the ‘classical approach’ to statistical modelling is the use of procedures inspired
by the ‘classical’ objectives of Hypothesis Testing, Confidence Intervals, and Parameter Estimation, in the
context of statistical models formulated (usually) in a highly specific way, and evaluated by the techniques
of Sampling Theory.

Used sensitively, intelligently and flexibly, these procedures offer a powerful and adaptable approach to
statistical problems arising in scientific contexts (though as usually taught, these methods appear limited
and rigid). Their power lies in that they permit sharp focus on specific aspects of a theory, their flexibility
in that they offer a wide choice of aspects to examine; but these are only realised when the corresponding
statistical models are continually re-evaluated in the wider logic of the scientific context. Theseremarks
are illustrated with a variety of examples.

Introduction

Given the diverse and sometimes fragmentary character of ‘modelling’ as practised, the
opening contributors have been asked to attempt unifying presentations from three main
theoretical standpoints: ‘Classical’, ‘Likelihood’ and ‘Bayesian’.

Modelling is setting up a relationship between theory, data and reality. I shall interpret
classical as denoting mainly tests of significance, hypothesis-testing and confidence
intervals, and estimation—classicalin almost the musical sense of a relatively traditional
stylistic formalism, well understood, familiar and easily assimilated.

I must try not to pre-empt what Professor Aitkin† will say about likelihood, or
Professor Smith about Bayesian methods.Classical modelling is often (though by no
means always) non-Bayesian, but use of the likelihood function is unavoidable; I shall
use it, however, in a quite classical way.

The approach adopted here will use examples to demonstrate the power of the
classical approach, point out some limitations and dangers, and exemplify its methods.
A theme of the Conference is that users seekmodels developed from and supported
by data, leading to an increasingly crucial roˆle for Statistics in the modelling process.
I do not take this to mean that a model is good merely because it gives a good fit
to the data: a satisfactory relationship with ideas and theories specific to the investigation
is also essential. On the other hand,the use of Statistics within modellingwill be a
constant feature.

Foundations

The logical kernel of the classical approach is the significance test of a null hypothesis,
and its extension to hypothesis-testing within a family of alternative hypotheses.

Let H0 be a hypothesis to explain dataD0, and ∆ (D0 ; H0) a measure of discrepancy
betweenD0 and H0: the larger ∆, the more remoteH0 as explanation ofD0. When H0

† Was Aitken in the original
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holds, let∆ (D ; H0) hav ea definite distribution whenD varies randomly underH0, and
let δ0 = ∆ (D0 ; H0).

The specification of∆ induces a nested structure on the sample space, for given H0,
in terms of subsets such that each subset contains all observations D for which
∆ (D ; H0) ≥ δ for some value ofδ . Conversely, giv en a family {H} of hypotheses, and
observed dataD0, a nested structure is induced on {H} according to∆ (D0 ; H) ≥ δ .

To each subset in the sample-space nesting can be attached its probability
α = PH0

[ ∆ (D ; H0) ≥ δ ]

under H0. Therefore there is an inverse monotonic relationship between the defining
discrepancy-level δ and the probabilityα : the smallerα , the greaterδ . This is the basis
for a test of a given hypothesisH0, since when dataD0 are observed and we also have,
for sufficiently small given α ,

PH0
[ ∆ (D ; H0) ≥ δ0 ] = PH0

[ ∆ (D ; H0) ≥ ∆ (D0 ; H0) ] ≤ α

then we can assert that the observed datum belongs to an extreme (discrepant) class
whose total probability is implausibly small, such hypotheses being ‘rejected at
significance level α ’.

Conversely, giv en a family {H} of hypotheses, each possible datumD0 maps into the
subset of {H} not rejected at level α by the test based on∆ (D0 ; H) whenH is taken as
null hypothesis. Thisset of hypotheses is a confidence set at level p=1− α , since if any
H0 ∈{ H} is true, then the probability is at leastp that the set so constructed containsH0.

The above formulation is clearly very general and flexible, in that the choice of
discrepancy function ∆ (D ; H) is open, and no fixed level of significance (α ) or of
confidence (p) is set. When‘powerful’ test procedures are available, these are embraced;
but ad-hoc or expedient procedures, non-parametric or distribution-free methods, and
approaches to the testing of one dimension of a multiple parameter are also covered.

I reg ard the above dualism between hypothesis tests and confidence intervals as
primary in the classical approach.Estimation (while it may be the main objective on a
given occasion) is a derivative procedure. Byestimation I mean the production of
‘point estimates’ as such: if they are accompanied by appraisals of precision
(e.g. standard deviations), then (implicitly) the formalism of (possibly approximate)
confidence intervals is being used. From this standpoint, an appropriate point estimate is
a parameter value common to confidence intervals at all confidence levels.

Mode of Application

In the above formulation, all discrepancy measures which are one-to-one monotonic
functions of a given measure∆ are equivalent in that they will, for a given hypothesisH0,
give rise to the same nested structure of subsets of the sample space, and to the same
assignment of probabilitiesα to the subsets; and likewise on a family {H} of hypotheses
is induced, for given dataD0, always the same nested family of confidence sets with the
same confidence levels p.

In short,

α(D0 ; H0) = PH0
[∆ (D ; H0) ≥ ∆ (D0 ; H0)]

is itself a measure of discrepancy, and can be taken as canonical representative of the
set of all equivalent measures∆. This amounts to transforming a given measure∆ to a
‘universal’ scale, that of the probabilityα , and this scale also has a universal
operational interpretation, namely the chance (whenH0 is true) that so large a
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discrepancy as ∆ = δ0 should occur. From this point of view there is no essential
difference between equivalent measures∆.

In applications, however, a giv en measure of discrepancy ∆ will not arise arbitrarily:
it will represent or summarise what the investigator perceives as being relevant and
important features of the relationship between data and reality. In the course of any
extended or complex inv estigation, the relevant features considered will vary kaleido-
scopically as the problem is viewed under different aspects. The investigator will choose,
among equivalent measures, one that immediately reflects his intuitive or reasoned
perception of the current aspect.

The rôle of the hypothesis H may be multiple. On the one hand,H may be
formulated in terms from the domain of reality, on the other hand it may be an abstract
label specifying a particular probability distribution. Oftenit has both roˆles. Bydefini-
tion, a statistical hypothesisis a sentence specifying a unique probability distribution
(as a probability model).Tw o such sentences have the same meaning, as probability
models, if they specify the same distribution even when, expressed in different real terms,
they hav edifferent real meanings.

For instance, the two sentences:
(A) Events occur in a unit interval as a homogenous Poisson process whose rateµ

has a Gamma distribution with indexα and scale parameterβ ;
(B) events occur in a unit interval as a Poisson process whose rateµ at timet, giv en

thatr ev ents have already occurred, is given by µ = λ + γ r ;
both imply

(C) theprobability ofn ev ents in the interval is

P(n) = ( ρ + n−1

ρ −1 ) pρ (1− p)n (n= 0, 1,2, . . .) ,

i.e. a negative binomial distribution, where we have:

(A) ρ = α p= (1+ β )−1

(B) ρ =
λ
γ

p= e−γ .

Thus (A) and (B) are the same statistical hypothesis, but have quite different real
meanings, and cannot be distinguished by data onn alone.

It is a common fallacy to start with one hypothesis stated in real terms (such as (A))
and deduce a statistical hypothesis (here (C)), verify the latter’s goodness of fit, and
complacently infer that (A) is the truth. It is also common to choose a distribution (C)
because its fit is good, and infer that a mechanism (such as (A)) that the investigator
knows about is the case, not suspecting that there is a statistically equivalent, but
really different mechanism (B). There is no theoretical way out of such dilemmas,
which can only be resolved by understanding of the real terms of the investigation,
or by taking account of further data of a different kind.

The hypothesisH , then, on the one hand expresses the way the real features of the
problem influence the data, and on the other hand specifies the probability model for the
influence of sampling on the variability of the data.

The pure significance test

A pure significance test primarily addresses the question:Is there anything there?
Hackneyed textbook examples are archaic and non-distinctive. Applications which flatter
the classical approach include goodness-of-fit and simulation.We shall consider
an example of each.
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The pure significance test, based on∆ (D ; H0), refers explicitly to only one hypothesisH0.
What constitutes departure fromH0 is subsumed in the form of∆. It follows that
significantly large values of∆ (D ; H0) evoke implicit alternative hypothesesH1 for
which such dataD† should be more probable underH1 than underH0. For given ∆, only
such alternatives are potentially ‘visible’.

This ability to invoke alternatives is a valuable aid to modelling, and is fundamental
in the context of an actual investigation. In this respect the classical approach shares
the spirit of modern ‘Data Analysis’—indeed was its precursor—and is chiefly marked
by explicit dependence on a calculated significance level α (largely eschewed in the
procedures of ‘Exploratory Data Analysis’).

Example 1. Goodness of fit and theχ 2 test

Data D0 = (n1, . . .  ,nk) are the numbers out ofn falling into each ofk categoriesCi
(i =1, . . ., k). The hypothesisHθ asserts that

A1 then items assort independently of each other

A2 the probability that an item falls inCi is pi(θ )

A3 this probability is the same for all items.

The goodness of fit question is whether the data-frequencies {ni } are compatible withHθ
for someθ , i.e. to test the composite hypothesisH = { Hθ :θ ∈Ω}. For Hθ define the
discrepancy

∆ (θ ) = χ 2(θ ) =
k

i =1
∑ (ni − npi(θ ))2

npi(θ )

and forH let the discrepancy be

∆ (D ; H) = min [ ∆ (θ ):θ ∈Ω ]

Then it is a classical result that if for someθ all of A1, A2 and A3 hold, then∆ (D ; H)
has, for largen, asymptotically the mathematically definedχ 2 distribution onν = k −1− r
degrees of freedom, wherer is the dimension ofΩ. Symbolically:

A1 ∧ A2 ∧ A3 ⇒ ∆ ~ χ 2
ν .

Note that∆ (D ; H) is inv ariant under permutation of the category labels {i}. Clearly ∆ is
formulated to directly express differences between {ni } and {npi(θ )}. If A1 and A3 hold,
but the probabilities are {π i }, then (asymptotically for large n) the distribution of
∆ (D ; H) is the non-centralχ 2

ν (δ 2), where the non-centrality is

δ 2 = n
n

i =1
∑ (π i − p̂i)

2

p̂i

and the {p̂i } may be taken as the {pi(θ )} that minimiseδ 2.
Significantly large ∆ are evidence against H . If A1 and A3 are maintained, variation

of H corresponds to variation ofA2, hence ofδ 2. H corresponds toδ 2 = 0, and the usual
usage of theχ 2 test of goodness of fit amounts to a significance test of the null
hypothesisδ 2 = 0. Dually, the values ofδ 2 which, as null hypotheses, are not rejected at‡

significance level α for given dataD0 form a confidence set forδ 2 at level p=1− α , and
can be re-expressed in terms of a confidence region for {π i − pi }, i.e. for the degree of
departure of {π i } f rom H . Likewise, a confidence set for {π i } is the set not rejected
when adopted as values of {pi(θ )}.

†[not in the original: ‘(i.e. dataD such that∆ is large)’] ‡[was asin the original]
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Less familiarly, rejection ofH because∆ seems not to have the χ 2 distribution negates
the above implication and implies the negation of it first term, viz.

not (∆ ~ χ 2
ν ) ⇒ ( not A1 ) ∨ ( not A2 ) ∨ ( not A3 ) ,

expressing the fact that when a hypothesis is under testevery element is vulnerable,
not just the one of prime interest. The formal symbolic negation is a list of all the ways
(not mutually exclusive) for the hypothesisH to fail and, again, the classical hypothesis
test’s capacity to explicitly generate alternatives is a useful and powerful aid to
modelling.

A classic instance of the latter reasoning is Fisher’s (1936) re-examination of
Mendel’s data. Mendel’s inheritance hypothesis implied whole-number ratios for
expected numbers of phenotypes, such as 3:1, 9:3:3:1 and 27:9:9:9:3:3:3:1 for
uni-, bi- and tri-factorial heterozygous crossings respectively, on the assumption that
the parental genotypes are known for certain.Using χ 2, Fisher evaluated the goodness of
fit of Mendel’s observations, and obtained smallχ 2 values such as would beexceeded
on typically more than 95%, and, overall, on more than 99.9% of occasions.This fit is
‘too good to be true’, andH should be rejected.But A2 is certainly not contradicted;
therefore A1 or A3 must go (or both). When allowance is made for uncertainty of
genotype due to finite numbers of test progeny, different frequencies are to be expected
from which the observed frequencies now differ significantly. Fisher concludes that
Mendel’s results were, in one way or another, falsified so as to agree closely with his
expectations. Sucha process is a failure ofA1.

Example 2. Quantograms and simulation

The significance-test formalism can be used for data where there is no clearly appropriate
objective sampling model, if applied to results of suitable computer simulations.
The illustrative example will be Kendall’s ‘cosine quantogram’ originally applied to the
search for a possible quantum of length (the ‘megalithic yard’) in the diameters of
megalithic stone circles (Kendall, 1974), as proposed by Thom (see, e.g., Thom, 1955,
1967). In this particular application the ‘experiment’ isintrinsically unrepeatable
(as historical events generally are). The data are diameters(X1, . . .  ,XN), and the simplest
quantal hypothesis is of the form

X = Mq + ε

whereM is an integer, q the ‘quantum’ of length, andε a perturbation. Analternative
non-quantal hypothesis is thatX is distributed somehow ‘smoothly’ over the whole
range. Testing one against the other by conventional means requires precise specification
of the distributions, which could be discussed at length and inconclusively (this question
is thoroughly treated by Kendall).

Alternatively, consider working with a measure of discrepancy between the data and a
‘non-quantal’ hypothesisH , where∆ is chosen to immediately reflect a potential quantal
structure. Theimplied near-periodicity of the distribution of theX-values suggests the
‘cosine quantogram’

φ(τ ) = √(2 / N)
N

j =1
∑ cos(2π Xjτ )

whereτ =1 / q. Thusφ(τ ) is effectively the Fourier cosine transform of the sample, and is
the real part of the empirical characteristic function. The cosine quantogram of a lattice
distribution (i.e. one with an exact quantum) will give a δ -function peak at the
corresponding frequency τ . If there is no quantum effect, φ(τ ) will be distributed (for
largeN) like N(0,1) for any fixed τ . The range(τ0 ,τ1) of τ -values should correspond to
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the range ofa priori reasonableq-values (in this application, sayq =1ft to q =10 ft)
but should be no wider than necessary. The computed course of the empirical cosine
quantogram can then be taken asderived primary data(D0) for further analysis (Fig. 1).

Fig. 1. The empirical cosine quantogramφ(τ ) computed from diameters of 169 stone circles from
Scotland. England and Wales (Tables 5.1 and 5.2 of Thom (1967)—raw, not ‘unrounded’ data) forτ
ranging from 0.09 to 0.59. The highest peak occurs atq̂ =1 / τ̂ = 5.44 ft. On the left of the figure the
two horizontal bars show the two greatest values of maximum peak height in 200 simulations (From
Fig. 9of Kendall, 1974), and the rectangle shows the range of values of maximum peak height attained
in the remaining 198.Thus the maximum peak height for the real data was exceeded only once in 200
simulation trials of the ‘non-quantal’ hypothesis (note that Kendall used ‘unrounded’ data— loc.cit.).

It is now natural to take as measure of discrepancy ∆ (D0 ; H) between the empirical
quantogramD and a non-quantal hypothesisH the quantity

∆ (D0 ; H) = max [φ(τ ): τ0 ≤ τ ≤ τ1].

Calculation ofD does not depend on specifyingH . Howev er, in order to evaluate its
significance a precise specification must be made.The approximateN(0,1) distribution
for fixed qcannot be used for a value q̂ maximisingφ(1 / q), sinceq̂ has been selected by
the data.Kendall’s solution was to take “a ‘random’ set of data, similar in all respects to
the actual data save only in definitely not having any underlying quantal effect”, and
subject it repeatedly to simulation, where the stated qualifications amount to

(i) usingthe sameN (though this is not critical),
(ii) ensuring a similar coarse-grained structure, as exhibited by a spline-transform

smoothing of the raw data.
Then random dataD = (ξ1, . . .  ,ξ N) are repeatedly generated according to a suitable
distribution, and∆ (D ; H) is calculated each time.The situation of the observed∆ (D0 ; H)
within the distribution of the simulated values then provides an estimate of

α = PH[ ∆ (D ; H) ≥ ∆ (D0 ; H) ].
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Kendall (with many refinements of the above argument) then obtainsα = ca. 0.01to
α = ca. 0.07for various sets of stone circles in England and Wales, and in Scotland, the
observed peak quantogram generally occurring atq̂ = ca. 5.4 ft.He can thus conclude that
although the evidence that thereis a quantum is less conclusive than one would wish, it is
nonetheless strong enough to justify the expense of improved and more accurate survey
of the sites. He also repeats the simulation with artificial data simulated according to a
quantalhypothesis, and obtains an estimated standard deviation forq̂ of 0.0181ft., all 25
simulated estimates being in the range (5.41, 5.50), i.e. within 1 inch.

The question received a Bayesian analysis by Freeman (1976). He states that
“a Bayesian approach is unable to encompass a clear test of whether or not a quantum
exists, owing to the lack of an alternative model for the data in the absence of a
quantum”. Theconclusion may be right, but surely such an alternative model is just what
Kendall used (granted an element of judicious choice in the precise form of the
“null distribution”).

The fundamental difficulty is absence of a prior probability (π0) that the quantum
exists. ABayesian analysis could at best offer π1 (the posterior probability) as a function
of π0, in the typical form

π1 =
π0B

A+ π0(B− A)
† where

A = P({ Xj }  Q )

is the probability of the data assuming no quantum (Q ) and

B = ∫ P({ Xj }  Q; q )g(q) dq

is the probability of the data assuming a quantum, in whichg(q) is the prior distribution
of the quantumq andP({ Xj }  Q; q) is the distribution of the data given a quantum equal
to q. If there is strong evidence of any kind in the data for the existence of a quantum,
thenπ1 will be near 1 except for small values ofπ0. This explicit trade-off betweenπ0
andπ1 is a potentially useful feature of the Bayesian approach.On the other hand, the
significance level of a ‘classical’ test of the no-quantum hypothesis is an absolute figure,
appropriate for assessing what is,a priori , simply an open question.

As for estimation ofq, assuming a quantum to exist, the results of Freeman and of
Kendall agree closely, both in estimated values and in estimated precision. Reasons why
this should be so are given by Silverman (1976), who shows that Freeman’s posterior
density is closely related to Kendall’s quantogram.

Example 3. Transient effects in experiments yielding time-series

The classical approach is especially—perhaps uniquely—appropriate when deliberate
randomisation has been done.The use of the ‘randomisation distribution’ in analysing
data from standard randomised experimental designs is well known; this example will
exhibit its use in a less tractable application, the typical context being a biological or
medical experiment to study the effect of a treatment on a time-dependent quantity.

Consider a medical experiment in which say blood pressure, breathing rate or urine
production is being monitored, or a biological or psychological experiment where the
variable being observed is say rate of occurrence of neural action potential, movement
of an animal, rate of performance of a task, or some other measure of activity. If the

† Here, and in the following lines,Xi (original) has been changed toXj for consistency.
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variable is simply passively recorded, the result will be a fluctuating time series which
may have a complex structure for which there is no obvious model. At some moment,
the experimenter intervenes — toinject a drug, apply a stimulus, etc. Does the treatment
have an effect? If so, it may be transient, and difficult to distinguish from a fluctuation
that might have occurred anyway at that moment.

If there is a model for the expected effect, and also a model for the serial stochastic
structure of the series, then standard approaches to signal detection in the presence of
known noise could be used. Suppose such models are not available.

The investigator, examining the data series, may be able to identify certain features of
the record that look like possible effects; should these occur within a reasonable time lag
after the treatment, there is a suggestion—but no more—that the treatment has had
an effect. How can a significance level (α ) be associated with such an observation?
The problem is that there is no known distribution to use for calculatingα .

But in many experiments one can be imposed.Let (0,T ) be the interval of observation
of one individual subject.Let (T1,T2) be within (0,T ). Apply the treatment at a random
momentX chosen according to a distributionf0(x) on (T1,T2).

Next, let the entire record be analysed by any means likely to respond to the presence
of an effect in the record. This may be as simple as a running mean, or some more
complex filter. In some cases, the investigator himself must, by inspection, judge whether
a giv en stretch of the record is potentially an effect (but if it is done this way, the moment
of treatment,X, must be concealed from him). In any case, the result will be a series of
measurements (t1, . . .  ,tn) marking the onsets of events in the record which arecandidate
effects. The {ti } are the statistics, determined from the record and from background
knowledge, and from nothing else.

The analysis now turns on the intervals {(X, ti)}. Normally (except in situations where
the subject might anticipate the treatment-event) momentsti with ti < X can be excluded
as not corresponding to possible effects. Consider the remainder, and define
the lags

τ i = ti − X .

Suppose there is a (possibly parametrised) distributionψ (t;θ ) for the time lagτ between
treatment and effect (if present).In many applications, a reasonable distribution for the lag
may be more readily available than explicit models for the effect or for the time series.
On the null hypothesis (H0) that the treatment has no effect, X has the null distribution
f0(x) on (T1,T2). On an alternative hypothesis (H1) that with parameter value θ
one of theti marks the true effect, andconditional on the entire record, the distribution
of X is given by

f1(X) =
∑ f0(X)ψ (ti − X;θ )

∫ ∑ f0(X)ψ (ti − X;θ ) dX

= f0(X) ⋅ G(X;θ ) ,  say,

[whereψ (t) is the distribution of the lag,(Added 8 November 2009)]
summing over the remainingti and integrating over (T1,T2).

Using the Neyman-Pearson Lemma, the most powerful test ofH0 versusH1 is to reject
H0 if the likelihood ratio f1(X;θ ) / f0(X ) is sufficiently large, i.e. ifG(X;θ ) exceeds a
critical level λ . Chooseλ so that the integral of f0(X) over the x-values for which
G(X;θ ) ≥ λ is equal to the desired size of test,α .

When θ is unknown and has to be estimated from the data, maximum-likelihood
estimation may be used, choosingθ to maximiseG(X;θ ); it may be necessary to use
records from several subjects. A desired sizeα may sometimes be approximately
achieved as above, integratingf0(X) over { X: G(X;θ ) ≥ λ} f orθ = θ̂ . In general, allowance
must be made for the dependence ofθ̂ on X. Conditionally on the record, i.e. on the {ti },
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this can be straightforwardly achieved by simulation since, with fixed {ti }, there is no need
to simulate different possible records.

Further complications include the possibility that an effect might be masked by an
intrinsic (treatment-independent) event in the record. This could be approached by
incorporating a probabilityp of such masking as an additional parameter to be estimated,
but then many records may be required.

In the simplest possible case, there is only one candidate effect timet, θ is known, and
X has been chosen according to a uniform distribution on(T1,T2). The likelihood ratio
criterion is thenψ (t − X) ≥ λ . Let Lλ be the total length of the set on which this is
satisfied; the size of the test isα = Lλ / L, whereL = T2 − T1. In this case the dominant
design consideration becomes clear:L should be as large as possible.

Confidence sets for parameters
Turning to confidence sets, the next example will show how the duality between
hypothesis tests and confidence sets can be applied to produce a solution in classical
terms to a problem which has, in the past, generated considerable controversy among
‘classical’ statisticians. It will also exhibit a typical likelihood-based analysis.

Example 4. Calibration

Data (x1, y1), . . ., (xn, yn) are obtained.Thex-values are, typically, controlled (i.e. there is no
stochastic model for their values). Thecorrespondingy-values are random, according to

yi = α + β xi + ε i (i = 1, . . ., n)

where theε i are independent ‘random errors’, each withN(0,σ 2 ) distribution.
A further independent observation Y is made ofy, corresponding to an unobserved

value X of x, for which

Y = α + β X + ε

It is required to infer plausible values forX, giv en the data (x1, y1), . . ., (xn, yn) andY.
An obvious estimate ofX is obtained by ‘reading the regression in reverse’ as

X̂ = (Y − α̂ ) / β̂ , but its sampling distribution has neither mean nor variance. Anearly
discussion of the problem is in Berkson (1969).Krutchkoff (1967) suggested the
apparently improper procedure of regressingX onY, and began a controversy which still
rumbles. Ithas been treated by a Bayesian approach in Hoadley (1970) and in Hunter &
Lamboy (1981), an empirical Bayes approach in Lwin & Maritz (1982), by likelihood in
Minder & Whitney (1975) and by structural inference in Kalotoy (1971). Brown (1982)
reviews the controversy and the various approaches and considers the multivariate case;
his result (1.2) is equivalent to a result derived below and underlies the solution proposed
here which is a directly derived likelihood-based confidence interval.

The unobserved X will be treated as if it were the value of a parameter in the problem,
so that there are four parameters, viz.(α , β,σ 2, X ). A set of plausible values for parameters
will be interpreted as a set of values, all with sufficiently high values of a likelihood function
for those parameters, given the data.

The likelihood function forX will be obtained here as

L(X) = {sup(α ,β,σ 2)L(α , β,σ 2, X )} / {sup(α ,β,σ 2,X)L(α , β,σ 2, X )}

(Maximum Relative Likelihood or Profile Likelihood). Onthe hypothesis thatX has
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any specific value X0, the likelihood L(X0) has a fixed distribution. L(X0) is in fact a
function of a ratio of quadratic forms in the ‘errors’ε1, . . .  ,ε n andε , and does not depend
at all on the true values ofα , β andσ 2. Therefore, on the hypothesis thatX = X0, and
for any giv en valueL0 between 0 and 1, the probability

P(L(X0) > L0 ) = p(L0 )

depends only onL0. If, therefore,L0 is chosen so thatp(L0 ) is any desired confidence
level p0, say, we can calculate from the data the limits on the set ofX-values such that
L(X) > L0. Then this set ofX-values contains the trueX-value,X0 (whatever it may be),
if and only if L(X0) > L0; an event which has known probabilityp0. Therefore the set of
X-values such thatL(X) > L0 is a confidence set for the true value X0, at confidence
level p0, and contains allX-values which, given the data, have sufficiently high
likelihood. Itcan appropriately be called alikelihood-based confidence set.

This confidence set will usually be a simple (and preferably short) interval, but
sometimes it may consist of two disjoint semi-infinite intervals, or even the whole real
line. This arises when the original data are insufficient to establish a well-defined
calibration, or when theY-value is well outside the range for which the calibration was
established. Inany case, it is a clear indication that the data are inadequate to give a
satisfactory estimate of the unknown value ofX corresponding to the observedY-value.

For the given data, assuming any giv en parameter-values (α , β,σ 2, X ), the likelihood is

σ − (n+1 ) exp{ −
1

2σ 2

n

i =1
∑ (yi − α − β xi)

2 − (Y − α − β X )2 / 2σ 2 }
For simplicity, set the origins ofx and y at the means,x and y, of x1, . . .  ,xn and

y1, . . .  ,yn so that thexi andyi sum to zero.The Maximum-Likelihood Estimates (MLEs)
of α , β , σ 2 andX are then given by

α̂ = 0

β̂ =
n

i =1
∑ xi yi /

n

i =1
∑ x2

i

X̂ = Y / β̂

σ̂ 2 =
1

n+1

n

i =1
∑ (yi − β̂ xi)

2

On the other hand, for an arbitrary fixed value ofX, the MLEs are given by

~α =
1

D { Y
n

i =1
∑ x2

i − X
i =1
∑ xi yi } [†]

~β =
1

D { (n + 1 )
n

i =1
∑ xi yi + nXY}

~σ 2 =
1

n+1 { n

i =1
∑ (yi − ~α − ~β xi)

2 + (Y − ~α − ~β X )2 }
where

D = (n + 1 )
n

i =1
∑ x2

i + nX2

[†] The original had ~α =
1

D { n

i =1
∑ x2

i − X
i =1
∑ xi yi } which wrongly omitted the ‘Y’.
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The likelihood ratio is therefore now giv en by

L(X ) = (σ̂ / ~σ )n+1

and so the construction of the confidence region as above depends on the properties of
the ratio

R(X ) = σ̂ 2 / ~σ 2 .

A confidence region forX0 will be the set ofX-values such thatR(X ) exceeds a given
value R0, and the confidence level p0 associated with it will be the probability

P( R(X0) > R0 ) = p0 ,

calculated on the hypothesis that the true value ofX is X0.
It can be established that

(n − 2)
~σ 2 − σ̂ 2

σ̂ 2 = (n − 2)
1 − R(X )

R(X )

has theF-distribution F1: (n− 2) . Therefore the hypothesis that the unknown x corre-
sponding to the observedY has a particular value X can be tested using this distribution:
a significantly large value of this ratio is evidence against the hypothetical value X. The
set of allX-values not rejected at a given significance level α constitutes a confidence set
of values ofX, acceptable at a confidence level p = 1− α .

Table 1. Fisheries research data used for Example 4 (Calibration) and Fig. 2. Estimated spawning
biomass (x) and larval abundance index (y) in successive years. Given for illustrative purposes only.

Spawning Larval
biomass abundance

(000 tonnes) index
(x) (y)

2130 484
2210 372
1940 204
1230 112
150 88
670 52

As an example we shall analyse the hypothetical case in which the data of Table 1
are given, together with an ‘observation’ Y = 500, and we seek a likelihood function
and confidence intervals for the correspondingX.

Fig. 2 is a composite diagram in which the data and the results are displayed. The data
are plotted relative to the (X,Y ) axes, and the likelihood functionL(X ) giv en by (3.5) is
plotted withY = 500 as a baseline, relative to a scale forL(X ) on the right of the figure.
The 50%, 75%, 90%, 95% and 99% confidence intervals were calculated.Their boundary
points correspond to levels of L(X ) which are shown on the figure, labelled with
the corresponding confidence levels and projected down onto the base line to show
the X-values.

Example 5. Estimating stock-recruitment relationships in fisheries research

In modelling the population dynamics of fish stocks, an important factor is the dependence
of future recruitment (R) on current stock level (N). A convenient general form is

R = α(N ) ⋅ N .
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Fig. 2. Likelihood functionL(X ) for the calibration problem. The data (from Table 1) are plotted in
the lower part of the figure. The valueY = 500 is giv en and the corresponding value ofX is to be
inferred. Supportedon the lineY = 500 is the graph ofL(X ) (scale ofL on the right) and the MLE
of X is marked with ‘x’. The 50%, 75%, 90%, 95% and 99% confidence intervals for X are shown,
as derived from the levels ofL(X ).

(It may be appropriate to disaggregate N according to age-group, but in many cases
this is not necessary.) The multiplier α(N ) is a ‘density-dependent recruitment rate’,
and cannot be constant if the stock is to be stable.Furthermore, the degree of non-
linearity, as expressed byα(N ), is an important index of the capacity of the stock to
sustain intensive exploitation. Introductorydiscussions of this question can be found in
Pielou (1977), Hoppensteadt (1982) and Weatherley (1972). Cushing(1975, Chapter 7)
discusses it at length.

A variety of parametrised functional forms has been proposed of which many hav e
been summarised by Mayet al. (1978). Theirrange of behaviours can be emulated by
the single form

α(N ) =
α

1 + (N / M )β

depending on the value ofβ , which has been discussed by Shepherd (1982). The value
of α gives the exponential rate of growth of a small stock, and the parameterM is an
index of the ‘carrying capacity’ of the environment. Asstock sizeN → ∞, recruitment
grows indefinitely, or tends upwards to an asymptote(α M ), or rises to a maximum and
then tends downward to 0, according asβ < 1, β = 1 or β > 1  (Fig.3), all being biologically
possible. Thegreater the value ofβ , the greater the resilience of the stock to† exploitation. †was‘of’

As an element in fishery management, therefore, the estimation of parameters,
especiallyβ , must be assessed. The two most important parameters areM and β and,
not unexpectedly, they are somewhat linked.

Fig. 4 shows data for North Sea herring for the years 1952–1974 (N in megatonnes,
R in billions). The two highestR-values are exceptional and will not be included in the
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Fig. 3. Curves illustrating the Stock–Recruitment relationship in dimension-free form as
y = x / (1+ xβ ), where y = (R/ α M ) and x = (N / M ).† The curves A–F correspond to values of
β = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0.

† [The original erroneously hadx = (P / M ). Also, the scale-mark ‘1’ on theY-axis should be ‘0.5’]

Fig. 4. Stock-Recruitment data for North Sea Herring (1952–1974, except 1956 and 1960), shown for
illustrative purposes only. Abscissa: spawning population biomass (megatonnes); ordinate: numbers
of recruits (×109).

analysis. Theabove law was incorporated into a stochastic model assuming multiplicative
error, so that the model can be written

log R = logα + log N − log(1 + (N / M )β ) + ε [Notation trivially changed]

Assuming for working purposes thatε has anN(0,σ 2 ) distribution, likelihood contours
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for M and β were obtained by maximising the likelihood with respect toα . They are
shown in Fig. 5.

Fig.5. Likelihood contours for the parametersβ andM in the Stock–Recruitment model.Contour levels
are chosen from theχ 2

2 distribution corresponding to confidence levels P = 0.05 (innermost), 0.1,
0.25, 0.5, 0.75, 0.9 and 0.99. Abscissa: values ofβ ; Ordinate: values ofM .

These contours are approximate confidence sets for(M , β ) jointly, according to the
following argument. Letany giv en point (M , β ) be taken as a null hypothesisH0; the
parameter space then has one dimension (forα ). As alternative hypothesisH1 let (M , β )
be unrestricted, giving three dimensions in all.The Wilks likelihood ratio test statistic is

λ(M , β ) = 2 { l ogL(α̂ , M̂, β̂ ) − log L(~α , M , β ) }

where~α is the maximising value ofα for fixed (M , β ) and (α̂ , M̂, β̂ ) are the maximising
values for (α , M , β ) unrestricted. For large samples,λ(M , β ) has asymptotically a
χ 2

ν distribution, whereν is the difference in dimensions ofH1 and H0, in this case 2
(Kendall & Stuart II, 1979, section 24.7).

Let Uν,p be such thatP[ χ 2
ν < Uν,p ] = p. Then to within the approximation involved

in using the asymptotic distribution, if

λ(M , β ) < Uν,p

then H0 is not rejected at significance level 1 − p, and therefore belongs to a confidence
set, confidence level p, consisting of all such values (M , β ). Thereforethe contours of
(M , β ) on the figure are the boundaries of approximate confidence sets; on the figure
these have been labelled with the values ofp derived fromUν,p.

It is clear thatM and β are near-aliases, and that acceptable values ofβ (with
corresponding values ofM ) range fromβ < 1.0 to β > 3.0, since the 90% confidence set
extends beyond this range.Considering that β is an important parameter, the
stock – recruitmentrelationship cannot be satisfactorily estimated from this series of
herring data.The (M , β ) contour diagram permits rather a wide spectrum of curves to be
fitted to the data, with strong implications for using the model to assess sustainable
yields, and stability of the population.
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Classical methods in complex investigations

Example 6. Danish elvers

Boëtius (1976) reports the results of observations on several thousand elvers taken
during the 1972 elver run at Højer and Esrom in Denmark.These have been analysed
(Harding, 1985) as part of an extended investigation of the spawning of the European
eel (Anguilla anguilla) (Boëtius & Harding, 1985).Historically, an important issue was
whether the entire European eel population was, morphologically, completely homogenous.
The example provides a complex and interesting illustration ofthe deployment of classical
methods in probing for possible explanations of a phenomenon.

The Højer samples were taken at three stages of the run (I, II, III ) and subdivided
according to five dev elopmental stages as determined by pigmentation (A–E).

Fig. 6. Data for Højer samples: mean length and SD of the mean for each value of Total Number of
Vertebrae (TNV) (filled squares denote mean length; vertical bars extend to±1 standard deviation of
the mean; opensquares denote single specimens). Abscissa for each graph: TNV. Ordinate for each
graph: length (mm).

Graphs correspond to samples and development stages as follows:
A: SampleI, Stage A C: SampleII, Stage A E: SampleIII, Stage C
B: SampleI, Stage D D: SampleII, Stage D F: SampleIII, Stage E
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Fig. 6 shows mean length (L) vs. total number of vertebrae (TNV) for Højer subsamples
IA, ID, IIA, IID, IIIC and IIIE (4289 specimens in all). Fig. 7 shows the same for the
Esrom sample (2150 specimens).Several explanations could be suggested for the
observed dependence:

Fig. 7. Data for Esrom sample. Interpretation of the graph as for Fig. 6.

(A) Simpleproportionality: the more segments to an individual, the longer it is (other
things equal).

(B) Individuals with higher genetic potential for growth have higher numbers of
vertebrae.

(C) Numbersof vertebrae increase as growth proceeds.
(D) Applicationof criteria for determining the tailmost vertebra may sometimes give

different results according to length, as a consequence of morphological changes
occurring during growth (structures in the tail tip are complex and variable).

The hypothesis that the slopes of the 6 Højer regressions ofL on TNV are equal is
rejected atα = 0.006, and the Esrom slope is significantly very different from the Højer
slopes. Theseresults weigh heavily against explanation (A), which is however roughly
compatible with the Højer samples.†

† [A lso, in general the growth of fish is more a function of their size, activity, food consumption and surface
areas of internal organs than of precisely how many vertebrae they hav e. Note added 21 October 2009]

Explanation (C) seems unlikely for so definite a structure as vertebrae, and there is no
relationship between mean length or mean TNV and sub-sample, which would be
expected if (C) held.Explanations (B) and (D) cannot be directly tested. There is in any
case interest in finding an explanation of the data which permitsL to be independent of
TNV in elvers of common origin. Such a one is:

(E) TheHøjer specimens are a mixture of distinct groups, where in each groupL is
independent of TNV, but the groups differ in distribution of length and in distribution
of TNV. In such a mixture,L can have a very closely linear relationship with
TNV (Fig. 8).

A hypothesis such as (E) is in fact directly suggested by inspection of histograms of
length for each TNV (Fig. 9).There is a central peak in a constant position for
TNV = 113 –116(mean= ca. 72.5 mm), the length distributions for TNV= 112 –114are
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Fig. 8. Graph to illustrate the nearly linear dependence of meanY on X when (X,Y) is sampled from
a mixture of two normal distributions, in each of whichX andY are independent.

The two crosses mark the means of the two distributions in which:
(a) X ~ N(1, 1), Y ~ N(0, 1);
(b) X ~ N(2, 1), Y ~ N(1, 1);

The curve is the expected value ofY given X in a random sample from an equal mixture of (a) and (b).
The vertical bars are proportional to the standard deviations of the samples ofY-values when the
X-values are equally grouped, taking into account the frequencies of occurrence ofX.

negatively skew, and positively skew for TNV = 116 –118. The mixture model adopted
attributes the negative skewness to a component with relatively low mean TNV andL,
and the positive skewness to a component with relatively high mean TNV andL, in each
case in the presence of a component with intermediate TNV andL. Thus the probability
that a specimen will have length= L and TNV= V can be written as

P(V, L) = π1P1(V ) ⋅ Q1(L) + π2P2(V ) ⋅ Q2(L) + π3P3(V ) ⋅ Q3(L)

where theπ i are the proportions of the three components, and thePi(V ), Qi(L) are
grouped normal distributions. Thereare 14 parameters in this model.

Fitting the parameters is complicated by the fact, evident from Fig. 9, that certain
lengths are favoured over their neighbours, an artefact probably due to observer bias.
Fitting such a model depends delicately on fine detail of the shapes of distributions.
Initial approximations were determined by a somewhat elaborate procedure involving
probability plotting, components of variance, and fitting by moments (see Harding, 1985),
and then an iterative procedure was entered in which the parameters were interactively
varied so as to increase the likelihood on each iteration. Care was taken to arrest iteration
when the resulting fitted distributions began to be unduly influenced by the artefactual
irregularities noted in the length distributions.

The resulting fit is shown superimposed on the original histograms in Fig.10.The
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Fig. 9. Histograms of the length distributions for each TNV, for the Højer material (all three samples
pooled). Onthe left: TNV. On the right: observed numbers of specimens for each TNV.† Heights of
histogram bars are proportional to absolute numbers.Histogram for TNV=119 (three specimens
only) not shown.

shapes are well matched. On the right are expected numbers for each TNV calculated from

EV = 4289 (π1P1(V ) + π2P2(V ) + π3P3(V ) )

The agreement is close—‘ χ 2’ = 4.98 for 8 classes (but on how many degrees of
freedom…?).

In conclusion, it ispossible, at least, to represent the Højersample as a mixture of
three distinct though overlapping components, in each of which length is statistically
independent ofTNV, and thus account for the dependence ofL on TNV. If this tripartite
representationis the explanation, then all three groups are present in all sub-samples
(though, as further analysis can show, in slightly different proportions), since the
length –TNVrelationship is equally manifest in all.

Therefore, on this hypothesis, the tripartite structure isnota consequence of the fact that
the Højer specimens were taken on three separate occasions, and would imply that there
are present three groups that, at least, have experienced different environments in early
development‡ and may possibly have been spawned in different places. Such a hypothesis
is of great interest for the major investigation, since Johannes Schmidt’s
Sargasso Sea theory requires the utmost morphological homogeneity in the entire Euopean
population (Schmidt, 1922).

‡ [I t is known, experimentally, that the number of vertebrae in a fish of given species is influenced, for
instance, by temperature during embryonic development in the egg.Note added 21 October 2009]

† [A duplicate of this sentence has been removed]
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Fig. 10. The fitted ‘mixture’ model described in the text, superinposed on the histograms of Fig.9.On
the right: expected numbers (EV ) calculated as explained in the text.

Discussion

The ‘classical’ statistical procedures of hypothesis testing, confidence intervals and
estimation, based on sampling properties of statistics, often appear as rigidly formulated
ends in themselves, with limited scope, and yielding conclusions of limited interest, as
encountered in standard courses and textbooks.

The general formulation presented at the start of this paper allows freedom, flexibility
and power in applications of classical statistical methods.Their power lies in that they
permit sharp focus on specific aspects of an investigation, their flexibility in that they
offer a wide range of aspects to examine.

These properties of classical methods just mentioned are valuable tools for the discovery,
formulation and verification of feasible models, but their full power and flexibility are
only realised when the problem is repeatedly re-examined under different aspects, and
the corresponding statistical models are continually re-stated in the real terms of the
investigation.

These remarks have been illustrated by a variety of examples. Fulldiscussion of any
one of these would exceed the space of the present paper, but I hope that, taken together,
they giv e a good impression of the scope, limitations and, on occasion, dangers of the
classical approach.

Some examples were chosen to exhibit the central roˆle played by the likelihood
function in many applications, conjoined with appropriate sampling theory (as
opposed to directinterpretation of the likelihood function itself). Some reference to
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Bayesian approaches has been made, but it would be inappropriate to go further into the
relative merits and scope of Bayesian and non-Bayesian methods.

Finally, an acknowledgment, long due, should be made.Cognoscenti will have
recognised George Barnard’s influence on the more formal parts of this presentation.
For this, and for his example in flexible and intelligent application, my thanks and
appreciation. (Apartfrom presentations in lectures, the only published account I know
is in Barnard (1962), especially pp. 42–49.)
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