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some "obvious" implications. First, as Hinkley points out, 
the p value is completely objective and does not depend 
on the prior. So as the prior becomes diffuse the p value 
does not change at all! Perhaps Pratt meant that as the 
prior becomes diffuse, the posterior probability ap- 
proaches the p value. But then what is meant by the phrase 
"becomes diffuse"? In Theorem 3.4, a -> oo corresponds 
to the prior becoming diffuse, and we see that Pr(HO I x) 
can converge to any number between 0 and 1 depending 
on the values of g(O-) and g(O+). Therefore, no conver- 
gence of Pr(HO I x) to p(x) need take place. 

In his comment, Pratt qualifies his 1965 statement by 
eliminating "jagged" priors from considerations. If we in- 
terpret jagged to mean discontinuous, then Theorem 3.4 
not only points out that only a discontinuity at zero matters 
but also quantifies the effect of such a discontinuity. In 
short, Theorem 3.4 gives precise and simple conditions 
under which the convergence of Pr(HO I x) to p(x) will 
occur. 

We believe that there is more value in precise, stylized 
but verifiable statements than in broad but vague state- 
ments that are open to many interpretations, some of 

which are wrong. This is not to say that intuition is bad, 
but only that intuition should be backed up by precise 
theorems. The work of Pratt (1965) is important, with 
many far-reaching implications-the fact that we are still 
discussing it 20 years after publication is proof of that. Our 
work, however, is not contained in Pratt (1965), but rather 
is, at the least, an extension and formalization of some 
ideas contained therein. 

7. SUMMARY 
Bayesians and frequentists may never agree on the ap- 

propriate way to analyze data and interpret results, but 
there is no reason why they cannot learn from one another. 
Whether or not measures of evidence can be reconciled 
is probably a minor consideration; understanding what 
affects a measure of evidence is a major consideration. 
Some key factors were identified in these articles, more 
in the comments. Our goal in writing our article was to 
understand better the similarities and differences between 
p values and posterior probabilities. With the help of B&S 
and the discussants we feel that we have succeeded. We 
hope that the reader has too. 

Re joinder 
JAMES 0. BERGER and THOMAS SELLKE 

We thank all discussants for their interesting comments. 
Our rejoinder will rather naturally emphasize any dis- 
agreements or controversy, and thus will be mainly ad- 
dressed to the non-Bayesians. We are appreciative of the 
expressed disagreements, including those of Casella and 
Berger, since one of our hopes was to provoke discussion 
of these issues in the profession. These are not dead issues, 
in the sense of being well known and thoroughly aired 
long ago; although the issues are not new, we have found 
the vast majority of statisticians to be largely unaware of 
them. We should also mention that the commentaries con- 
tain many important additional insights with which we 
agree but will not have the space to discuss adequately. 
Before replying to the official discussants, we have several 
comments on the Casella-Berger article. 

1. COMMENTS ON THE CASELLA-BERGER 
ARTICLE 

First, we would like to congratulate Casella and Berger 
on an interesting piece of work; particularly noteworthy 
was the establishment of the P value as the attained lower 
bound on the posterior probability of the null for many 
standard one-sided testing situations. It was previously 
well known that the P value was the limit of the posterior 
probabilities for increasingly vague priors, but that it is 
typically the lower bound was not appreciated. And the 
less common examples, where the lower bound is even 

smaller than the P value, are certainly of theoretical in- 
terest. 

Our basic view of the Casella-Berger article, however, 
is that it pounds another nail into the coffin of P values. 
To clarify why, consider what it is that makes a statistical 
concept valuable; of primary importance is that the con- 
cept must convey a well-understood and sensible message 
for the vast majority of problems to which it is applied. 
Statistical models are valuable, because they can be widely 
used and yield similar interpretations each time they apply. 
The notion of 95% "confidence" sets (we here use "con- 
fidence" in a nondenominational sense) is valuable, be- 
cause, for most problems, people know how to interpret 
them (conditional counterexamples aside). But what can 
be said about P values? Well, they can certainly be defined 
for the vast majority of testing problems, but do they give 
a "sensible message"? In our article we argued that they 
do not give a sensible message for testing a precise null 
hypothesis, but one could make the counterargument that 
this is merely a calibration problem. The P value is after 
all (usually) a one-to-one monotonic function of the pos- 
terior probability of the null, and one could perhaps cal- 
ibrate or "learn how to interpret P values." This is 
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possible, however, only if the calibration is fairly simple 
and constant. In our article we mentioned one well-known 
source of nonconstancy in interpretation of the P value: 
as the sample size increases in testing precise hypotheses, 
a given P value provides less and less real evidence against 
the null. One could perhaps argue that a different cali- 
bration can be found for each sample size. But now Casella 
and Berger have also demonstrated that one must calibrate 
by the nature of the problem. For one-sided testing, a P 
value is often roughly equivalent to evidence against Ho, 
whereas for testing a precise hypothesis a P value must 
typically be multiplied by a factor of 10 or more to yield 
the same evidential interpretation. And these are not the 
only two possibilities. Indeed, suppose that the null hy- 
pothesis is an interval of the form Ho: 10 - 0ol < C. If C 
is near 0, one is effectively in the point null situation, and 
as C gets large the situation becomes similar to one-sided 
testing. For C in between, there is a continuum of different 
possible "calibrations." 

Although somewhat less important than the sample size 
and C, the dimension of the problem and the distribution 
being considered can also necessitate different calibrations 
between P values and "evidence against HO." The bottom 
line is simple: the concept of a P value is faulty, in that it 
does not have a reasonable direct interpretation as to evi- 
dence against Ho over the spectrum of testing problems. 
It may be useful to identify when P values are (and are 
not) sensible measures of evidence, so as to allow reap- 
praisal of those scientific results that have been based on 
P values, but the future of the concept in statistics is highly 
questionable. 

Another issue raised in the article of Casella and Berger 
has to do with the validity of precise hypothesis testing. 
It is implied in Section 1 that one-sided tests are more 
useful in practice, and in Section 4 that placing mass near 
a point can be considered as "biasing the result in favor 
of Ho"; the practical import of our results is thus ques- 
tioned. This issue is complicated by the fact that, in prac- 
tice, many testing problems are erroneously formulated as 
tests of point null hypotheses. There is undeniably a huge 
number of such tests performed, but how many should be 
so formulated? 

One answer to this objection is simply to note that we 
have little professional control over misformulations in 
statistics; we do, however, have some control over the 
statistical analysis performed for a given formulation. It is 
awkward to argue that a bad analysis of a given formu- 
lation is okay because the formulation is often wrong. 

At a deeper level, it is possible even to argue the other 
way on the question of proper formulations of testing; one 
can argue that it is actually precise nulls that encompass 
the majority of "true" testing problems. This argument 
notes that most one-sided testing problems have to do with 
things like deciding whether a treatment has a positive or 
negative effect, or which of two treatments is best. The 
point is that, in such problems, what is typically really 
desired is an evaluation of how large the effect is or how 
much better one treatment is than another. Such problems 
are more naturally formulated as estimation or decision 

problems, and the appropriateness of testing is then 
debatable. 

Precise hypotheses, on the other hand, ideally relate to, 
say, some precise theory being tested. Of primary interest 
is whether the theory is right or wrong; the amount by 
which it is wrong may be of interest in developing alter- 
native theories, but the initial question of interest is that 
modeled by the precise hypothesis test. 

In such problems the key fact is that there is real belief 
that the null hypothesis could be approximately true. If I 
am an experimenter conducting a test that will show, hope- 
fully, that vitamin C has a beneficial effect on the common 
cold, I had better officially entertain the hypothesis that 
its effect is essentially negligible. In other words, I should 
not take the prior mass assigned to "no positive effect" 
and spread it out equally over all 0 c 0; this does not 
correspond to the reality that most people may be quite 
ready to believe that vitamin C is not harmful, yet give 
substantial weight to a belief in no or little effect. Such 
situations require substantial prior mass near 0. 

We present the previous argument about what is "prac- 
tical hypothesis testing" only halfheartedly. The huge va- 
riety of applications in which P values are used (see Cox 
1977) makes questionable any claim that only "one type" 
of situation need be considered from a practical perspec- 
tive. Whether most situations are one-sided, have a precise 
null hypothesis, or are really decision problems is irrele- 
vant; our basic statistical theory should handle all. 

2. REPLY TO HINKLEY 
Hinkley defends the P value as an "unambiguously ob- 

jective error rate." The use of the term "error rate" sug- 
gests that the frequentist justifications, such as they are, 
for confidence intervals and fixed a-level hypothesis tests 
carry over to P values. This is not true. Hinkley's inter- 
pretation of the P value as an error rate is presumably as 
follows: the P value is the Type I error rate that would 
result if this observed P value were used as the critical 
significance level in a long sequence of hypothesis tests 
[see Cox and Hinkley (1974, p. 66): "Hence [the P value] 
is the probability that we would mistakenly declare there 
to be evidence against Ho, were we to regard the data 
under analysis as being just decisive against Ho."] This 
hypothetical error rate does not conform to the usual clas- 
sical notion of "repeated-use" error rate, since the P value 
is determined only once in this sequence of tests. The 
frequentist justifications of significance tests and confi- 
dence intervals are in terms of how these procedures per- 
form when used repeatedly. 

Can P values be justified on the basis of how they per- 
form in repeated use? We doubt it. For one thing, how 
would one measure the performance of P values? With 
significance tests and confidence intervals, they are either 
right or wrong, so it is possible to talk about error rates. 
If one introduces a decision rule into the situation by saying 
that Ho is rejected when the P value c .05, then of course 
the classical error rate is .05, but the expected P value 
given rejection is .025, an average understatement of the 
error rate by a factor of two. 
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In the absence of an unambiguous interpretation of P 
values as a repeated-use error rate, we have most fre- 
quently heard P values defended as a measure of the evi- 
dence against Ho, via an "either Ho is true or a rare event 
has occurred" argument. It is for this reason that we con- 
centrated on evaluating P values in terms of whether they 
really are effective in conveying information about the 
strength of the evidence against Ho. We acknowledge the 
difficulty in defining "evidence" in an absolute (non-Bayes- 
ian) sense, and for this reason we considered a variety of 
notions of evidence in the article, including lower bounds 
on the Bayes factor (or weighted likelihood ratio). Indeed, 
the lower bound on the Bayes factor strikes us as having 
a true claim to being "unambiguously objective," since it 
depends on no prior inputs at all (Th. 1) or only on a 
symmetry assumption (Th. 3) and yet relates to a valid 
(conditional) measure of evidence. 

We indicated in Comment 2 that the results can be ex- 
tended to goodness-of-fit testing and yield much the same 
conclusions, even when the alternative hypotheses are not 
well formulated. One can find lower bonds over essentially 
arbitrary alternatives within the chi-squared testing frame- 
work. Thus, whether or not the P value can really be 
considered as a standard scale, its interpretation in terms 
of evidence against Ho should be sharply qualified. 

We would disagree with the idea that usual confidence 
ranges for a parameter are more informative than poste- 
rior-probabilities of hypotheses, when the null hypothesis 
defines a special value for a parameter. As an example, 
the density (on RI) 

f(xJ0) = (1 + 8) - 481x - 0, for Ix - 0 c 2, 

will yield, as a usual 95% confidence set for small c, 

C(x) = (x - .475, x + .475); 

but if 0 = 0 is a special value and x = .48 is observed, 
we would be loathe to reject Ho: 0 = 0, since 

f(.4810)/ sup f(.4810) ? (1 - c)/(1 + E). 
OEC(.48) 

The point is that a special parameter value outside a con- 
fidence set can have virtually the same likelihood as any 
parameter value inside a confidence set, and we would 
then argue that the data do not indicate rejection of the 
special parameter value. This phenomenon also occurs in 
the normal testing problem we discuss, though to a lesser 
degree. 

We are wholeheartedly in agreement that proper con- 
ditioning must be employed. To us, however, this is even 
more important in testing than with confidence sets. We 
feel that refusing to "condition" on the actual data x, and 
instead using the set A of "as or more extreme" values, 
causes more harm in statistical practice than other failures 
to condition. 

3. REPLY TO VARDEMAN 

Our major disagreement seems to center again on the 
issue of concentrating prior mass near 00. We argued pre- 

viously that (a) in examples such as the "vitamin C" ex- 
ample, one often does have mass near 00, and (b) even if 
Ho is a fair-sized interval, the contradiction occurs (the 
agreement of posterior probabilities with P values only 
occurring in the limiting case in which Ho is a very large 
interval with prior mass "uniformly" distributed over it). 

Perhaps less controversy would have ensued if we had 
used Bayes factors or weighted likelihood ratios as our 
central measure. The argument then avoids the loaded 
issue of "prior beliefs" and simply says "how does the 
support of the data for Ho, given by the likelihood f(x I 
00), compare with the support of the data for H1, given 
by some average of f(x I 0) over 0 in H1." This is the 
Bayes factor, with g being the averaging measure on Hl, 
and the various theorems find bounds on the Bayes factor 
over g. If 00 has no distinction, as in the scenario of Casella 
and Berger, one probably does not care if f(x I Oo) is a 
substantial fraction of the weighted likelihood of H1; on 
the other hand, if 00 has the distinction of being a particular 
value for which it is desired to assess the evidence for or 
against, it is hard to ignore a comparatively large value of 
f(x I 0o). We chose not to emphasize this "likelihood" 
argument, because we have found that the interpretation 
of observed likelihood ratios as direct evidence (and not 
just as inputs into a classical test) is less familiar to many 
classical statisticians than is the use of posterior probabil- 
ities as evidence. 

This also relates to the issue of our agreed-upon dis- 
comfort at replacing t = 1.4 by the event [Iti 2 1.4]. In 
the normal case (and most others), f(1.4 1 Oo) is a sub- 
stantial fraction of any reasonable average of f(1.4 I 0) 
over Hl. On the other hand, Pr([jtl ? 1.4] 1 0o) is much 
smaller than reasonable averages of Pr([jtj - 1.4] 1 0) over 
Hl. Thus, by likelihood reasoning, there is also a great 
difference between knowing precisely that t = 1.4 and 
knowing only that Itl - 1.4; the latter would yield much 
greater evidence against Ho. 

Another illustration of the conditioning aspect of the 
problem is described in our story about the "astronomer" 
in Section 1. We would really like to see an explanation, 
written for this astronomer, as to why he should believe 
that t = 1.96 is substantial evidence against Ho. The gen- 
eral point is that any method of conditionally measuring 
evidence that we have considered indicates that the re- 
placement of t = 1.4 by [|t| - 1.4] is the source of the 
huge discrepancies; and the replacement has no real jus- 
tification except that of "convenience." One of the pur- 
poses of this article was to indicate a common statistical 
situation in which it is essential to condition properly, 
feeling that the issue of conditioning is one of the deepest 
and most important issues in statistics. 

We applaud Vardeman's leanings toward decision-the- 
oretic formulations, though we have argued that one 
should not completely abandon the possibility of stating 
how much the data support a special value 00. We also are 
not particularly at ease with the use of words like "objec- 
tive," but we use them out of a certain defensive posture. 
Many statisticians feel that it is possible and essential to 
be objective; whether or not this really is possible, we 
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would argue that the closest one can come to objectivity 
is through the types of conditional analyses we have dis- 
cussed. (See Comment 3 for our views concerning the 
actual possibility of objectivity.) 

4. REPLY TO DICKEY 

The observation that n in Table 1 can, in general, be 
replaced by the ratio of the prior and sampling variances 
is a useful fact (pointed out also by Pratt). It is interesting 
that the accuracy of the point null formulation (i.e., the 
appropriateness of the approximation of a realistic small 
interval null by a point) depends on v/I/ - but not on [2; 
thus if z2 iS indeed larger than .2, one can move to the 
right in the table without increased worry concerning the 
soundness of the formulation. 

The asymptotic t arguments are given for completeness, 
but it is true that the asymptotics take effect for t too large 
to be of much interest. We agree with all other comments, 
except that the equating of a P value with a tom-tom strikes 
us as somewhat overly positive. 

5. REPLY TO PRATT 

We are in complete agreement that Edwards, Lindman, 
and Savage (1963) (EL&S) contained the essence of our 
article. Indeed, had EL&S not been so mysteriously ig- 
nored for so long, our contribution would have been 
mainly a presentation of Theorem 5, its ramifications, and 
the results in Section 4. Because very few people we talked 
to were aware of the results in EL&S, however, a general 
review seemed to be in order. We feel that the result of 
Theorem 5 is a substantive advance for two reasons. First, 
although the results for GUS are not greatly different from 
those for GN, this is not apparent a priori; non-Bayesians 
tend to be very wary of a result established for only normal 
priors, so verifying that the same answer holds qualita- 
tively for all unimodal symmetric priors can substantially 
enhance the impact of the basic phenomenon. Second, the 
techniques for working with large classes, such as GUS, are 
important in general Bayesian sensitivity studies, and we 
hoped that the application here would indicate the pos- 
sibilities and kindle interest. Finally, the result on interval 
hypotheses in Section 4 is valuable for both sociological 
and scientific purposes. 

Pratt's Table 1 and the subsequent comments and in- 
sights are all of value. We agree with his later comment 
that our Comment 1 is probably not cautious enough; it 
was given with the simple hope that a not-too-terrible rule 
of thumb might be able to drive out a terrible rule of 
thumb. 

6. REPLY TO GOOD 

There is virtually nothing in this interesting set of com- 
ments with which we disagree. We would probably have 
to align ourselves with the radical Bayesians, however, in 
that we remain unconvinced that P values have any merit. 
The number of "rules of thumb" that have to be learned 

to "calibrate" properly P values in the various possible 
testing situations is so large that it strikes us as simply 
unwieldy to continue to use them. Why not just shift over 
to Bayes factors (or bounds on the Bayes factors)? We 
would agree that often (though not always) a P value of 
.05 is an indication that more evidence should be obtained. 

We thank Good for the additional references; we tried, 
but knew we must have missed some. 

7. REPLY TO MORRIS 

Morris raises a number of interesting issues that bear 
on the comparison of the one-sided and precise null testing 
situations. For ease in discussion, it is helpful to consider 
a precise null version of the example of Morris. 

Example. Consider a paired comparison experiment 
in which two new treatments will be screened. The out- 
come for each subject pair is a 0 or 1, depending on which 
treatment is judged to be superior. Let 0 denote the prob- 
ability of obtaining a 1, and let n denote the number of 
(independent) pairs in the experiment. These are two new 
treatments, and it is judged that there is a substantial 
probability (2, say) that they are both ineffective, which 
would correspond to a 0 very near 2. All past experiments 
with similar treatments have indicated that, when there 
are treatment effects, 0 ranges between .4 and .6. Indeed 
(as in the Morris example), suppose that we view it rea- 
sonable to model this 0, a priori (conditional on there being 
treatment effects), as having an 9X2, (.05)2) distribution. 
Assuming that the normal approximation for 0 is valid, 
the entire model above falls within the framework of our 
article, with X = 0 - 9t(O, .25/n), the desire to test Ho: 
O = A versus H1: 0 # A, ro = 2, and g(O) being the 94, 
(.05)2) density. 

The difference between this problem and that of Morris 
is, of course, that there is substantial reason to suspect 0 
= 2; in a voting situation there is no reason to single our 
O = 2 as deserving positive prior mass. (We implicitly 
assume that n is not enormous; the real hypothesis of "no 
treatment effects" would be accurately modeled as Ho: l0 
- Al ' , and if n is enormous it can be inaccurate to 
approximate this by Ho : 0 2 2.) 

By using an easy modification of formula (1.1), we can 
calculate the posterior probability of Ho for each of the 
situations in Table 1 of Morris. The results for n = 20, n 
= 200, and n = 2,000, respectively, are .436, .302, and 
.387; compare these with the posterior probabilities found 
by Morris of .204, .047, and .024, respectively. Note, in 
particular, the huge difference for n = 2,000. 

The example here makes clear that the insightful com- 
ments of Morris, although valid for the situation in which 
no special mass is to be assigned to a point 00, need not 
be valid for the precise null situation. For instance, the 
comment "the P value corresponds to Pr(Ho I t) only when 
good power obtains at typical H1 parameter values" may 
be valid for nonprecise nulls but is false for precise nulls; 
the powers at 0 = .55 for our example are very near 1 
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when n = 2,000, yet the P value differs drastically from 
the posterior probability of H0. 

The necessary distinction between precise nulls and im- 
precise nulls only reinforces the exhortation (with which 
we completely agree), in the last paragraph of Morris's 
comment, to the effect that it is crucial for all statisticians 
and scientists using P values to learn exactly what P values 
do and do not convey about the evidence against Ho in 

the wide variety of testing problems to which they are 
applied. 
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