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Why Most Published Research Findings 
Are False 
John P. A. loannidis 

There is increasing concern that most 
current published research findings are 
false.The probability that a research daim 
is true may depend on study power and 
bias,the number of other studies on the 
Same question, and, importantly, the ratio 
of true to no relationships arnong the 
relationships probed in each scientific 
field. In this framework, a research finding 
is less likely to be true when the studies 
conducted in a field are smaller; when 
effect sizes are smal1er;when there is a 
greater number and lesser preselection 
of tested re1ationships;where there is 
greater flexibility in designs, definitions, 
outcomes, and analytical modes; when 
there is greater financial and other 
interest and prejudice;and when more 
teams are involved in a scientific field 
in chase of statistical significance. 
Simulations show that for most study 
designs and Settings, it is rnore likely for 
a research claim to be false than true. 
Moreover,for many current scientific 
fields, claimed research findings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interoretation of research. 

factors that influence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Severai methodologists have 
pointed out [9-111 that the high 
rate of nonreplication (lack of 
confirmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research findings solely on 
the basis of a Single study assessed by 
formal statistical significance, typically 
for a pvalue less than 0.05. Research 
is not most appropriately represented 
and summarized by pvalues, but, 
unfortunately, there is a widespread 
notion that medical research articles 

It a n  be proven that 
most daimed resea~h 

findings are false. 

should be interpreted based only on 
pvalues. Research findings are defined 
here as any relationship reaching 
formal statistical significance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
"Negative" research is also very useful. 

P ublished research findings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is Seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[I-31 to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
findings may be the majority or even 
the vast majority of published research 
claims [6-81. However, this should 
not be surprising. It can be proven 
that most claimed research findings 
are false. Here I will examine the key 
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"~e&itive" is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null findings. 
As has been shown previously, the 

probability that a research finding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
significance [10,11]. Consider a 2 x 2 
table in which research findings are 
compared against the gold Standard 
of true relationships in a scientific 
field. In a research field both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of "true 
relationships" to "no relationships" 
among those tested in the field. R 

is characteristic of the field and can 
va~y a lot depending on whether the 
field targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fields where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to find any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R/(R + 1). The probability 
of a study finding a true relationship 
reflects the power 1 - ß (one minus 
the Type ll error rate). The probability 
of claiming a relationship when none 
truly exists reflects the Type I error 
rate, a. Assuming h a t  C relationships 
are being probed in the field, the 
expected values of the 2 x 2 table are 
g-iven in Table 1. After a research 
finding has been claimed based on 
achieving formal statistical significance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive repon 
probability [10]. According to the 2 
x 2 table, one gets PPV = (1 - ß) R/(R 
- PR + a).  A research finding is thus 
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Table 1. Research Findinqs and True Relationships Same question, claims a statistically 

Research True Relationshlp 
Findina Yes Na Total 

Yes . 6 1  -ß)RI(R+l) d ( R +  1 )  c(R+a-'BR)I(R+ 1) 
No cßRl(R + 1 )  c(1 - a)l(R + 1 )  c(1 - a + ßR)l(R + 1 )  
Total dV(R+ 1 )  d V l + l )  C 

more likely true than false if (1 - ß)R 
> a. Since usually the vast majority of 
investigators depend on a = 0.05, this 
means that a research finding is more 
likely true than false if (1 - ß)R > 0.05. 

What is less well appreciated is 
that bias and the extent of repeated 
independent testing by different teams 
of investigators around the globe rnay 
further distort this picture and rnay 
lead to even smaller probabilities of the 
research findings being indeed true. 
We will try to model these two factors in 
the context of similar 2 X 2 tables. 

Bias 
First, let us define bias as the 
combination of various design, data, 
analysis, and presentation factors that 
tend to produce research findings 
when they should not be produced. 
Let U be the proportion of probed 
analyses that would not have been 
"research findings," but nevertheless 
end up presented and reported as 
such, because of bias. Bias should not 
be confused with chance variability 
that causes some findings to be false by 
chance even though the study design, 
data, analysis, and presentation are 
perfect. Bias can entail manipulation 
in the analysis or reporting of findings. 
Selective or distorted reporting is a 
typical form of such bias. We rnay 
assume that U does not depend on 
whether a true relationship exists 
or not. This is not an unreasonable 
assumption, since typically it is 
impossible to know which relationships 
are indeed true. In the presence of bias 
(Table 2), one gets P W  = ([I - ß]R + 
$R)/(R+a-ßR+ U- ua+ $R),and 
PPV decreases with increasing u, unless 
1 - ß 1 a,  i.e., 1 - ß 10.05 for most 
situations. Thus, with increasing bias, 
the chances that a research finding 

are lost in noise [12], or investigators 
use data inefficiently or fail to notice 
statistically significant relationships, or 
there rnay be conflicts of interest that 
tend to "bury" significant findings [13]. 
There is no good large-scale empirical 
evidence on how frequently such 
reverse bias rnay occur across diverse 
research fields. However, it is probably 
fair to say that reverse bias is not as 
common. Moreover measurement 
errors and inefficient use of data are 
probably becoming less frequent 
problems, since measurement error has 
decreased with technological advances 
in the molecular era and investigators 
are becoming increasingly sophisticated 
about their data. Regardless, reverse 
bias rnay be modeled in the Same way as 
bias above. Also reverse bias should not 
be confused with chance variability that 
rnay lead to missing a true relationship 
because of chance. 

Testing by Several Independent 
Teams ~ - - ~ ~ ~ ~ -  

Several independent teams rnay be 
addressing the Same Sets of research 
questions. As research efforts are 
globalized, it is practically the rule 
that several research teams, often 
dozens of them, rnay probe the Same 
or similar questions. Unfortunately, in 
some areas, the prevailing mentality 
until now has been to focus on 
isolated discoveries by single teams 
and interpret research experiments 
in isolation. An increasing number 
of questions have at least one study 
claiming a research finding, and 
this receives unilateral attention. 
The probability that at least one 
study, among several done on the 

significant research finding is easy to 
estimate. For n independent studies of 
equal power, the 2 ;2 table is shown in 
Table 3: PPV = R( l -  ß3/(R + 1 - [ l -  
aIn - Rßn) (not considering bias). With 
increasing number of independent 
studies, PPV tends to decrease, unless 
1 - ß < a ,  i.e., typically 1 - ß < 0.05. 
This is shown for different levels of 
power and for different pre-study odds 
in Figure 2. For n studies of different 
power, the term ßn is replaced by the 
product of the terms Pi for i = 1 to n, 
but inferences are similar. 

Corollaries 
A practical example is shown in Box 
1. Based on the above considerations, 
one rnay deduce several interesting 
corollaries about the probability that a 
research finding is indeed true. 

Corollary 1: The smaller the studies 
conducted in a scientific field, the less 
iikeiy the research hdings are to be 
true. Small sample size means smaller 
power and, for all functions above, 
the PPV for a true research finding 
decreases as power decreases towards 
1 - ß = 0.05. Thus, other factors being 
equal, research findings are more likely 
true in scientific fields that undertake 
large studies, such as randomized 
controlled trials in cardiology (several 
thousand subjects randomized) [14] 
than in scientific fields with small 
studies, such as most research of 
molecular predictors (sarnple sizes 100- 
fold smaller) [15]. 

Coroiiary 2: The smaiier the effect 
sizes in a scientific field, the less iikeiy 
the research findings are to be true. 
Power is also related to the effect 
size. Thus research findings are more 
likely true in scientific fields with large 
effects, such as the impact of smoking 
on Cancer or cardiovascular disease 
(relative risks 3-20), than in scientific 
fields where postulated effects are 
small, such as genetic risk factors for 
multigenetic diseases (relative risks 
1.1-1.5) [7]. Modem epidemiology is 
increasingly obliged to target smaller 

- -  

Table 2. Research Findings andTrue Relationships in the Presence of Bias 
is true diminish considerably. This is Research True Relationship 
shown for different levels of power and Finding Yes No Total 
for different pre-study odds in Figure 1. 

Conversely, true research findings Yes ( d l - B l R t u M I E R + l )  . d t u d l - a ) 1 ( ~ + 1 )  c(R+a-ßR+u-ua+uaR)/(R+t)' 
No (1 - u)cßRI(R + 1 ) 1 - C I  - I R  + 1 c(1 - u)(1 - a + ßR)/(R + 1 )  

rnay occasionally be annulled because Total cRNI+ 1) 
. . 

> c1@+1) ' , . . ' .C  ,< . - <  
of reverse bias. For example, with large 
measurement errors relationships ~ . i a 1 3 7 1 ~ ~ ~ ~ ~ 1 ~ 4 m 0 2  
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effect sizes [16]. Consequently, the 
proportion of true research findings 
is expected to decrease. In the same 
line of thinking, if the true effect sizes 
are very small in a scientific field, 
this field is likely to be plagued by 
almost ubiquitous false positive claims. 
For example, if the majority of true 
genetic or nutritional determinants of 
complex diseases confer relative risks 
less &an 1.05, genetic or nutritional 
epidemiology would be largely utopian 
endeavors. 

Coroliary 3: The greater the number 
and the lesser the selection of tested 
relationships m a scientiüc field, the 
less likely the research findings are to 
be true. As shown above, the post-study 
probability that a finding is true (Pm) 
depends a lot on the pre-study odds 
(R). Thus, research findings are more 
likely true in confirmatory designs, 
such as large phase 111 randomized 
controlled trials, or meta-analyses 
thereof, than in hypothesis-generating 
expenments. Fields considered highly 
informative and creative given the 
wealth of the assembled and tested 
information, such as microarrays and 
other high-throughput discove~y- 
onented research [4,8,17], should have 
extremely low PW. 

Corollary 4: The greater the 
flexibility in designs, definitions, 
outcomes, and m c a i  modes in 
a scientinc field, the less likely the 
research findmgs are to be true. 
Flexibility increases the potential for 
transforrning what would be "negative" 
results into "positiven results, i.e., bias, 
U For several research designs, e.g., 
randomized controlled trials [18-201 
or meta-analyses [21,22], there have 
been efforts to standardize their 
conduct and reporting. Adherence to 
common standards is likely to increase 
the proportion of true findings. The 
same applies to outcomes. True 
findings rnay be more common 
when outcomes are unequivocal and 
universally agreed (e.g., death) rather 
than when multifarious outcomes are 
devised (e.g., scales for schizophrenia 

outcomes) [23]. Similarly, fields that 
use commonly agreed, stereotyped 
analytical methods (e.g., Kaplan- 
Meier plots and the log-rank test) 
[24] rnay yield a larger proportion 
of true findings than fields where 
analytical methods are still under 
expenmentation (e.g., artificial 
intelligente methods) and only "best" 
results are reported. Regardless, even 
in the most stringent research designs, 
bias seems to be a major problem. 
For example, there is strong evidence 
that selective outcome reporting, 
with manipulation of theoutcohes 
and analyses reported, is a common 
problem even for randomized trails 
[25]. Simply abolishing selective 
publication would not make this 
problem go away. 

Coroliary 5: The greater the 6nanciai 
and other mterests and prejudices 
in a scientinc field, the less likely 
the research findings are to be true. 
Conflicts of interest and prejudice rnay 
increase bias, U Conflicts of interest 
are very common in biomedical 
research [26], and typically they are 
inadequately and sparsely reported 
[26,27]. Prejudice rnay not necessarily 
have financial roots. Scientists in a 
given field rnay be prejudiced purely 
because of their belief in a scientific 
theory or commitment to their own 
findings. Many otherwise seemingly 
independent, university-based studies 
rnay be conducted for no other reason 
than to give physicians and researchers 
qualifications for promotion or tenure. 
Such nonfinancial conflicts rnay also 
lead to distorted reported resuits and 
interpretations. Prestigious investigators 
rnay suppress via the peer review process 
the appearance and dissemination of 
findinh that refute their findings, thus 
condemning their field to perpetuate 
false dogma, Empirical evidence 
on expert opinion shows that it is 
extremely unreliable [28]. 

Coroliary 6: The hotter a 
scientiüc field (with more scientific 
teams invohred), the less likely the 
research findings are to be true. 

Table 3. Research Findings and Tnie Relationships in the Presence of Multiple Studies 
Research True Reiationship 
Finding Yes No Total 

~ i a 1 ~ 7 i / l a m i p d o o 2 o i ~ ~ . ( 0 ~  
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- ~ o . 0 5  - 1110.20 - 1110.50 - u 4 . a  
DOI: 10.1371/)ournal.prned.0020124.g001 

Figure 1. PPV (Probability That a Research 
Finding IsTrue) as a Function of the Pre-Study 
Odds for Various Levels of Bias, U 

Panels correspond to power of 0.20,0.50, 
and 0.80. 

This seemingly paradoxical corollary 
follows because, as stated above, the 
PPV of isolated findings decreases 
when many teams of investigators 
are involved in the same field. This 
rnay explain why we occasionally see 
major excitement followed rapidly 
by severe disappointments in fields 
that draw wide attention. With many 
teams working on the same field and 
with massive experimental data being 
produced, timing is of the essence 
in beating competition. Thus, each 
team rnay pnontize on pursuing and 
disseminating its most impressive 
"positive" results. "Negativen results rnay 
become attractive for dissemination 
only if some other team has found 
a "positive" association on the same 
question. In that case, it rnay be 
attractive to refute a claim made in 
some prestigious journal. The term 
Proteus phenomenon has been coined 
to descnbe this phenomenon of rapidly 
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Box 1. An Example: Science 
at Low Pre-Study Odds 

Let us assume that a team of 
investigators performs a whole genome 
association study to test whether 
any of 100,000 gene polymorphisms 
are associated with susceptibility to 
schizophrenia. Based on what we 
know about the extent of heritability 
of the disease, it is reasonable to 
expea that probaMy around ten 
gene poiymorphisrns among those 
tested would be truly associated with 
schizophrenia, with relativeiy similar 
odds ratios around 1.3 for the ten or so 
polymorphisms and with a fairly similar 
power to identify any of them.Then 
R = 10/100,000 = 10 4,and the prestudy 
probability for any polymorphism to be 
associated with schizophrenia is also 
R/(R + 1) = 10 '.Let us also suppose that 
the study has 6094 power to find an 
association with an odds ratio of 1.3 at 
a = 0.05.Then it can be estimated that 
if a statistically significant association is 
found with thep-value barely crossing the 
0.05 threshold, the post-study probability 
that this is true increases about 12-fold 
compared with the pre-study probability, 
but it is still only 12 X 10 '. 

Now let us suppose that the 
investigators rnanipulate their desigi 

analyses, and reporting so as to make 
more relationships Cross the p = 0.05 
threshold even though this would not 
have been crossed with a perfealy 
adhered to design and analysis and with 
perfect comprehensive reporting of the 
results, strictly according to the original 
study plan. Such manipulation could be 
done,for example, with serendipitous 
inclusion or exclusion of certain patients 
or controls,post hoc subgrwp analyses, 
inwstigation of genetic contrasts that 
were not originally specified, changes 
in the disease or control definitions, 
and various combinations of selective 
or distorted reporting of the results. 
Commercially availableöata mining" 
packages actually are proud of their 
ability to yield statistically significant 
resuits through data dredging.In the 
presence of blas with u = 0.1 0, the post- 
study probability that a research finding 
is true is only 4.4 X 10 4. Furthermore, 
even in the absence of any bias, when 
ten independent research teams perform 
similar experiments around the world, if 
one of them finds a formally statistically 
significant association, the probability 
that the research finding is true is only 
1.5 X 10 ", hardly any higher than the 
probability we had before any of this 
extensive research was undertaken! 

Figura 2. PW (ProbabilityThat a Research 
Finding IsTrue) as a Function of the Pre-Study 
Odds for Various Numbers of Conducted 
Studies, n 
Panels correspond to power of 0.20,050, 
and 0.80. 

alternating extreme research claims 
and extremely opposite refutations 
[29]. Empirical &dence suggests that 
this sequence of extreme opposites is 
very CO-&non in m~lecuiar~~enetics 
1291. 

These coroiiaries consider each 
factor separately, but these factors often 
influence each other. For example, 
investigators working in fields where 
true effect sizes are perceived to be 
small rnay be more likely to perform 
large studies than investigators working 
in fields where true effect sizes are 
perceived tobe large. Or prejudice 
rnay prevail in a hot scientific field, 
further undermining the predictive 
value of its research findings. Highly 
prejudiced stakeholders rnay even 
create a barrier that aborts efforts at 
obtaining and disseminating opposing 
results. Conversely, the fact that a field 
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is hot or has strong invested interests 
rnay sometimes promote larger studies 
and improved standards of research, 
enhancing the predictive value of its 
research findings. Or massive discovery- 
oriented testing may result in such a 
large yield of significant relationships 
that investigators have enough to 
report and search further and thus 
refrain from data dredging and 
manipulation. 

Most Research Findings Are False 
for Most Research Designs and for 
Most Fields 
In the described framework, a PPV 
exceeding 50% is quite difficult to 
get. Table 4 provides the results 
of simulations using the formulas 
developed for the influence of power, 
ratio of true to non-true relationships, 
and bias, for various types of situations 
that rnay be characteristic of specific 
study designs and settings. A finding 
from a wellconducted, adequately 
powered randomized controlled t ia l  
starting with a 50% pre-study chance 
that the intemention is effective is 

eventuaily true about 85% of the time. 
A fairly similar performance is expected 
of a confirmatory meta-analysis of 
goodquality randomized trials: 
potential bias probably increases, but 
power and pre-test chances are higher 
compared to a single randomized trial. 
Conversely, a meta-analytic finding 
from inconclusive studies where 
pooling is used to "correct" the low 
power of single studies, is probably 
false if R I 1:3. Research findings from 
underpowered, early-phase clinical 
trials would be true about one in four 
times, or even less frequently if bias 
is present ~~iderniological studies of 
an exploratory nature perform even 
worse, especially when underpowered, 
but even well-powered epidemiological 
studies rnay have only a one in 
five chance being true. if R = 1 :10. 
Finally, in discoveqwriented research 
with massive testing, where tested 
relationships exceed true ones 1,00& 
fold (e.g., 30,000 genes tested, of which 
30 rnay be the true culprits) [30,31], 
PPV for each claimed relationship is 
extremely low, even with considerable 

August 2005 1 Volume 2 I lssue 8 I e124 



standardiiation of laboratory and 
statistical methods, outcomes, and 
reporting thereof to minimize bias. 

Claimed Research Findings 
May Often Be Simply Accurate 
Measures of the Prevailing Bias 
As shown, the majority of modern 
biomedical research is operating in 
areas with very low pre- and post- 
study probability for true findings. 
Let us suppose that in a research field 
there are-no true findings at all to be 
diicovered. History of science teaches 
us that scientific endeavor has often 
in the past wasted effort in fields with 
absolutely no yield of true scientific 
information, at least based on our 
current understanding. in such a "null 
field," one would ideally expect all 
observed effect sizes to W b y  chance 
around the null in the absence of bias. 
The extent that observed findings 
deviate from what is expected by 
chance alone would besimply a pure 
measure of the prevailing bias. 

For example,let us suipose that 
no nutrients or dietary Patterns are 
actually important determinants for 
the risk of developing a specific tumor. 
Let us also suppose that the scientific 
literature has examined 60 nutrients 
and claims ail of them to be related to 
the nsk of developing this tumor with 
relative risks in the range of 1.2 to 1.4 
for the comparison of the upper to 

lower intake tertiles. Then the claimed 
effect sizes are simply measuring 
nothing else but the net bias that has 
been involved in the generation of 
this scientific literature. Claimed effect 
sizes are in fact the most accurate 
estimates of the net bias. It even follows 
that between "null fields," the fields 
that claim stronger effects (often with 
accompanying claims of medical or 
public health importance) are simply 
those that have sustained the worst 
biases. 

For fields with very low PPV, the few 
true relationships would not distort 
this overall picture much. Even if a 
few relationships are tme, the shape 
of the distribution of the obse~ed  
effects would still yield a clear measure 
of the biases involved in the field. This 
concept totally reverses the way we 
view scientific results. Traditionally, 
investigators have viewed large 
and highly significant effects with 
excitement, as signs of important 
discoveries. Too large and too highly 
significant effects rnay actually be more 
likely to be signs of large bias in most 
fields of modern research. They should 
lead investigators to careful critical 
thinking about what might have gone 
wrong with their data, analyses, and 
results. 

Of Course, investigators working in 
any field are likely to resist accepting 
that the whole field in which they have 

Table 4. PPV of Research Findings forvarious Combinations of Power (1 - P), Ratio 
o f T ~ e  to Not-True Relationships (R),and Bias (U) 

1 - ß  R U Practical Example PPV 

0.95 2:l 030 Confimtory meta-analysis of good- 0.85 

Underpowered, but well-performed 0.23 

080 1:lO 030 Adequately power4 exploratory 020 
widemioloaical studv 

020 1 :1,000 0.80 Discovery-oriented exploratory 0.0010 
research with massive testina 

. . 
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spent their careers is a "null field." 
However, other lines of evidence, 
or advances in technology and 
experimentation, rnay lead eventually 
to the dismantling of a scientific field. 
Obtaining measures of the net bias 
in one field rnay also be useful for 
obtaining insight into what might be 
the range of bias operating in other 
fields where similar analytical methods, 
technologies, and conflicts rnay be 
operating. 

How Can We lmprove 
the Situation? 
1s it unavoidable that most research 
findings are false, or can we improve 
the situation? A major problem is that 
it is impossible to know with 100% 
certainty what the truth is in any 
research question. In this regard, the 
pure "goldn standard is unattainable. 
However, there are several approaches 
to improve the post-study probability. 

Better powered evidence. e.g., large 
studies or low-bias meta-analyses, 
rnay help, as it Comes closer to the 
unknown "gold" standard. However, 
large studies rnay still have biases 
and these should be acknowledged 
and avoided. Moreover, large-scale 
evidence is impossible to obtain for all 
of the millions and trillions of research 
questions posed in current research. 
Large-scale evidence should be 
targeted for research questions where 
the pre-study probability is already 
considerably high, so that a significant 
research finding will lead to a post-test 
probability that would be considered 
quite definitive. Large-scale evidence is 
also particularly indicated when it can 
test major concepts rather than narrow, 
specific questions. A negative finding 
can then refute not only a specific 
proposed claim, but a whole field or 
considerable portion thereof. Selecting 
the performance of large-scale studies 
based on narrow-minded cntena, 
such as the marketing promotion of a 
specific dmg, is largely wasted research. 
Moreover, one should be cautious 
that extremely large studies rnay be 
more likely to find a formally statistical 
significant difference for a trivial effect 
that is not really meaningfully diierent 
from the null [32-341. 

Second, most research questions 
are addressed by many teams, and 
it is misleading to emphasize the 
statistically significant findings of 
any single team. What matters is the 

August 2005 1 Volume 2 I lssue 8 1 e124 



totality of the evidente. Diminishing many relationships are expected to be 19. Ioannidis JP, Evans SJ, Gotzsche PC, O'Neill 

bias through enhanced research true among those probed across the RT, Altman DG, et al. (2004) Better reporting 
of harms in randomized uials: An extension 

standards and curtailing of prejudices relevant research fields and research of the CONSORTstatement. Ann Intern Med - - -  
rnay also help. However, this rnay 
require a change in scientific mentality 
that might be difficult to achieve. 
In some research designs, efforts 
rnay also be more successful with 
upfront registration of studies, e.g., 
randomized tnals [35]. Registration 
would Pose a challenge for hypothesis- 
generating research. Some kind of 
registration or networking of data 
collections or investigators within fields 
rnay be more feasible than registration 
of each and every hypothesis- 
generating experiment. Regardless, 
even if we do not See a great deal of 
Progress with registration of studies 
in other fields, the pnnciples of 
developing and adheringto a protocol 
could be more widely borrowed from 
randomized controlled trials. 

Finally, instead of chasing statistical 
significance, we should improve our 
understanding of the range of R 
values-the pre-study odds-where 
research efforts operate [10]. Before 
running an expenment, investigators 
should consider what they believe the 
chances are that they are testing a true 
rather than a non-true relationship. 
Speculated high R values rnay 
sometimes then be ascertained. As 
descnbed above, whenever ethically 
acceptable, large studies with minimal 
bias should be berformed on research 
findings that are considered relatively 
established, to See how often they are 
indeed confirmed. I suspect several 
established "classics" will fail the test 

Nevertheless, most new discoveries 
will continue to stem from hypothesis- 
generating research with low or very 
low pre-study odds. We should then 
acknowledge that statistical significance 
testing in the report of a single study 
gives only a partial picture, without 
knowing how much testing has been 
done outside the report and in the 
relevant field at large. Despite a large 
statistical literature for multiple testing 
corrections [37], usually it is impossible 
to decipher how much data dredging 
by the reporting authors or other 
research teams has preceded a reported 
research finding. Even if determining 
this were feasible, this would not 
inform us about the pre-study odds. 
Thus, it is unavoidable that one should 
make approximate assumptions on how 

':@,: PLoS Medicine I www.plormedicine.org 

designs. The wider field rnay yield some 
guidance for estimating this probability 
for the isolated research project. 
Experiences from biases detected in 
other neighboring fields would also be 
useful to draw upon. Even though these 
assumptions would be considerably 
subjective, they would still be very 
useful in interpreting research claims 
and putting them in context. 
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