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Statistics is an integral part of any clinical trial, 
and it is widely recognized that the training of 
doctors should aim to improve statistical literacy. 

However, the call for statistical literacy has focused on 
introductory material, and we argue that there is a need 
for advanced statistical literacy in the health sciences 
(Table 1).

In their 2005 article, “Statistical Methods in the 
Journal,” Nicholas Horton and Suzanne Switzer 
reviewed all New England Journal of Medicine articles 
from January 2004 to June 2005; they found that 
more than half of the articles used survival analysis, 
multiple regression, or another advanced technique. A 
2007 study appearing in the Journal of the American 
Medical Association looked at residents’ understanding 
of statistics; authors Donna Windish, Stephen Huot, 
and Michael Green showed that only 10.5% knew 
how to interpret the results of a Kaplan-Meier curve 
and only 37.4% could interpret an adjusted odds ratio 
from a multiple regression.

The need for extended statistical education for our 
health scientists is greater than previously imagined.

Recently, the ‘dangers’ of the vaccine for measles, 
mumps, and rubella (MMR) made headlines in the 
United Kingdom, warning parents about the vaccina-
tion’s associated risk for autism. The alarm was based on 
an article appearing in The Lancet, Andrew Wakefield’s 
1998 study on 12 children who had developmental 
regression. Given high rates of both MMR vaccination 
and autism, finding 12 children who had received the 
MMR vaccine and also had autism was unremarkable. 
Additionally, the symptoms of autism are often first 
noticed at the same age as vaccination, so the relation-
ship may have been coincidental, not causal. 

In 2004, The Lancet retracted Wakefield’s article, 
but its effect has been particularly damaging to com-
munities in which measles, mumps, and rubella were 
previously all but eradicated. In the United Kingdom 
in 2003–2004, the MMR vaccination rate reached an 
all-time low of 80%, much below the herd immunity 
rate of 95%. In 2008, measles was declared endemic to 
England and Wales for the first time since 1984.
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then  
(1978–1979) now (2005) soon to come

•	 t-tests (44%)
•	 contingency 

tables (27%)
•	 Pearson correla-

tion (12%)
•	 nonparametric 

tests (11%)
•	 survival meth-

ods (11%)

•	 survival meth-
ods (61%)

•	 contingency 
tables (53%)

•	 multiple regres-
sion (51%)

•	 power analysis 
(39%)

•	 epidemiologic 
statistics (35%)

•	 multiple com-
parisons

•	 analysis of high-
throughput data

•	 advanced 
experimental 
design

•	 Bayesian  
analysis

•	 permutation/
bootstrap  
methods

First two columns from Switzer and Horton’s “What Your Doctor Should Know 
About Statistics (but Perhaps Doesn’t),” CHANCE, 2007. Percent of papers using 
the methodology is given in parenthesis. Last column is a prediction of methods 
that are quickly growing in popularity.

table 1—top five most commonly used  
statistical methods in New England Journal  

of Medicine Articles Across time

This example illustrates how misinterpretation of 
statistical results can have serious public health con-
sequences. Basic knowledge of observational study 
limitations, variability, and small sample sizes should 
have prevented the unwarranted conclusion that the 
MMR vaccine causes autism. However, we would take 
this example a step further and claim that additional 
statistical knowledge (e.g., on multiplicities) could have 
further reduced the chances of the misinterpretation of 
the Wakefield paper.
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modern statistical challenges

Multiplicities
We define multiplicities to mean multiple tests of 
hypotheses on the same data—many variables, multiple 
endpoints to a study, multiple time points, comparing 
several treatments, interim analyses, considering an 
endpoint as continuous or categorical. The prevalence 
and impact of multiplicities is often underestimated, 
and there is evidence for a large proportion of false 
findings in the current literature. 

In a controversial 2011 study, Daryl Bem tested col-
lege students for precognition and premonition abili-
ties, types of extrasensory perception (ESP). Although 
he obtained highly significant results, some point to 
Bem’s research as an example of the problems with 
multiple comparisons. Although the majority of Bem’s 
ESP experiments were significant, they represent a 
small fraction of all ESP experiments that have been 
done, most of which are not published. 

Interestingly, the degree of association in the ESP 
research is much stronger than that in the MMR case; 
however, the acceptance of the research, itself, is reversed. 
The contrast in the reactions to the significance of these 
studies indicates a need for understanding the process 
used to arrive at the results. The experimental design, 
statistical analysis, and prior assumptions related to 
having a true relationship are all components of how 
likely a research statement is to be true.

Using the results from John Ioannidis in the sidebar, 
we can assess the MMR and ESP examples. Keep in 
mind that, ideally, we would be able to evaluate our 
work using the probability of a true relationship given a 
significant result, as opposed to the standard hypothesis 
testing structure in which we constrain the probability 
of a significant result given a null relationship. The posi-
tive predictive value (PPV) measures the proportion 
of true relationships out of those found significant; we 
should hope for a large PPV for all of our work.

It is worth considering the values of R (the ratio of 
true relationships to null relationships of all those tested 
in the field) and b (type II error rate) in each of the stud-
ies. One might have a prior belief that R is particularly 
low with ESP. Additionally, with the small sample size 
in the MMR study, b would be particularly high. Low 
R and high b give rise to a small PPV, and thus the 
results of such studies should be considered carefully. 
Ioannidis extends his analysis to include situations with 
bias and multiple independent research teams working 
on the same problem. A standard type of bias is to use 
some form of multiplicity—variable selection, change 
in endpoint, etc. Each statistical analysis pushed toward 
significance via some form of multiplicities induces a 
lower PPV. 

The issues of multiplicities can be ameliorated with 
validation studies and a more thorough understand-
ing of variability across the system at hand. Purely 
chance findings are often published and mistakenly 

In a provocative 2005 article (with a provocative title, 
“Why Most Published Research Findings Are False”), John 
Ioannidis demonstrates that under certain typical conditions, 
most published research findings are false. To understand the 
findings, we first consider the set-up of a typical experiment in a 
particular field of science. Of course, there is not any static field 
of science, but we imagine a given set of all hypothesis tests 
done with that field.

Using the notation from Ioannidis, let c be the total number of 
tests in the field, and let R represent the ratio of the number 
of “true relationships” to “null relationships” among those 
tested in the field. Note that R is typically unknowable, and 
we differentiate between “true” relationships and “significant” 
relationships; R considers the former. Additionally, assume the 
standard notation for the probability of making a type I error 
(rejecting a null relationship, a) and the probability of making a 
type II error (not rejecting a true relationship, b). 

Using the identity: # true relationships = R*(# null relationships), 
we can calculate the proportion of true relationships.

proportion	of all tests that are true	relationships = R/(R +1)

The number of true and null relationships is simply the 
appropriate proportions of the total, c, number of tests.

#	of	true	relationships	= c

#	of	null	relationships	= c

Using type I and type II error rates, we can find the number 
of significant relationships out of those that are true and the 
number of significant relationships out of those that are null.

#	of	relationships	that	are	significant	and	true	= c								  (12b)

#	of	relationships	that	are	significant	and	null	= c			       a

All significant relationships are given by the sum of those from 
the true and null groups.

#	of	significant	relationships	=    					 ( R(12b)+a)

Finally, the positive predicted value (PPV) is calculated as the 
proportion of true studies out of those that are reported to be 
significant.

								PPV = #	of	true	studies | significance	=    

The PPV gives a measure of what is desired in science: the 
probability of a true relationship given a significant result. Note 
that PPV > 0.5 (a significant result is more likely true than false) 
only if (12b)R > a. 

R 
R+1
1 

R+1

R 
R+1

1 
R+1

c 
R+1

R(12b)
R(12b)+a
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considered important simply because positive results 
are more likely to be published. We need to use our 
statistical knowledge not only to assess the data, but 
also to evaluate the merit of published results. Medical 
education would greatly benefit from a second course 
in statistics that better prepared doctors to interpret 
results for themselves. 

Large Data Sets
High-throughput data—as from microarray, proteomic, 
and next generation sequencing—have become ubiq-
uitous and invaluable in medical research. However, 
unlike many statistical techniques applied in the medi-
cal literature, methods used to analyze high-throughput 
data are sophisticated and not taught in standard sta-
tistical curricula. Additionally, high-throughput data 
are prone to measurement and preprocessing errors. 

We present the 2009 work of Keith Baggerly 
and Kevin Coombes, published in Annals of Applied 
Statistics, in what they term “forensic bioinformatics.” 
In 2007, Duke University initiated a series of clinical 
trials based on analyses from microarray studies that 
modeled genetic characteristics predictive of sensitiv-
ity to certain drugs. The initial work by Anil Potti and 
colleagues, published in Nature Medicine in 2006, was 
retracted after patients were enrolled in three different 
clinical trials that were subsequently suspended in June 
of 2010. 

The underlying problem with high-throughput data 
is lack of intuition about how certain markers or tests 
should behave, particularly diagnostic procedures based 
on tens or hundreds of genetic markers. It is difficult 
to make relevant predictions based on data that are so 
large they cannot be conceptualized. Because analysis 
of high-throughput data is typically exploratory, simple 
mistakes are easy to make, but difficult to discover.

In the Duke research, simple mistakes led to the 
complete invalidity of their results. The experimental 
conditions were confounded with the date of the experi-
ments, making any differences in conditions unknow-
able. A gene label mix-up created a model that included 
genes that had not been measured to predict sensitivity to 
chemotherapy agents. The outcome labels were switched 
on the microarrays for a group of patients, thus creating 
a model predicting exactly the opposite treatment than 
that which should have been applied.

The difficulties with large and high-throughput data 
sets are not all simple and technical. To quantify genetic 
activity from microarray data, image-processing tech-
niques are applied to a scan of a biological sample labeled 
with florescent dye and hybridized to a chip. Additional 
algorithms adjust the numerical values to account for 
systematic changes (e.g., dye biases, edge effects, het-
eroskedasticity). The choice of image processing or pre-
processing algorithms and parameters necessarily affect 
the numerical value outcomes that represent genetic 
activity. The statistical training required to understand 
microarray analyses is much more thorough than a 
conventional introductory curriculum. COMIC COURTESY OF HTTP://XKCD.COM/882
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Experimental Design
Not every clinical trial is straightforward with 1:1 ran-
domization between two treatments; researchers use 
historical controls, inverse sampling, and adaptive ran-
domization. Though there are benefits to each design, 
trials using advanced experimental designs are difficult 
to analyze. From the outset, it is imperative to state the 
explicit design structure to control the type I error rate 
accurately. Additionally, later statistical analyses must 
take into account any unusual data structures.

One alternative to 1:1 randomization is adaptive 
randomization, randomizing more patients to the treat-
ment arm that shows the best prognosis. In the 1980s, 
a series of trials was conducted to ascertain whether 
extracorporeal membrane oxygenation (ECMO) was 
effective for treatment of persistent pulmonary hyper-
tension of the newborn. At the time, there was mount-
ing evidence that ECMO was superior to conventional 
therapy, and there were ethical concerns over imple-
menting a standard randomized design to demonstrate 
ECMO’s efficacy.

Robert Bartlett and colleagues conducted an initial 
adaptive design experiment in 1985; only one patient 
was given conventional treatment, and that patient 
died. Though statistically significant, the small sample 
size was unconvincing to the medical community, war-
ranting further study.

In 1989, James Ware designed a two-stage clinical 
trial in which treatments were selected using permuted-
block randomization. The study eventually enrolled 
30 patients with the ECMO treatment, 25 of whom 
survived. All nine patients enrolled in the conventional 
treatment died. According to Ware’s Statistical Science 
piece, “Investigating Therapies of Potentially Great 
Benefit: ECMO,” as compared to standard 1:1 ran-
domization, the creative study design subjected fewer 
patients to the less efficacious conventional treatment.

The decision to implement an adaptive design is 
not always straightforward. Often, the motivation 
for an adaptive design is to create a setting in which 
fewer patients are subjected to the treatment arm that 
is substantially worse. In 2011, though, Edward Korn 
and Boris Freidlin demonstrate through simulations 

that the sample sizes needed to power an adaptive study 
lead to more patients on the “worse” arm of treatment 
than standard randomization would, although they 
are a smaller proportion of total subjects. However, in 
their article, “Outcome-Adaptive Randomization: Is 
It Useful?” Korn and Freidlin neglect to mention the 
patients who are not enrolled in the study, but do have 
the disease. Those patients also must be treated, so the 
effective number of patients given the worse treatment 
is likely still less in the adaptive setting.

Though adaptive designs may be well suited for 
situations with large differences (as with ECMO) or 
multi-arm trials, they also bring with them a host of 
logistical complications that can undermine the actual 
adaptation. Collecting data in a timely manner from 
multiple sites is not trivial, and we should be wary to 
think that the theoretical justification trumps other 
concerns in designing studies that will communicate 
maximal information to the medical community.

conclusion
In 1937, an article in The Lancet criticized physicians’ 
“blind spot” in laboratory and clinical medicine to 
be simple statistical methods. In 1948, the British 
Medical Association recommended that statistics be 
included in medical education. Yet, for example, it 
was not until 1975 that statistics became mandatory 
at the University of London School of Medicine. 
In 2009, the Association of American Medical Col-
leges listed among its recommended competencies for 
medical school graduates the ability to “apply quantita-
tive knowledge and reasoning—including integration 
of data, modeling, computation, and analysis—and 
informatics tools to diagnostic and therapeutic clinical 
decisionmaking.” 

Increasingly, many of the important statistical con-
siderations in medical studies are far beyond the knowl-
edge gained in introductory statistics; we must 
remember that just as medicine is a dynamic and fast-
moving field, so is statistics. As we keep abreast in both 
fields simultaneously, we enhance our ability to expand 
upon knowledge of human health.   
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