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Comment 
JOHN W. PRATT* 

1. BERGER AND SELLKE (AND EDWARDS, 
LINDMAN, AND SAVAGE) 

When I was younger so much younger than today, I 
never needed anybody's help in any way, least of all the 
Beatles', and I usually found old fogeys' historical homilies 
distasteful. As my own fogeyhood impends, I find them 
just as distasteful, but more salutary. In this vein I must 
say that, despite the generous references in Berger and 
Sellke (B&S) and my previous looks at Edwards, Lind- 
man, and Savage (1963) (EL&S), I realized only on recent 
rereading how much credit is due EL&S for formulating 
and resolving questions that illuminate the interpretation 
of P values in testing sharp null hypotheses (and much 
else). The extent and charm of their penetrating discussion 
and the progression ordering most of B&S's results are 
evident in this brief quotation from EL&S (p. 228) on 
testing the null hypothesis that a normal distribution with 
known variance has mean A = 0. 

Lower bounds on L. An alternative when u(Q I H,) [the density on 
Hi] is not diffuse enough to justify stable estimation is to seek bounds 
on L [the likelihood ratio or Bayes factor in favor of Ho]. Imagine all 
the density under the alternative hypothesis concentrated at x, the place 
most favored by the data. The likelihood ratio is then 

0L(t) = t2/2 
0 (O)_ 

This is of course the very smallest likelihood ratio that can be associated 
with t. Since the alternative hypothesis now has all its density on one 
side of the null hypothesis, it is perhaps appropriate to compare the 
outcome of this procedure with the outcome of a one-tailed rather than 
a two-tailed classical test. At the one-tailed classical .05, .01, and .001 
points, Lm,,n is .26, .066, and .0085, respectively. [This essentially covers 
Th. 1 and Tables 3 and 4 of B&S, in one-tailed form.] Even the utmost 
generosity to the alternative hypothesis cannot make the evidence in 
favor of it as strong as classical significance levels might suggest. Inci- 
dentally, the situation is little different for a two-tailed classical test and 
a prior distribution for the alternative hypothesis concentrated symmet- 
rically at a pair of points straddling the null value [see B&S, Th. 3 and 
Tables 2 and 5]. If the prior distribution under the alternative hypothesis 
is required to be not only symmetric around the null value but also 
unimodal, which seems very safe for many problems, then the results 
[B&S, Ths. 5 and 6 and Table 6] are too similar to those obtained later 
for the smallest possible likelihood ratio obtainable with a symmetrical 
normal prior density to merit separate presentation here. 

After giving results for normal priors (B&S, Th. 8 and 
Table 7), EL&S "conclude that a t of 2 or 3 may not be 
evidence against the null hypothesis at all, and seldom if 
ever justifies much new confidence in the alternative hy- 
pothesis" (p. 231) (see B&S, Comment 1). 

It is not that B&S claim or sneak off with credit due 
others. Few are more aboveboard, and I have admired 
other writing by Berger, in particular his books, for both 
substance and referencing. But credit slides all too easily 
onto later authors even when they have no need or desire 

* John W. Pratt is Professor, Graduate School of Business Adminis- 
tration, Harvard University, Boston, MA 02163. The author is very 
grateful to Persi Diaconis and Arthur Schleifer, Jr. for helpful comments 
and to the Associates of the Harvard Business School for research sup- 
port. 

to steal it. EL&S is still must reading. Do not assume that 
later publications supersede or subsume it or let its intro- 
ductory posture or exotic auspices deter you. It is reprinted 
in at least two books. Only 1% of it is quoted above. The 
other 99%, though not all so condensed, is also highly 
rewarding. Some of its subheadings on testing (the topic 
of half of it) are Bernoullian example, Upper bounds on 
L, Haunts of %2 and F; Multidimensional normal mea- 
surements and a null hypothesis, and Some morals about 
testing sharp null hypotheses. 

B&S's spiraling exposition is helpful the first time 
around, but afterward I felt a need for more winding up 
than the graphs of Bayes factors in their Figure 3, even 
after the trivial but revealing addition of a graph of the 
comparable frequentist factor pl(1 - p). In the top part 
of Table 1 here, I have collected and juxtaposed proba- 
bilities from B&S's tables (but not the Bayes factors or 
ratios topt orpt2), following A. S. C. Ehrenberg's precepts 
as best I could. The remaining three lines give Pr(H0I t) 
for a normal prior with variance equal to the sampling 
variance of the mean (B&S, Table 1 with n = 1), and for 
tight and diffuse priors, which may be viewed as extreme 
normals (with n = 0 and oo, respectively). Thus the first 
column shows that the minimum posterior probability for 
a P value p = .10 is .205 when all priors are allowed and 
increases to .340, .390, and .412 as symmetry, unimodality, 
and normality restrictions are added. The excess over p 
and increase with more restrictions on the prior are pro- 
portionately even greater at smaller P values. Normality 
adds little to symmetry, as EL&S observed. 

Not to leave well enough alone, I included a "large" t 
column with B&S's asymptotic formulas and two they hap- 
pen to omit [where 2.07 = (7e12)1/2 and 1.77 = zl/2]. They 
show that the first three are lower bounds for t > 0, t > 
2.28, and t > 0, respectively (Theorems 2, 4, 7). The range 
where the fourth is a lower bound is t> 2.72 by my sketchy 
calculations. (For anormalpriorwith arbitraryn, the asymp- 
totic formula is Pr(H0 I t) = [(n + 1)7r/2]1/2et/2(n+1)tp. The 
range of t where this is a lower bound depends on n. It 
cannot be a lower bound for all n and t, since it is not a 
lower bound for t < 2.72 in the EL&S worst case n + 1 
= t2.) 

All the normal results hold for all sample sizes and all 
prior and sampling variances if n is defined as the ratio of 
the prior variance to the sampling variance of the mean 
rather than as the sample size. What I see as "troubling" 
about the scaling here (see B&S, p. 112) is only the 
importance of the height of the prior density under H1 
(near X, say). Such trouble is inevitable in testing sharp 
null hypotheses, not a deficiency of the prior family. Since 
n is unrestricted, there is no troubling link between a and 
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Table 1. Comparison of P Values and Minimum Pr(Ho | x) When no = 

t 1.645 1.960 2.576 3.291 Large 
2 ONB&S B&S 

P Value (p) .10 .05 .01 .001 t Tables Theorems 

Priors allowed 
All .205 .128 .035 .0044 1.25tp 3, 4 1, 2 
All symmetric .340 .227 .068 .0088 2.51tp 2, 5 3, 4 
Symmetric unimodal .390 .290 .109 .018 t2p 6 5-7 
Symmetric normal .412 .321 .133 .025 2.07t2p 7 8 

Normal var cI2/n .42 .35 .21 .086 1 .77et2/4tp 1 
Tight at 06 .5 .5 .5 .5 
Diffuse 1 1 1 1 

the prior variance of 0 as there is for "conjugate" priors 
when a is unknown. 

The notion of choosing one or more classical or other 
insufficient statistics and basing a Bayesian analysis or 
comparison on them rather than on the whole data set 
(see B&S, Comment 2) is supported and explored at some 
length in Pratt (1965, sec. 2). 

2. CASELLA AND BERGER (AND PRATT) 

In certain one-sided cases, Casella and Berger (C&B, 
but a different Berger) show that the infimum of Pr(H0 I 
x), the posterior probability of Ho, is as small as the P 
value, p, or smaller. Now a point that permeates EL&S 
is that, if small, a lower bound is almost useless since it 
doesn't say you will be anywhere near it. (Hence they seek 
upper bounds too.) In fact, however, not only is inf 
Pr(HO I x) ' or = p but, more to the point, Pr(H0 I x) 
itself is close to p in most ordinary one-sided testing prob- 
lems if n is not small and the prior on 0 is not jagged. This 
is obvious in particular for normal models and hence for 
procedures concordant with asymptotic likelihood theory. 
It is also obvious for flat priors in C&B's situation, that 
of a single observation (or test statistic) x with density 
known except for location. What C&B add is essentially 
that, in this situation, Pr(HO I x) < p is impossible if the 
prior is unimodal and the density symmetric with mono- 
tone likelihood ratios, but possible in many other cases. 
Their situation is unfortunately very special. Test statistics, 
even t and rank statistics, rarely have densities known 
except for location. Furthermore, for n > 1, a regular 
location family admits a single sufficient statistic only if it 
is normal with known variance (Kagan, Linnik, and Rao 
1973), and otherwise attending to information besides the 
test statistic can either raise or lower Pr(HO I x). So where 
C&B take us is unclear but not far. 

Having done the decent thing and quoted someone else, 
I will now do the fun thing and quote myself. In Pratt 
(1965, secs. 7 and 8) I did not merely "state that in the 
one-sided testing problem the p value can be approxi- 
mately equal to the posterior probability of Ho" (C&B, 
p. 106). I emphasized the much more important point that 
it usually will be (without claiming novelty even then). I 
argued both via confidence limits as approximate posterior 
fractiles and, in location problems, via diffuse priors and 
independence of 0 and T - 0. Among my arguments for 
confidence limits as approximate posterior fractiles were 

one's natural reluctance to use them when they are not 
and asymptotic likelihood theory. I also mentioned Good's 
elegant argument (1950, 1958). If one-sided reconcilability 
is as little recognized as C&B suggest, at least I for one 
tried (both in 1965 and later). But the two-sided discrep- 
ancy may get more ink mainly because it is more subtle, 
surprising, and significant. 

As to two-tailed P values, I would have been even more 
gloomy about the one-dimensional case if I had registered 
EL&S properly, but what I said in part, partly para- 
phrased, was "The only widely valid relation between a 
two-tailed P-value and a posterior probability of natural 
interest seems to be" that 1p sometimes has the foregoing 
one-sided interpretation. Although 1 - p "is often ap- 
proximately the posterior probability that" 0 ' 0 ? 20, 
this interval is not of natural interest. Its multidimensional 
counterpart is "even less so," and indeed depends on ir- 
relevant particulars of the design and test statistic. 

In short, when the null hypothesis 06' 0 is tested against the alternative 
0 > 0, where 0 is one-dimensional and 0 < 0 is possible, the P-value is 
usually approximately the posterior probability that 06 0. Most othei 
situations where the P-value has a helpful interpretation can be recast 
in this form. Of course, 0 ' 0 can be replaced by 0 ' 60 or 0 _ 60. And 
while it is convenient to use P-values in the discussion, those who are 
interested only in whether or not the results are significant at some 
preselected level will find similar remarks apply. All the statements about 
the relation of P-values to posterior probabilities, or lack of it, can be 
seen easily to hold for a univariate or multivariate normal distribution 
with known variance or variance matrix. (Pratt 1965, p. 184) 

Two technical points. C&B's Lemma 3.1 is an imme- 
diate consequence of the fact (subsumed in their proof) 
that the posterior obtained from a mixture of priors is a 
mixture of the posteriors obtained from each. The point 
is more familiar when mixing different models also: the 
posterior weights are the posterior probabilities of the 
components, which are of course proportional to their 
prior probabilities times their predictive densities. B&S 
(see Th. 3 and its proof) work directly with the Bayes 
factor and the predictive density, which is equivalent and 
simpler for the purpose. 

C&B's Theorem 3.1 states less than they prove. As it 
is stated, all but the first sentence of the proof could be 
replaced by the observation that the inequality follows 
from Theorem 3.2 (whose proof is independent of Th. 
3.1), or directly and easily by considering the uniform prior 
on ( -k, k) as k -? Qo [Eq. (3.5) and the limit calculation 
at the end of the proof of Th. 3.2]. 
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3. WHAT ABOUT THE PRIORS? 
Are the minimizing priors "palatable"? If not, what 

then? The one-point prior most favorable to H1 is clearly 
an exaggeration, but more palatable for one-sided than 
two-sided alternatives, as EL&S noted. The symmetric 
two-point prior is still worse for one-sided but somewhat 
better for two-sided alternatives. EL&S chose accordingly; 
their remark that one-point priors for one-sided alterna- 
tives are "little different" is borne out by halving the P 
values in B&S's Table 4 and comparing the result with 
Table 5 (or 2), most easily via the last column unless p = 
.05. All of the minimizing priors depend on the data, an 
unpalatable feature to most who care at all, and real opin- 
ions in one-sided problems would rarely be symmetric or 
improper. So real prior opinions will often be far from the 
minimizing opinions, which suggests that real posterior 
opinions may greatly exceed the lower bounds. This 
strengthens B&S's main point [because restricting the 
prior further can only increase the amount by which Pr(Ho 
I x) exceeds p in the two-sided case], but points up the 
weakness of C&B's results in the one-sided case (where 
matters were already left indeterminate by their argu- 
ment). 

Unfortunately, to discredit a seriously entertained point 
null hypothesis, one needs something like a lower bound 
on the prior density in the region of maximum likelihood 
under the alternative. This appears directly in EL&S but 
only indirectly in B&S (Comment 3). To my mind it jus- 
tifies EL&S in being even more cautious in their conclu- 
sion (quoted previously) than B&S in Comment 1. Any 
dimension-reducing hypothesis poses a similar troubling 
problem. Making such hypotheses approximate makes 
them more realistic but harder yet to analyze. 

4. WHAT'S IT ALL ABOUT? 
The broad question under discussion is an important 

one: what do frequentist inference procedures really ac- 

complish, and what can statisticians of all stripes learn 
about them by viewing them through Bayesian glasses? 
The articles here give precise answers to well but narrowly 
posed subquestions about P values. If you are a Defender 
of Virtuous Testing or simply a Practical Person, you may 
feel that the subquestions do not represent the real issues 
well. But whatever your attitudes or Attitudes, the B&S- 
EL&S results can hardly comfort you, and I think should 
disturb you. And even if you can blink them completely- 
even if you are prepared to disavow any remotely posterior 
interpretation of P values or visibility through Bayesian 
glasses-you are not out of the woods. A vast literature 
discourses on all kinds of problems with hypothesis testing 
and P values for all kinds of purposes from all kinds of 
viewpoints: frequentist, Bayesian, logical, practical; for 
description, inference, decisions, conclusions; prelimi- 
nary, simultaneous, final; choice of model, estimator, fur- 
ther sampling; and so on. It would be impolite to cite my 
several nibbles at the subject and invidious to select others, 
so I will trust the other discussants to suggest its scope. 
Domains where tests are acceptable may exist, but re- 
jecting Bayesian arguments will not establish or enlarge 
them. 

In summary, I see little major news here beyond what 
was known by 1963 (EL&S) or obvious by 1965 (Pratt). 
But every generation must rediscover old truths, and re- 
viving, polishing, and amplifying them and even charting 
their backwaters are useful. If these articles help the world 
hear their messages, which I certainly agree with, well and 
good. If the world is ready for less stylized and precise but 
all the more disturbing messages about testing, better yet. 
Regardless, fogeyhood is fun! 

ADDITIONAL REFERENCE 

Kagan, A. M., Linnik, Yu. V., and Rao, C. R. (1973), Characterization 
Problems in Mathematical Statistics (translated from the Russian by 
B. Ramachandran), New York: John Wiley. 

Comment 
1. J. GOOD* 

I was interested in both of these articles (which I shall 
call B&S and C&B) because Bayesian aspects of P values 
have fascinated me for more than 40 years. The topic will 
be taken more seriously now that it has hit JASA with 
two long articles, plus discussion, and the occasion will be 
all the easier to remember because two Bergers are in- 
volved. One result, I hope, will be that the conventional 

* I. J. Good is University Distinguished Professor, Department of 
Statistics, Virginia Polytechnic Institute and State University, Blacks- 
burg, VA 24061. This work was supported in part by National Institutes 
of Health Grant GM18770. 

P value of approximately .05, when testing a simple sta- 
tistical hypothesis Ho, will be correctly interpreted: not as 
a good reason for rejecting Ho but as a reason for obtaining 
more evidence provided that the original experiment was 
worth doing in the first place. 

In my opinion P values and Bayes factors are both here 
to stay, so the relationships between them need to be taken 
seriously. These relationships form a large part of the main 
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