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Reconciling Bayesian and Frequentist Evidence in 
the One-Sided Testing Problem 

GEORGE CASELLA and ROGER L. BERGER* 

For the one-sided hypothesis testing problem it is shown that it is possible 
to reconcile Bayesian evidence against H0, expressed in terms of the 
posterior probability that Ho is true, with frequentist evidence against 
H0, expressed in terms of the p value. In fact, for many classes of prior 
distributions it is shown that the infimum of the Bayesian posterior prob- 
ability of Ho is equal to the p value; in other cases the infimum is less 
than the p value. The results are in contrast to recent work of Berger 
and Sellke (1987) in the two-sided (point null) case, where it was found 
that the p value is much smaller than the Bayesian infimum. Some com- 
ments on the point null problem are also given. 
KEY WORDS: Posterior probability; p Value; Prior distribution. 

1. INTRODUCTION 

In the problem of hypothesis testing, "evidence" can be 
thought of as a postexperimental (data-based) evaluation 
of the tenability of the null hypothesis, Ho. To a Bayesian, 
evidence takes the form of the posterior probability that 
Ho is true, while to a frequentist, evidence takes the form 
of the p value, or the observed level of significance of the 
result. If the null hypothesis consists of a single point, it 
has long been known that these two measures of evidence 
can greatly differ. The famous paper of Lindley (1957) 
illustrated the possible discrepancy in the normal case. 

The question of reconciling these two measures of evi- 
dence has been treated in the literature. For the most part, 
the two-sided (point null) problem has been treated, and 
the major conclusion has been that the p value tends to 
overstate the evidence against Ho (that is, the p value tends 
to be smaller than a Bayesian posterior probability). Many 
references can be found in Shafer (1982). Pratt (1965) did 
state, however, that in the one-sided testing problem the 
p value can be approximately equal to the posterior prob- 
ability of Ho. 

A slightly different approach to the problem of recon- 
ciling evidence was taken by DeGroot (1973). Working in 
a fairly general setting, DeGroot constructed alternative 
distributions and found improper priors for which the p 
value and posterior probability match. DeGroot assumed 
that the alternative distributions are stochastically or- 
dered, which, although he did not explicitly state it, es- 
sentially put him in the one-sided testing problem. 
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Dickey (1977), in the two-sided problem, considered 
classes of priors and examined the infimum of the "Bayes 
factor," which is closely related to the posterior probability 
of Ho. He also concluded that the p value overstates the 
evidence against Ho, even when compared with the infi- 
mum of Bayesian measures of evidence. 

A recent paper by Berger and Sellke (1987) approached 
the problem of reconciling evidence in a manner similar 
to Dickey's approach. For the Bayesian measure of evi- 
dence they considered the infimum, over a class of priors, 
of the posterior probability that Ho is true. For many classes 
of prior it turns out that this infimum is much greater than 
the frequentist p value, leading Berger and Sellke to con- 
clude that significance levels "can be highly misleading 
measures of the evidence provided by the data against the 
null hypothesis" (p. 112). 

Although their arguments are compelling and may lead 
one to question the worth of p values, their analyses are 
restricted to the problem of testing a point null hypothesis. 
Before dismissing p values as measures of evidence, we 
feel that their behavior should be examined in other hy- 
pothesis testing situations. 

The testing of a point null hypothesis is one of the most 
misused statistical procedures. In particular, in the loca- 
tion parameter problem, the point null hypothesis is more 
the mathematical convenience than the statistical method 
of choice. Few experimenters, of whom we are aware, 
want to conclude that "there is a difference." Rather, they 
are looking to conclude that "the new treatment is better." 
Thus there is a direction of interest in many experiments, 
and saddling an experimenter with a two-sided test would 
not be appropriate. 

In this article we consider the problem of reconciling 
evidence in the one-sided testing problem. We find, in 
contrast to the results of Berger and Sellke, that evidence 
can be reconciled. For classes of reasonable, impartial 
priors, we obtain equality between the infimum of the 
Bayes posterior probability that Ho is true and the fre- 
quentist p value. In other cases this Bayesian infimum is 
shown to be a strict lower bound on the p value. Thus the 
p value may be on the boundary or within the range of 
Bayesian evidence measures. 

In Section 2 we present some necessary preliminaries, 
including the classes of priors we are considering and how 
they relate to those considered in the two-sided problem. 
Section 3 contains the main results concerning the rela- 
tionship between Bayesian and frequentist evidence, and 
Section 4 contains comments, in particular about the case 
of testing a point null hypothesis. 
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2. PRELIMINARIES 

We consider testing the hypotheses 

Ho:0-0 versus H1:0>0 (2.1) 

based on observing X = x, where X has location density 
f(x - 0). Throughout this article we will often assume 
that (a) f( ) is symmetric about zero and (b) f(x - 0) has 
monotone likelihood ratio (MLR), but we will explicitly 
state these assumptions whenever used. Recall that (b) 
implies that f(-) is unimodal (Barlow and Proschan 1975, 
p. 76). 

If X = x is observed, a frequentist measure of evidence 
against Ho is given by the p value 

00 
p(x) = Pr(X 2 x I 0 = 0) = f(t) dt. (2.2) 

A Bayesian measure of evidence, given a prior distribution 
7t(0), is the probability that Ho is true given X = x, 

f(x - 0) d7r(0) 
Pr(Ho I x) = Pr(0 c O | x) - 

f f(x - 0) dr(0) 

(2.3) 

Our major point of concern is whether these two mea- 
sures of evidence can be reconciled, that is, can the p 
value, in some sense, be regarded as a Bayesian measure 
of evidence. Since the p value is based on the objective 
frequentist model, it seems that if reconciliation is possi- 
ble, we must consider impartial prior distributions. By 
impartial we mean that the prior distribution gives equal 
weight to both the null and alternative hypotheses. 

Four reasonable classes of distributions are given by 

VA = {all distributions giving mass 2 

to each of ( - oo, 0] and (0, oo)} 

Fs = {all distributions symmetric about zero} 

Fus = {all distributions with unimodal densities, 

symmetric about zero} 

FNOR = {all normal (0, z2) distributions, 0 < z2 < 0}. 

(2.4) 

As our Bayesian measure of evidence we consider inf 
Pr(Ho I x), where the infimum is taken over a chosen class 
of priors. We then examine the relationship between this 
infimum and p (x) to see if there is agreement. If so, then 
we have obtained a reconciliation of Bayesian and fre- 
quentist measures of evidence. 

This development is, of course, similar to that of Berger 
and Sellke (1987), who considered the two-sided hypoth- 
esis test Ho: 0 = 0 versus H1: 0 $& 0. They used priors 
that give probability 1r0 and 1 - 1r0 to Ho and H1, respec- 
tively, and spread the mass over H1 according to a density 
g(0), allowing g( ) to vary within a class of distributions 

similar to the classes in (2.4). For any numerical calcula- 
tions they chose 7r0 = 2, asserting that this provides an 
impartial prior distribution. We will discuss this choice in 
Section 4. 

For testing Ho: 0 ' 0 versus H1: 0 > 0, we will mainly 
be concerned with evidence based on observing x > 0. If 
f is symmetric with MLR, then for x < 0, p(x) > 2 and 
inf Pr(Ho I x) = 2, where the infimum is over any class in 
(2.4) except VA. Thus, for x < 0, neither a frequentist nor 
a Bayesian would consider the data as giving evidence 
against Ho. 

3. COMPARING MEASURES OF EVIDENCE 

In this section we consider prior distributions contained 
in the classes given in (2.4) and various types of sampling 
densities. We compare inf Pr(Ho I x) with p (x) under dif- 
ferent assumptions and find many situations in which inf 
Pr(Ho I x) s p (x). For the classes Fus and FNOR, as well 
as some others, we show that inf Pr(Ho I x) = p(x) if f is 
symmetric and has MLR. 

We begin with a computational lemma that will facilitate 
many subsequent calculations. The essence of the lemma 
is that inf Pr(Ho I x) is the same whether we take the 
infimum over a given class of priors or over the class of 
all mixtures of members of the class. Since many inter- 
esting classes can be expressed as mixtures of simpler dis- 
tributions, this lemma will prove to be extremely helpful. 

Lemma 3.1. Let F = {1ra: a C ( } be a class of prior 
distributions on the real line indexed by the set a. Let FM 
be the set of all mixtures of elements of F, that is, 

C Fm*->7r(B) = f7rla(B) dP(a) 

for some probability measure P on a and all measurable 
B. Then 

inf Pr(Ho I x) = inf Pr(Ho I x). (3.1) 
7EreM 7rErF 

Proof. We use the notation Pr,(Ho I x) to indicate that 
1r is the prior used in calculating a posterior probability. 

Consider the random triple (A, 0, x) with joint distri- 
bution defined by the following. The distribution of X I 0 
= 0 has density f(x - 0), the distribution of 0 I A = a 
is 57Ca, and the distribution of A is P. Then for any r C FM, 

Pr, (Ho I x) = Pr, (0 < 0 I X = x) 

= EA[Pr(0 ' 0 I A = a, X = x) I X = x] 

= EA[Pr,.(e ? 0 IX = x) I X = x] 

2 EA[inf Pr.(0 ?- 0 X = x) I X = x] aea 

= inf Pr, (? 0 x = x) 
aea! 

= inf Pr(HO | x). 

The opposite inequality is true since F C FM, and (3.1) is 
established. 
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We note that this theorem can be proved in greater 
generality than is done here, but as stated it will serve our 
purposes. 

By using Lemma 3.1 we can obtain conditions under 
which p(x) is an upper bound on inf Pr(HO I x) for the 
class Fs through consideration of a smaller class contained 
in Fs, F2PS = {all two-point distributions symmetric about 
0}, since Fs is the class of all mixtures of distributions in 
F2Ps. 

Theorem 3.1. For the hypotheses in (2.1), if f is sym- 
metric and has MLR and if x > 0, then 

inf Pr(Ho I x) = inf Pr(HO I x) c p(x). (3.2) 
7rEFS 7eFr2PS 

Proof. The equality in (3.2) follows from Lemma 3.1. 
For the 11 E F2PS that gives probability 2 to the two points 
0 = +k we have 

Pr(H0 I x) = f (x + k) 
f(x - k) + f(x + k) 

The assumptions on f imply that, for x > 0, Pr(HO I x) is 
decreasing in k and hence 

inf Pr(HO I x) = lim f (x + k) 
MEr'2PS k-*o f (x - k) + f (x + k) 

= lim 1 
k-o 1 + (f(k - x)/f(k + x))' 

where we have used the symmetry of f in the second 
equality. For the remainder of the proof assume that f'(t) 
exists for all t and the support of f is the entire real line. 
If either of these conditions fail to hold, the proof can be 
suitably modified. 

Since f has MLR we can write f(t) = exp[ - g(t)], where 
g is convex, that is, f is log-concave. Now 

f(k - x)If(k + x) = exp{g(k + x) - g(k - x)} 

2 exp{2xg'(k - x)}, (3.3) 

by the convexity of g. Define 1 = limt<, g'(t), which must 
exist since g'(t) is increasing. If 1 = oo the theorem is 
trivally true, so assume that 1 < oo. Substituting 1 for g'(k 
- x) in (3.3) gives a lower bound on the ratio f(k - x)/ 
f(k + x), and it then follows that 

inf Pr(HO I x) ' 1+ 
7r E F2 p, 1 + e 21x 

Next note that for t > 0, the ratio 

f(tOle-It = elt-gft) 

is increasing in t, since 1 2 g'(t). This implies that 

ff(t) dt fe-"tdt 

2 f[(t)dt 2f e-2tdt 2 

by an application of the Neyman-Pearson lemma together 
with a corollary relating power to size (Lehmann 1959, 
corollary 1, p. 67). 

Combining this inequality with that for inf Pr(HO I x), 
it is straightforward to verify that 

1 1 
p(X) - e /x > inf Pr(HO I x), 

2 1 + e~21x -rv2PS 

proving the theorem. 

For densities f whose support is the entire real line, it 
must be the case that 1 = 0, so the inequality between 
inf ev2ps Pr(HO I x) and p(x) is strict. If f has bounded 
support, then equality may be attained. 

Table 1 gives explicit expressions for some common dis- 
tributions, the first three satisfying the conditions of Theo- 
rem 3.1. Note in particular that the values calculated for 
the double exponential distribution are equal to the bounds 
obtained in the previous proof, suggesting that this dis- 
tribution plays some role as a "boundary" distribution. 
The Cauchy distribution, which is symmetric but does not 
have MLR, does not attain its infimum at k = oo but rather 
at k = (x2 + 1)1/2. The exponential distribution, which 
has MLR but is asymmetric, attains its infimum at k = x. 
For both of these distributions p(x) is greater than inf 
Pr(HO I x). 

We now turn to the class of distributions VUs, all priors 
with symmetric unimodal densities. We can, in fact, dem- 
onstrate equality between p(x) and inf Pr(HO I x) for this 
class. We will again use Lemma 3.1 and the fact that Fus 
is the set of all mixtures of Us = {all symmetric uniform 
distributions}. 

Theorem 3.2. For the hypotheses in (2.1), if f is sym- 
metric and has MLR and if x > 0, then 

inf Pr(HO I x) = inf Pr(HO I x) = p(x). (3.4) 
7reFUS ireUS 

Proof. The first equality in (3.4) follows from Lemma 

Table 1. P Values and inf Pr(HO I x) for the Classes of Symmetric Two-Point Distributions and 
All Symmetric Distributions (x > 0) 

Distribution p(x) inf Pr(HO I x) 

Normal 1 - 0(x) O 
Double exponential le x (1 + e2x)-1 
Logistic (1 + ex)-1 (1 + e2x)-1 

tan 1x 1 + [x - (X2 + 1)1/2]2 Cauchy 11 - 7r 2 + [x - (x2 + 1)1/2]2 + [x + (x2 + 1)1/2]2 
Exponential e-x (1 + e 21 
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3.1. To prove the second equality let i(0) be uniform (-k, 
k). Then 

f (x -0) dO 
Pr(Ho I x) = -k- (3.5) 

- f(x-t3)dO 
-k 

and 

d f(x -k) + f(x + k) 
~Pr(HOI|x)( - r dk f f(x - f0) d6; 

-k 

f (x + k) PrH-x 
[f(x - k) + f(x + k) 

We will now establish that Pr(HO I x), as a function of k, 
has no minimum on the interior of (0, mo). Suppose that 
k = ko satisfies 

d Pr(Ho I x) fk=4 = 0. 

It is straightforward to establish that the sign of the second 
derivative, evaluated at k = ko, is given by 

sgn - Pr(Ho I x) Ik=ko 

snd f (x +k) 36 
= sgn dk f(x - k) + f(x + k) (k= 3 

Since f is symmetric and has MLR, the ratio f(x + k)l 
f(x - k) is decreasing in k for fixed x > 0. Therefore, 
the sign of (3.6) is always negative, so any interior extre- 
mum can only be a maximum. The minimum is, therefore, 
attained on the boundary, and it is straightforward to check 
from (3.5) that 

f (x - 0)dO 
inf Pr(Ho I x) = lim 
7t EUs k--)-oo f(x - 0) do 

-k 

= J f (x - t) dO = p (x). 
o0 

In Theorem 3.2, as well as Theorem 3.3, the infimum 
equals the value of Pr(Ho I x) associated with the improper 
prior, Lebesgue measure on (- oo, oo). Indeed, the theo- 
rems are proved by considering a sequence of priors con- 
verging to this "uniform ( - oo, co)" prior. In other exam- 
ples, however, such as the Cauchy and exponential examples 
following Theorem 3.4, the infimum is less than the value 
for this limiting uniform prior. 

Certain subclasses of Fus might also be of interest, for 
example, rNOR, the class of all normal priors with mean 
zero. Theorem 3.3 shows that any class, like rNOR, that 
consists of all scale transformations of a bounded, sym- 
metric, and unimodal density will have inf Pr(Ho | x) = 
p(x) if f is symmetric with MLR. Furthermore, by using 

Lemma 3. 1, this equality will hold for mixtures over these 
classes. For example, by considering scale mixtures of nor- 
mal distributions in FNOR, we could obtain a class that 
included all t distributions. 

Theorem 3.3. Let g(6) be any bounded, symmetric, 
and unimodal prior density, and consider the class 

Fa(g) = {7r,: 7f(O) = g(6/u)/C, cr> O}. (3.7) 

For the hypotheses in (2.1), if f is symmetric and has MLR 
and if x > O, then 

inf Pr(HO I x) = p(x). 
7r,aE-re1(g) 

Proof. Since Fa(g) C rus, by Theorem 3.2 

inf Pr(HO I x) ? p(x). (3.8) 
niErE(g) 

To establish the opposite inequality, write 

inf Pr(HO I x) c lim Pr7, (Ho I x) 
7r,EFG(g) a >r 

f(x - )g(OlI) dO 

a f > f(x - O)g(O/) dO 

The boundedness of g allows us to apply the dominated 
convergence theorem to bring the limit inside the integral. 
Furthermore, since g is symmetric and unimodal, lima, 
g(Olu) = go (say) exists and is positive. Thus 

f f(x - O)go dO 
_00 

lim Prj(Ho I x) = -=p 
f f(x - 6)go dO 

establishing that inf,g,ar7(g) Pr(HO I x) ? p(x), which to- 
gether with (3.8) proves the theorem. 

The conditions on g and f may be relaxed and a similar 
theorem can be proved. Since the proof of Theorem 3.4 
is similar to that of Theorem 3.3, we omit it. 

Theorem 3.4. Let f be any density, and let g be any 
prior that is bounded and left- and right-continuous at 
zero. Denote lim0T0 g(Q) = g(O-) and limo0o g(O) = 
g(O+), and define the class r a(g) as in (3.7). Then for 
the hypotheses in (2.1), if x is such that 

max{g(O-)p(x), g(O+)[1 - p(x)]} > O, 

inf Pr(HO I x) c lim Pr, (Ho I x) 
ir0erEF(g)a 

g(0 )p(x) (3.9) 
g(O-)p(x) + g(O+)[1 - p(x)] (39 

Note in particular that in Theorem 3.4, if g(O+) =g(O-) 
then the right-most expression in (3.9) isp (x). This shows 
that for any location sampling density the infimum over 
such classes of scale transformations is bounded above by 
the p value. If f is not symmetric or does not have MLR, 
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then strict inequality may obtain in (3.9). We will men- 
tion two examples. For both, Theorem 3.4 implies that 
inf Pr(Ho I x) c p(x), but, in fact, the inequality is strict. 
For each example we let g be the uniform(- 1, 1) den- 
sity so that J7U(g) = Us. Let Ttk E US denote the uniform 
(- k, k) density. 

Let f be a Cauchy density, which is symmetric but does 
not have MLR. For Ttk it is straightforward to calculate 

PrH I x) = tan-1(x + k) - tan-1(x) 
rXkO I tan-1(x + k) - tan-1(x - k) 

For fixed x > 0, Pr,k(Ho I x) is not monotone in k, but 
rather attains a unique minimum at a finite value of k. 
Table 2 lists the minimizing values of k, inf Pr(Ho I x), and 
the p value for selected values of x. Examination of Table 
2 shows that inf Pr(Ho I x) < p(x); this observation held 
true for more extensive calculations that are not reported 
here. 

For our second example, let f be an exponential location 
density that has MLR but is asymmetric. For x > 0 and 
Ttk E US we have 

Pr,k(HO I x) = [exp(k) - 1]/{exp[k + min(k, x)] - 1}, 

which is minimized (in k) at. k = x, with minimum 

inf Pr(Ho I x) = (ex - 1) /(e2 - 1) < e-X = p(x). 

So again, strict inequality obtains in (3.9). 
In fact, for small values of x, the p value can be regarded 

as a conservative Bayesian measure in this example. It is 
straightforward to calculate 

sup Pr(Ho I x) = max {2, e-x} = max{2, p(x)}, 

so, in particular, if x ' log 2, then p(x) is larger than 
Pr(Ho I x) for every prior in the class. 

Finally, we turn to the class VA, which contains all dis- 
tributions giving mass 2 to each of Ho and H1 and might 

Table 2. P Values and inf Pr(H0 x) for X - Cauchy, Infimum Over Us 

x kmin p(x) inf Pr(H0 x) 

.2 2.363 .437 .429 

.4 2.444 .379 .363 

.6 2.570 .328 .306 

.8 2.727 .285 .260 
1.0 2.913 .250 .222 
1.2 3.112 .221 .192 
1.4 3.323 .197 .168 
1.6 3.541 .178 .148 
1.8 3.768 .161 .132 
2.0 3.994 .148 .119 
2.5 4.572 .121 .094 
3.0 5.158 .102 .077 
3.5 5.746 .089 .065 
4.0 6.326 .078 .056 
5.0 7.492 .063 .044 

10.0 13.175 .032 .020 
25.0 29.610 .013 .007 
50.0 56.260 .006 .004 
75.0 82.429 .004 .002 

100.0 108.599 .003 .002 

be considered the broadest class of impartial priors. This 
class, however, is really too broad to be of any practical 
interest, since, for any density f, inf Pr(Ho I x) = 0. To 
verify this, let g be any bounded density in VA with g(O-) 
= 0 and g(O+) > 0. Then if p(x) < 1, Theorem 3.4 shows 
that infervA Pr(Ho I x) = infrev,(g) Pr(Ho J x) = 0. 

The restriction that the priors give equal probability to 
Ho and H1, however, has little weight in the previous ar- 
gument. A prior, g, could assign probability arbitrarily 
near one to Ho and still we would have infrv(g) Pr(Ho I x) 
= 0 if g(O-) = 0 and g(O+) > 0. It is important to note 
that, for any class of priors F possessing densities, if the 
class is closed under scale transformations, then Theorem 
3.4 gives an upper bound on inf Pr(Ho I x) that depends 
only on the local behavior of g, the density of any element 
of F, atO. 

4. COMMENTS 

For the problem of testing a one-sided hypothesis in a 
location-parameter family, it is possible to reconcile mea- 
sures of evidence between the Bayesian and frequentist 
approaches. The phrase "the probability that Ho is true" 
has no meaning within frequency theory, but it has been 
argued that practitioners sometimes attach such a meaning 
to the p value. Since the p value, in the cases considered, 
is an upper bound on the infimum of Pr(Ho I x) it lies 
within or at the boundary of a range of Bayesian measures 
of evidence demonstrating the extent to which the Bayes- 
ian terminology can be attached. In particular, for the 
Cauchy (non-MLR) and exponential (asymmetric) sam- 
pling densities we found that, for various classes of priors, 
inf Pr(Ho I x) < p(x) so that p(x) is, in fact, equal to 
Pr(Ho I x) for some prior in the class (the prior depending 
on x). 

The discrepancies observed by Berger and Sellke (1987) 
in the two-sided (point null) case do not carry over to the 
problems considered here. This leads to the question of 
determining what factors are crucial in differentiating the 
two problems. It seems that if some prior mass is concen- 
trated at a point (or in a small interval) and the remainder 
is allowed to vary over H1, then discrepancies between 
Bayesian and frequentist measures will obtain. In fact, 
Berger and Sellke note that for testing Ho: 0 = 0 versus 
H1: 0 > 0, the p value and the Bayesian infimum are quite 
different. [For example, for X - n(0, 1), an observed x 
= 1.645 will give a p value of .05, while over all priors 
for which mass 2 is concentrated at zero, inf Pr(Ho I x - 

1.645) = .21.] 
Seen in another light, however, placing a point mass of 

2 at Ho may not be representative of an impartial prior 
distribution. For the problem of testing Ho: 0 ' 0 versus 
H1 : 0 > 0, consider priors of the form 

7r(0) = 7roh(0) + (1 - no)g(0), (4.1) 

where 7r0 is a fixed number and h(0) and g(0) are proper 
prior densities on ( - oo, 0] and (0, oo), respectively. It then 
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follows that, if f is unimodal with mode 0 and x > 0, 

sup Pr(Ho I x) = sup 
h h 

lro f (x - O)h(0) dO 

[7o f f(x - O)h(O) dO + (1 - 7ro) f f(x - O)g(O) dOJ 

7rof (x) , (4.2) 

7rof(x) + (1 - iro) f(x - O)g(O) dO 

and the last expression is equal to Pr(HO I x) for the hy- 
potheses Ho : 0 = 0 versus H1: 0 > 0 with prior giving 
mass 7ro to 0 = 0 and having density (1 - io)g(0) if 0 > 
0. Thus concentrating mass on the point null hypothesis 
is biasing the prior in favor of Ho as much as possible (for 
fixed g) in this one-sided testing problem. 

The calculation in (4.2) casts doubt on the reasonable- 
ness of regarding 70 = I as impartial. In fact, it is not clear 
to us if any prior that concentrates mass at a point can be 
viewed as an impartial prior. Therefore, it is not surprising 
that the p value and Bayesian evidence differ in the normal 
example given previously. Setting 7r0 = I actually reflects 
a bias toward Ho, which is reflected in the Bayesian mea- 
sure of evidence. 

Indeed, any class of priors that fixes the probability 
distribution on one hypothesis and allows the probability 
distribution on the other hypothesis to vary might lead to 
extreme posterior probabilities. For example, consider prior 
densities of the form 

7r(0) = 7roh(01o4)1aj + (1 - 70)g(O/a2)/a2, 

where h and g are as defined previously. Then under con- 

ditions similar to those of Theorem 3.3, if cr2 is fixed, 

lim Pr(Ho x) = 1, 

but if c2 is fixed, then 

lim Pr(HO | x) = 0. 

Clearly, there are classes of priors for which there are 
large dis.crepancies between inf Pr(HO I x) and p(x); the 
fact remains, however, that reconciliation of measures of 
evidence is possible between the Bayesian and frequentist 
approaches. Since these measures can overlap one an- 
other, interpretations of one school of thought can have 
meaning within the other and, contrary to the message of 
Berger and Sellke, p values may not always overstate evi- 
dence against Ho in that Pr(HO I x) < p (x) for some priors 
under consideration. 

[Received November 1985. Revised January 1986.] 
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