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How to test hypotheses if you must
Andrew P. Grieve*

Drug development is not the only industrial-scientific enterprise subject to government regulations. In some fields of ecology
and environmental sciences, the application of statistical methods is also regulated by ordinance. Over the past 20 years, ecol-
ogists and environmental scientists have argued against an unthinking application of null hypothesis significance tests. More
recently, Canadian ecologists have suggested a new approach to significance testing, taking account of the costs of both type
I and type II errors. In this paper, we investigate the implications of this for testing in drug development and demonstrate that
its adoption leads directly to the likelihood principle and Bayesian approaches. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: hypothesis tests; null hypothesis significance tests; type I error; type II error; power; planning of experiments; sample
sizing; Neyman–Pearson lemma; likelihood principle; sampling frame; Lindley’s paradox; Bayesian test

1. INTRODUCTION

Four recent papers by Mudge and colleagues [1–4] are likely to
be of interest to practising scientists as they address a question
that statisticians are often asked: how do I choose the type I error?
They join other papers in the ecology and marine environmental
literature that challenge the accepted dogma of significance and
hypothesis testing [5–9].

Significance tests, in their modern form, have been around
since the early 1920s. It is therefore perhaps surprising that
there are still associated with them issues that are opaque to
researchers. Part of the reason for this is that today’s standard
practice in using statistical procedures is a hybrid procedure com-
posed of elements of two of the major competing statistical
schools, those associated with RA Fisher on the one hand and
Jerzy Neyman and Egon Pearson on the other hand.

What is meant by standard practice? In the experimental sci-
ences, the standard practice of statistical design and analysis
can be characterised as follows. Before an experiment is to be
conducted, the experimenter chooses the following:

� the probability of committing a type I error, ˛, typically 0.05
or 0.01, or the significance level;

� an appropriate null hypothesis of no treatment effect;
� an alternative hypothesis representing a treatment effect

magnitude that is of interest or one that is expected to be
achieved – this is the critical effect size referred to by Mudge
et al. [1]; and

� a sample size to give the probability of committing a type II
error at a prescribed level, ˇ, typically 0.1 or 0.2.

After the experiment is completed, the experimenter does the
following:

� estimates the treatment effect;
� calculates the p-value and, if it is smaller than the signifi-

cance level, declares statistical significance; and
� determines a confidence interval for the treatment effect.

This hybrid approach [10,11] combines Fisher’s null hypothesis,
significance test and p-value with Neyman and Pearson’s alter-

native hypothesis, type I and type II errors, power and Neyman’s
confidence intervals.

One issue that is sometimes less clear to practitioners is that
there is a relationship between type I and type II error rates, and
this has a consequence for decision-making. In simple terms, if the
probability of type I error is increased, in which event we require
a less stringent decision criterion to declare a positive outcome,
we reduce the probability of a type II error or increase the power.
In contrast, requiring a more stringent decision criterion reduces
both the chances of declaring a false positive and of declaring a
true positive. Clearly, the probabilities of type I and type II errors
are inversely related. The following question then arises: how do
we choose appropriate values for ˛ and ˇ because by changing
one, we influence the other.

Neyman and Pearson’s original solution held ˛ as fixed and
chose the decision criterion, or critical region, in order to minimise
the probability of type II error and hence maximise the power [12].
However, as they themselves noted, these

. . . Two sources of error can rarely be eliminated completely;
in some cases it will be more important to avoid the first,
in others the second. We are reminded of the old problem
considered by LAPLACE of the number of votes in a court of
judges that should be needed to convict a prisoner. Is it more
serious to convict an innocent man or to acquit a guilty? That
will depend upon the consequences of the error; is the pun-
ishment death or fine; what is the danger to the community
of released criminals; what are the current ethical views on
punishment? From the point of view of mathematical theory
all that we can do is to show how the risk of the errors may be
controlled and minimised. The use of these statistical tools in
any given case, in determining just how the balance should
be struck, must be left to the investigator.
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The Neyman–Pearson solution was to fix ˛ and then to choose
the decision criterion to minimise ß, but of course, this is not the
only approach. More modern authors have taken up this theme.
For example, Oakes [13] opined that

The extent to which scientific caution need be exercised
and the importance of discovery of an effect (alternatively
the cost of making type 1 and type 2 errors) will vary from
situation to situation. This would imply that conventional
significance levels should be abandoned and that with any
particular piece of research ˛ should be set with regard to
the costs in hand,

and more recently, Senn [14] noted:

The Neyman–Pearson lemma does not justify that minimis-
ing the type II error rate whilst holding the type I error rate
at the same predetermined level on any given occasion is a
reasonable rule of behaviour.

It is interesting to note that whilst many statisticians working in
the drug development industry might expect the International
Conference on Harmonisation of Technical Requirements for Reg-
istration of Pharmaceuticals for Human Use (ICH) guideline on
statistical principles for drug trials to be strict about the setting
of type I error rate, in fact, it provides support for a more relaxed
attitude to the choice of the type I error.

Conventionally the probability of type I error is set at 5% or
less or as dictated by any adjustments made necessary for
multiplicity considerations; the precise choice may be influ-
enced by the prior plausibility of the hypothesis under test
and the desired impact of the results. [15]

The approach proposed by Mudge et al. [1] is aimed precisely at
the proposition stated by Oakes. Their approach, instead of fixing
the type I error rate and minimising the type II error rate, consists
of choosing an optimal value for the type I error rate by min-
imising the weighted sum of the error rates in which the weights
are related to the costs of each type of error. It is important to
note that in introducing their approach, it would appear that they
are implicitly assuming that the sample size for the experiment
has been chosen by some process that is independent of both
the error rates. However, Mudge et al. suggest that sample size
can also be determined by minimising the weighted sum of error
rates [2], an idea we will look at later.

In this paper, I pull together a number of threads against the
background of the Mudge et al. proposal [1]. For the purpose
of developing and presenting the basic idea, we will assume
that there is a single primary outcome and that the variance is
known and will restrict attention to simple null hypotheses and
one-sided tests. This does not weaken the argument, nor does it
mean that the basic principle is not more generally applicable,
and we will indicate how its use can be broadened to complex
hypotheses, cases in which the variance is unknown and so on.

In Section 2, we address the following questions: what is a
null hypothesis significance test (NHST) and what are the main
issues in its use? In Section 3, we explore whether the probabil-
ities of type I and type II errors are relevant to NHSTs. Section 4
reviews the accepted approach to choosing the sample size for a
study. Section 5 looks at the basic proposal introduced by Mudge
et al. [1] and develops an analytic solution for the optimal ˛.
Section 6 investigates the implication of the optimal choice of the
type I and type II error rates by determining the ratio of weights,

which leads to standard type I and type II error rates. Section 7
looks at how the minimised weighted sum of errors can be used
to design studies as suggested by Mudge et al. [2]. Section 8 looks
at a modified form of the Neyman–Pearson lemma and shows
how it leads to the likelihood principle. Section 9 considers the
implication of the likelihood principle for clinical trials and gives
two examples in which sampling frames can give rise to con-
tentious issues. In Section 10, a connection between the rejection
region based on minimising the weighted sum of errors and a
Bayesian test of a simple null hypothesis is established, and impli-
cations for Lindley’s paradox are considered [16,17]. In the final
discussion section, the argument is made that the results pre-
sented cast doubt on the dogma of controlling the type I error at
all costs.

2. WHAT IS A NULL HYPOTHESIS
SIGNIFICANCE TEST?

Although there were earlier examples of significance tests, their
systematic introduction was due to RA Fisher. The principle
underlying significance tests is the search for a sensible test statis-
tic, say T, whose distribution could be completely specified if the
appropriate so-called null hypothesis were true but which would
also be sensitive to departures from the null hypothesis. Once
data have been collected and the corresponding value of the
statistic, t, has been calculated, the next step is to derive the prob-
ability P.T > tjH0/, corresponding to the chance that the statistic
would be as, or more, extreme as the observed value if the null
hypothesis were true. If this probability is small, then one may
conclude either that an unlikely event has occurred by chance or
that the null hypothesis is false. This probability is now called a
p-value, which is a term coined by Deming [18] and is one of the
most widely used – and abused – statistical concepts.

Over the years, there has been considerable debate about the
desirability of using such NHSTs. Whole books have been written
in their favour [19], as well as against them [20,21], with consid-
erable emphasis on their use and abuse. There are a number of
themes that recur in these debates. Here are perhaps the five
most important.

First, it is often the case that the null hypothesis is almost cer-
tainly untrue, and we might ask ourselves if it is worth testing
such an unlikely null hypothesis. In drug development, sponsors
will have evidence for the efficacy and safety of their new drug
before entering a phase III development; indeed, this phase of
drug development is generally referred to as the confirmatory
phase, and therefore, it is unlikely that the exact null hypothesis is
true, which is not to say that the new drug necessarily delivers an
effect of clinical importance.

Second, estimation of the underlying parameter is often more
informative than testing a hypothesis concerning the parameter.
From the late 1980s onwards, there was increasing clamour in the
medical literature to oust hypothesis testing from its preeminent
position and to replace it with confidence intervals. The campaign
was endorsed by the International Committee of Medical Jour-
nal Editors [22] and culminated in a British Medical Journal-backed
publication of a confidence interval cookbook [23,24].

Third, if we choose a large enough sample, we can almost cer-
tainly declare differences of no biological relevance to be impres-
sively statistically significant. It is important to remember that
statistical significance is not equivalent to biological relevance.
This will be further discussed later.
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Fourth, failure to reject a null hypothesis does not in itself mean
that the hypothesis is necessarily true, as we can arrange for non-
significance by choosing an inadequate sample size. This is a case
of the aphorism ‘absence of evidence does not mean evidence of
absence’ [25] and is related to the so-called rule of three [26]. This
says that if you test a new drug on n patients and see no adverse
events, you are not justified in claiming that the drug has no risk
because the upper limit of the 95% confidence interval for the
true rate of adverse events is approximately 3/n%. For example,
zero adverse events from testing 20 patients gives an upper 95%
confidence interval of 15%, so we may be unable to exclude rates
of risk that are of clinical importance.

Finally, the p-value is not the probability that the null hypothe-
sis is true, although scientists often believe it to be. This belief sug-
gests that scientists would be happier with a Bayesian approach
to hypothesis tests, which does look to determine the probability
of hypotheses. This is no less true of confidence intervals. Scien-
tists would like to regard a confidence interval as a fixed interval
within which the true parameter lies with a predetermined proba-
bility of success, again a Bayesian interpretation. As an illustration
of this, I would offer the following passage:

. . . the proper interpretation of confidence interval requires
that we consider a large number of hypothetical random
samples (each of the same size). Then ‘95% confidence’
means that approximately 95% of the 95% confidence inter-
vals from those random samples would include the unknown
true value, and about 5% would not. Because the true frac-
tion in the population is unknown, it is impossible to tell
if the 95% confidence interval of 28% to 55% that was
obtained from the observed sample data actually included
the true fraction. Strictly speaking, we cannot even tell how
likely the 95% confidence interval of 28% to 55% is to include
that unknown fraction. Nevertheless, the usual interpreta-
tion is that we are 95% confident that the unknown true
value is between 28% and 55%. [27]

I have previously described this passage as ‘Magnificent. But
surely not logical’ [28].

3. ARE TYPE I AND TYPE II ERRORS RELEVANT
IN NULL HYPOTHESIS SIGNIFICANCE TESTS?

In the book Design of Experiments, Fisher considers issues related
to the sample size of experiments. He notes that by

. . . increasing the size of the experiment [either by enlarge-
ment or repetition], we can render it more sensitive, meaning
by this that it will allow of the detection. . . of a quantita-
tively smaller departure from the null hypothesis. Since in
every case the experiment is capable of disproving, but never
of proving this hypothesis, we may say that the value of
the experiment is increased whenever it permits the null
hypothesis to be more readily disproved. [29]

Whilst this is not an explicit acknowledgement of the importance
of power and Fisher never acknowledged such an importance,
nonetheless, the implicit implication of this statement is support
for more powerful tests. Stephen Senn has pointed out to me that
in correspondence with Chester Bliss [30], Fisher argued that the
choice between alternative significance tests should be based on
‘no more than the experience that one test of significance gave
more frequently significant results than another’, that is on empir-

ical power (also [14]). As we have seen, power depends upon the
choice of the probability of a type I error, and Fisher, despite many
authors having associated him with the use of fixed significance
levels, in his later writings was clearly against this idea.

No scientific worker has a fixed level of significance from year
to year, and in all circumstances, he rejects hypothesis; he
rather gives his mind to each particular case in the light of his
evidence of ideas. [31]

Neyman argued that without type II errors ‘no purely probabilistic
theory of tests is possible’ [32], and Fisher might have accepted
this as far as it related to acceptance sampling but not to scientific
hypothesis testing [33].

It is of course possible to take a pragmatic view of the number
of experimental units required for a particular experiment and ask
the following question: how many experimental units does the
budget allow me to test? Given such a resource, what effect size
am I able to detect with a given power? I have previously termed
this as resource sizing, and it is deeply unsatisfying on a number
of levels.

First, resource sizing is generally synonymous with underpow-
ering, an issue that has been recognised for at least half a century
[34,35] and still exists [36]. It might be thought that the cash-rich
pharmaceutical industry would be immune to resource sizing, but
that is not so. In any given year, a pharmaceutical company has
a fixed budget for research and development and a portfolio of
projects on which that money can be spent. A consequence is
that at any particular time, the budget for an individual spon-
sor is finite despite an understandable desire to run as many
development programmes as possible. Resources therefore are
constrained. In contrast, many biotechnology companies will in
general have only one or two development programmes but
will be resource constrained by the need to restrict the ‘burn’
of money or the need to raise additional capital from investors.
The last 15 years has seen a high failure rate in phase III clinical
trials. Kola and Landis report an average failure rate in phase III
trials in drug development of 45% and higher for specific ther-
apeutic areas. For example, the failure rate is as high as 60% in
oncology programmes [37]. Whilst there has been a recent slight
improvement [38], such high failure rates may be partly due to
underpowering studies by resource sizing.

Second are ethical issues. There are two types of ethics that
are typically associated with human medical research – individual
and collective ethics [39,40]. Individual ethics recognises the pri-
macy of the individual and is aimed at doing what is best for the
subjects in the current trial. In contrast, collective ethics is aimed
at doing what is best for all future patients who will benefit from
the results of the current trial. Unsurprisingly, there is a tension
between these two principles, which is recognised in the Decla-
ration of Helsinki. The declaration comes down on the side of the
individual – ‘Concern for the interests of the subject must always
prevail over the interest of science and society’ [41]. Recent ethical
discussions on clinical trial designs have largely concentrated on
adaptive designs and individual ethics. One perceived advantage
of some adaptive designs is their ability to allocate a dispropor-
tionate percentage of patients to the best treatment, or dose. This
will provide a differential advantage for some, although not all,
patients but may have the disadvantage of slowing recruitment
to trials in chronic diseases because informing patients that they
are more likely to receive the ‘best treatment’ later in the trial
may result in them withholding consent until they judge that their
chance of receiving the ‘best treatment’ has risen sufficiently. This
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is termed accrual bias. Designing underpowered trials by resource
sizing has collective ethical consequences because an under-
powered negative trial may deter independent researchers from
studying the same mechanism of action and potentially deprive
future patients of an efficacious drug, or drugs. Another question
is whether it is ethical to plan a trial that, because the trial has
been designed based on resource sizing, is unlikely to have the
nominal protocol power. In such circumstances, should patients
be randomised? An argument has been made against proscrib-
ing underpowered studies because it would prevent independent
investigators, without access to substantial funding, from carrying
out research and would limit the availability of important infor-
mation to be combined in future meta-analyses [42]. There are, of
course, counterarguments [36].

Third, from a regulatory perspective, it is inappropriate to utilise
resource sizing. The ICH guideline on statistical principles in clin-
ical trials is clear that there needs to be justification for all the
inputs into the sample size calculations:

� the means and variances;
� response, or event, rates; and
� the clinically meaningful difference.

What is the basis for the choice that is made? For phase III
clinical trials, it is expected that the assumptions underlying a
design will come either from the literature or from earlier trials
in the development programme [15]. The basis for the choice of
the treatment effect to be detected may be based on ‘a judge-
ment concerning the minimal effect which has clinical relevance
in the management of patients’ or on ‘a judgement concerning
the anticipated effect of the new treatment’, neither of which is
related to resource sizing.

4. THE SCIENTIFIC APPROACH TO
SAMPLE SIZING

If resource sizing is inappropriate, how should studies be sample
sized? The ‘scientific’ planning of experiments as it has evolved
is conceptually very simple. For illustrative purposes, we will
assume that our interest lies in designing a single-arm study; that
the main variable of interest is normally distributed with known
variance, �2; that the effect size we are interested in detecting
is ı0, variously referred to as the clinically relevant difference
[43] or minimally clinically important difference (MCID) [44]; that
the one-sided significance level (probability of a type I error or
false-positive rate) is ˛0; and that the probability of a type II error
(false-positive rate) is ˇ0.

With these assumptions, the sample size, n, to test the null
hypothesis Ho : ı D 0 against the alternative hypothesis HA : ı D
ı0 is given by the formula

n D
�2
�

Z1�˛0 C Z1�ˇ0

�2

ı2
0

(1)

obtained from the requirement in Figure 1 that the coloured
regions have the specified magnitudes. Although this approach
is not appropriate in all circumstances, the central limit theorem
allows it to be used in many cases after a suitable transformation.

Figure 1. Determination of sample size.

Figure 2. The weighted sum of type I and type II errors as a function of the type I
error ˛.! D 3/.

5. DETERMINING THE OPTIMAL’’’

For a given n, ˛ and ı0, we can determine the probability of a
type II error to test the null hypothesis Ho : ı D 0 against the
alternative hypothesis HA : ı D ı0 by inverting Equation (1)
to give

ˇ D 1 �ˆ.� C Z˛/ (2)

where � D
p

nı0=� . For a given! – either the ‘relative prior prob-
abilities of the null and alternate hypotheses being true’ [1] or the
relative costs of the errors – the weighted sum of the probabilities
of type I and type II errors is given by

‰ D
!˛ C 1 �ˆ.� C Z˛/

! C 1
(3)

which, for a fixed !, is a function of ˛ alone. The functional rela-
tionship between ‰ and ˛ is illustrated in Figure 2 for the case
! D 3, that is, a case in which the cost of a type I error is three
times that of a type II error. It is clear that a minimum value exists.

The value of ˛, which minimises ‰, is obtained by solving
the equation

d‰

d˛
D 0 D ! �

� .� C Z˛/

� .Z˛/
(4)

where

�.x/ D

r
1

2�
e�

x2

2
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The solution to (4) is

˛ D ˆ

�
�

ln.!/

�
�
�

2

�
(5)

Some immediate consequences of this solution are apparent.
First, the corresponding value of the probability of the type II error
is

ˇ D 1 �ˆ

�
�

ln.!/

�
C
�

2

�

and the minimum weighted sum is

‰ D
!ˆ

�
� ln.!/

�
� �

2

�
Cˆ

�
ln.!/
�
� �

2

�
! C 1

(6)

Second, if ! D 1 , the equal-costs case, then the minimum sum
occurs when ˛ D ˇ.

In the unknown variance case, we can replace (2) by

ˇ D 1 � F� .� , t� ,˛/

where F¤ .™, t/ is the CDF of a noncentral t-distribution with
� degrees of freedom and noncentrality parameter � and t� ,˛

is the one-sided 1 � ˛ critical value of the t-distribution with �
degrees of freedom. The corresponding weighted sum of errors is

‰ D
!˛ C 1 � F� .� , t� ,˛/

! C 1

from which the minimum ˛ is the solution to

d‰

d˛
D 0 D ! �

f� .� , t� ,˛/

f� .0, t� ,˛/
(7)

where f� .� , t/ is the density function of a noncentral
t-distribution with � degrees of freedom and f� .0, t/ the noncen-
tral t-distribution with � degrees of freedom. There is no analytic
solution to this equation, but numerical solutions are available
either using a method such as regula falsi or using a search
method [1].

The result (7) is applicable to a general class of problems. Sup-
pose that the power of a test S, with critical value s’, depends on a
noncentral distribution function H.�, s/ characterised by a single
noncentrality parameter '. The weighted sum of errors is

‰ D
!˛ C 1 � H.�, s˛/

! C 1

from which the minimum ’ is the solution to

d‰

d˛
D 0 D ! �

h.� , s˛/

h.0, s˛/

where h.� , s/ is the noncentral density associated with s.

6. WEIGHTS LEADING TO STANDARD TYPE I
AND TYPE II ERROR RATES

Suppose the sample size has been chosen on the basis of
Equation (1), so that the experiment has been designed based on
a fixed ˛0 and, in order to achieve a power of 1�ˇ0, a sample size
of n per group is required. Then given a value of !, we can deter-
mine an optimal ˛ from (4). A question of interest is which value
of ! makes ˛0 the solution of (3)? Answering this question allows
us to understand what typical values of ˛0 and ˇ0, for example

Figure 3. Optimal weights to give standard type I and type II errors.

0.05 for ˛0 and 0.1 and 0.2 for ˇ0, imply in terms of the relative
importance of type I and type II errors, that is, in terms of !.

From (1), we have that

p
nı0

�
D � D Z1�˛0 C Z1�ˇ0

D �Z˛0 C Z1�ˇ0

and substituting this into (3) gives

! D
�
�

Z1�ˇ 0

�
�
�

Z˛0

�

Note that the solution is independent of ı0. Furthermore, sub-
stitution of (5) into (2) shows that under these assumptions, the
corresponding ˇ will be precisely ˇ0. Figure 3 displays the value
of ! that is required to give a range of values for ˛0 and ˇ0 as the
solution to Equation (4).

Often, we are interested in a one-sided type I error rate of 0.025
and a type II error rate of 0.1, a typical pair of values for phase
III clinical trials run to achieve marketing authorisation of a new
drug. These values give rise to an optimal weight of just over 3,
implying that the cost of a type I error is three times that of a type
II error. Figure 2 illustrates that this is indeed the optimal solu-
tion for this configuration of values. On the other hand, if the type
II error rate is decreased to 0.05, then the relative cost changes,
with the optimal weight being 1.76, in turn implying that the null
hypothesis is a priori 75% more likely than a type II error.

In the unknown variance case, there is no analytic solution, and
we need to resort to numerical approaches. Nonetheless, there
are some general observations that can be made. First, the opti-
mal ! is no longer independent of ı0. Second, the optimal value
of! is larger than in the known variance case. Third, as n becomes
large, corresponding to small values of ı0, the optimal value of
! converges to the known variance case, which is no more than
recognising that as n becomes large, we can replace the t-test
by a z-test by using s2, the sample estimate of �2, in place of
�2 Figure 4 illustrates this latter point by showing the optimal
weights for a t-density as a function of the standardised treat-
ment effect ı0=� as well as the normal-density weight, which is
independent of ı0=� .
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Figure 4. Optimal t-density weights as a function of the standardised
treatment effect.

Figure 5. Sample size factor to control the weighted .¨ or¨�1/ sum of errors
to be6‰0.

7. SAMPLE SIZING BASED ON MINIMISING
THE SUM OF ERRORS

Mudge et al. made the suggestion that the sample size of a study
could be determined from the requirement that the weighted
sum of errors be minimised [2]. To see how this might be achieved,
note that (6) is a function of ! and � D

p
nı0=� and so can

be written as ‰.!�/. A couple of properties of ‰.!, �/ are use-
ful for determining the sample size. First, for a given value of !,
‰.!, �/ D ‰.!�1, �/, and this simplifies the calculations because
we need only solve for values of ! between 0 and 1, which then
automatically provide solutions between 1 and infinity. Second,
as � ! 0, ‰.¨, ™/ ! !=.! C 1/, which implies that there are
values of‰.!, �/ that are unobtainable for a given !.

Suppose that we wish to control the minimum weighted sum
of errors at a maximum of ‰0 and that for a given !, a solu-
tion is available in terms of � D

p
nı0=� . The appropriate sample

size can then be determined as n D �2�2
ı
ı2

0 , which has the
same structural form as (1). There is no analytic solution for
� D
p

nı0=� in terms of ! and ‰0, but a numerical solution is
trivially found using the method of regula falsi.

Figure 5 provides values of �2 as a function of ! and ‰0,
thereby enabling the sample size to be determined. For example,
suppose we wish to control the sum of errors to be no more than
0.05 and that the cost of a type I error is four times more costly

than a type II error. Remembering that‰ .!, �/ D ‰.!�1, �/, we
can read off the value of �2 as 9 so that for a standardised effect
size of ı0=� D 0.5, the required sample size is n D 36. By the tra-
ditional sample sizing approach, this corresponds to a one-sided
˛0 D 0.025 and ˇ0 D 0.15.

8. MINIMISING THE SUM OF ERRORS AND THE
NEYMAN–PEARSON LEMMA

We have already noted that the original Neyman–Pearson lemma
was developed for the case in which for a fixed type I error rate,
˛, a critical region is chosen so that the power, 1 � ˇ, is max-
imised. The critical region can be determined using a Lagrange
multiplier. Now, suppose that instead of the usual conditions of
the Neyman–Pearson lemma, we wish to choose a critical region
to minimise the weighted average of the type I and type II error
rates in which the weights are the costs of the errors !0 and !1. If
R.x/ denotes the critical region based on data x, then the problem
is to determine R.x/ to minimise

‰ D !0Prob.type I error/C !1Prob.type II error/

D !1 �

Z
R.x/

Œ!1p .xjH1/ � !0p .xjH0/� dx

Following the Lagrange multiplier proof of the original
Neyman–Pearson lemma, the preceding expression can be min-
imised by choosing R.x/ D fx : !1p .xjH1/ > !0p .xjH0/g, which
maximises the integral, corresponding to the region in which the
likelihood ratio, �, satisfies

� D
p.xjH1/

p.xjH0/
>
!0

!1
D ! (8)

For our simple case, under the null hypothesis, the likelihood is
given by
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and under the alternative hypothesis, it has the form
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from which the likelihood ratio is
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and this is the optimal solution given by (5). Stephen Senn has
pointed out that this approach introduces the type II error as a
crucial element of inference. Whilst this is not immediately appar-
ent from (9), it is implicit in that the criterion is a function of the
standardised treatment effect –

p
nı0=� – that the study has been

planned to detect. This is entirely reasonable if one is interested
in discriminating between 	 D 	0 and 	 D 	0 C ı0.

9. THE LIKELIHOOD PRINCIPLE AND
SAMPLING FRAMES

What is the practical implication of this last result? In reality, this is
a restatement of the likelihood principle, or it is another example
of Senn’s view ‘that likelihood is really the more fundamental con-
cept’ [14]. In simple terms, the likelihood principle says that how
the data are arrived at is irrelevant to the inferences that are to
be drawn.

To illustrate this point, we modify an example given by Lindley
and Philips [45]. Suppose a single-arm, open-label clinical trial is
run with a primary endpoint that is binary, success or failure. We
consider four scenarios:

Scenario 1. It is planned that in a fixed-sample study, 12 (n)
patients are to be treated. Of the 12 patients
treated, nine (r) respond successfully. Under the null
hypothesis that the success is 50%, the p-value is
calculated from

12X
iD9

�
12

i

�
0.512 D 0.073

Scenario 2. It is planned that patients will be treated until nine
(r) are treated successfully. The study is run, and the
ninth success occurs when 12 (n) patients have been
treated. Under the null hypothesis that the success
is 50%, the p-value is calculated from the cumulative
negative-binomial distribution function

12X
kD9

�
k � 1
9 � 1

�
0.5k D 0.033

Immediately, we can recognise the impact of the
stopping rule on p-values because scenario 1 is sig-
nificant, but scenario 2 is not.

Scenario 3. It is planned that patients will be recruited for a fixed
period, say 2 weeks. At the end of the period, 12
patients have been recruited, of which nine are suc-
cessfully treated. How can we determine a p-value?
We could assume, for example, that the recruitment
rate was such that the number of patients recruited
in 2 weeks had a Poisson distribution with mean
10 and then look for more extreme cases. Some
thought needs to be given as to how to define more
extreme. For example, are both 8 successes out of
10 and 13 successes out of 15 more successful?
If this definition is acceptable, then the p-value is
0.079. This p-value, however, depends on the Pois-
son mean assumption; if this were to be changed,
then so would the p-value. If the Poisson mean is 5,
the p-value increases to 0.180, whilst if it is 20, the
p-value is reduced to 0.018.

Figure 6. Likelihood function for the success probability of a single-arm experiment
(n D 12, r D 9).

Scenario 4. It is planned to recruit 50 patients, but funding
runs out when 12 patients have been recruited, of
which nine are successfully treated. How should the
p-value be calculated? We could condition on the
sample size achieved, as an ancillary statistic, but
is that appropriate? We cannot repeat the experi-
ment, either in reality or as a thought experiment,
and therefore, it is difficult to see how we can embed
it in a sampling frame that would allow us to calcu-
late a p-value. That was not the case in scenario 3
because we could contemplate the variable sample
size and allow for it in the calculation of the p-value.

The calculation of the p-value was simple for scenarios 1 and 2,
more complicated for scenario 3 and perhaps impossible for sce-
nario 4. Despite these difficulties, the likelihood function for the
unknown success proportion, displayed in Figure 6, is the same
for each scenario:

�9.1 � �/3

The likelihood function can be used to estimate � and to make
inferences through a likelihood interval. Alternatively, if we were
willing to entertain a prior distribution for � , Bayes’ theorem can
be used to combine the two sources of information to allow
posterior inferences to be drawn.

The issue of the sampling frame can be a difficult problem for
traditional statistical approaches, and these are not just purely
academic or theoretical issues but arise in practical, medical
research problems. Here are two illustrations.

The use of dynamic allocation techniques to keep treat-
ment groups balanced with respect to a medium to large
number of prognostic, stratification, factors has been a topic
of continuing concern to regulatory authorities. The European
Medicines Agency’s 2003 guidance on baseline covariate adjust-
ment remarked that these methods remained controversial and
‘applicants are strongly advised to avoid such methods’ [46]. The
updated version of this guidance in 2013 is less dogmatic, requir-
ing sponsors to consider carefully issues of bias and type I error
control and suggesting that ‘the use of re-randomization meth-
ods in the analysis should be considered’ [47]. Whilst the percep-
tion has been that the Food and Drug Administration (FDA) has
been more willing to accept the dynamic allocation, they have
in the past required sponsors to justify calculating the p-value
by ignoring the allocation process. Ebbutt et al. report a request
by the FDA for a re-randomization analysis of a study that used
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minimisation, a particular type of dynamic allocation, to show
whether the p-value calculated by standard procedures ignor-
ing the allocation method was appropriate. They report that the
results were different if the randomisation test took account of
the order in which patients entered the study [48].

A second example concerns a study that used a randomised
play-the-winner (RPW) design introduced by Wei and Durham, a
so-called urn model [49]. At the beginning of an RPW trial, an urn
contains " balls, each of two colours (blue and red), representing
two treatments. When a patient is to be treated, a ball is chosen
at random (with replacement) from the urn. When the patient’s
outcome is known, the urn content is updated as follows.

If the patient was allocated to treatment t and responded pos-
itively, ' balls of colour t are added to the urn; otherwise, 
 of
colour s (the complement of t) are added. In time, the urn will
contain a higher proportion of coloured balls associated with the
more successful treatment. This is called an RPW.",', 
/ design.

Bartlett et al. considered the treatment of neonates with severe
respiratory failure for whom the expected outcome is death [50].
They proposed comparing extracorporeal membrane oxygena-
tion (ECMO) with a traditional ventilator. Phase I trials had sug-
gested a greater than 50% survival rate on ECMO compared with
a less than 20% survival rate using an optimal conventional venti-
lator. An RPW design was chosen because of the speedy outcome,
and the anticipated difference in response would imply a small
sample size and also would make it ethically difficult to pro-
pose equal randomisation. The course of the trial is illustrated in
Figure 7. The urn initially contained one blue and one red ball, and
the trial proceeded as follows:

( S=Survived; D=Died )

Figure 7. Randomised play-the-winner design comparing extracorporeal mem-
brane oxygenation with a conventional ventilator for the treatment of neonatal
respiratory failure [50].

(1) A patient was randomised to ECMO and survived. A blue ball
was added to the urn.

(2) A patient was randomised to ventilator and died. A blue ball
was added to the urn.

(3) A patient was randomised to ECMO and survived. A blue ball
was added to the urn etc.

After 11 patients had been allocated to ECMO, and all survived,
and one patient had been allocated to the conventional ventila-
tor and died, the study was stopped by the independent safety
committee, and statistical significance was declared.

This was an (in)famous study because of the extreme nature of
the resulting imbalance between ECMO and the traditional venti-
lator groups. Could this have been avoided? Almost certainly. The
problem lies in the choice of the starting configuration – namely
one ball of each colour. In these circumstances, the randomisa-
tion imbalance in favour of either treatment is already 2:1 after
the first patient’s result is known, in this case in favour of ECMO.
By the time the fifth patient was to be randomised, the alloca-
tion imbalance was 5:1 in favour of ECMO. It would have been
preferable to start with three, four or five balls of each colour,
or to conduct a permuted block of 10 patients before adaptive
allocation began, thereby preventing a severe imbalance occur-
ring too early in the course of the study. One of the issues with
this study was the lack of acceptance of the results in the wider
scientific community. As Dragalin has argued, adaptive designs,
defined as multistage study designs that use accumulating data
to decide on how to modify aspects of the study, need to do so
without undermining the validity and integrity of the trial, and
this includes ‘credibility, interpretability, and persuasiveness of
the study results to a broader scientific community’ [51,52]. In the
case of the ECMO study, one of the reasons that the results were
not immediately accepted by the medical community was that
there was no unanimity amongst statisticians as to the eviden-
tial value of the results. To illustrate, Figure 8 shows a range of
p-values that have been proposed by statisticians [53–55]. These
p-values are based on a range of assumptions with the following
examples: (i) fixing both marginal totals, which leads to Fisher’s
exact test; (ii) an analysis that ignores the design and assumes
complete randomisation; and (iii) an analysis conditioning on the
observed sequence of responses. Some statisticians have argued
that because the design was sequential without knowledge of
the stopping rule, the sample space remains undefined and, as
such, no significance test can be carried out and, therefore, no
p-value calculated.

The associate editor suggested an alternative scenario in which
a completely sequential experiment is run with an analysis after
every patient. The study is planned to continue until the response
rate is at least 75%, and the question ‘how does the likelihood
principle deal with the bias of this estimator’ is raised. The likeli-
hood principle has to do with observed data and not with data

Figure 8. Proposed p-values associated with the results of the extracorporeal membrane oxygenation study.
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that might have occurred but did not. There is clearly an issue
here for a frequentist statistician, and I would probably agree with
Senn, who in a different context has remarked that this ‘is a weak-
ness of the classical notion of unbiasedness but accept that given
the conventional definition of unbiasedness there may be a prob-
lem’ [56]. Of course, the fact that the likelihood principle holds
that stopping rules are irrelevant to inference is not accepted by
many statisticians, preeminent amongst them being Armitage: ‘I
feel that if a man deliberately stopped an investigation when he
had departed sufficiently far from his particular hypothesis, then
“Thou shalt be misled if thou dost not know that.” If so, prior
probability methods seem to appear in a less attractive light than
frequency methods, where one can take into account the method
of sampling’ [57].

10. BAYESIAN CONSIDERATIONS

Pericchi and Pereira have pointed to a connection between the
rejection region based on minimising the weighted sum of type I
and type II errors and a Bayesian ‘test of the null hypothesis’ [58].
Suppose that �0 and �1 are the prior probabilities of the null
hypothesis .H0 : 	 D 	0/ and the alternative hypothesis .H1 :
	 D 	0 C ı0/, respectively, then a simple application of Bayes’
theorem produces the posterior probability of the null hypothesis
in the form

P .H0jx/ D
�0p .xjH0/

�0p .xjH0/C �1p .xjH1/

A Bayesian ‘test of the null hypothesis’ in which rejection occurs if
P .H0jx/ < 0.5 implies

P.H0jx/ D
�0p.xjH0/

�0p.xjH0/C �1pjŠ .xjH1/
<

1

2

) �0p .xjH0/ < �1p .xjH1/

)
p .xjH1/

p .xjH0/
>
�0

�1

corresponding to the modified Neyman–Pearson criterion (8).
Pericchi and Pereira make two further contributions. First,

they argue that the Lindley paradox is not primarily a distinc-
tion between Bayesian and non-Bayesian approaches but arises
because of the traditional approach of fixing the type I error and
maximising power. The paradox can be resolved if the weighted
error approach is adopted. To see this, we can compare the
traditional rejection rule

p
n .Nx � 	0/

�
> Z1�˛ (10)

with the rejection rule based on weighted errors given by (9). In
the case of the former, as the sample size increases, ‘there is a
positive probability of a false rejection’ [58] because n can always
be chosen to meet the rejection criterion (10). In contrast, as the
sample size increases, so does the right-hand side of (9) with
the consequence that the rejection criterion becomes ever more
stringent so that in the limit, the type I error converges to zero as
does the type II error.

Second, they generalize the result that for a test of a sim-
ple hypothesis versus simple hypothesis the optimal criteria to
minimize the weighted sum of errors is the likelihood ratio with

threshold given by the ratio of weights, to a general hypothesis:

H0 : 	 2 M0 versus H1 : 	 2 M1

The corresponding solution replaces the likelihood ratio as the
optimal criteria with the Bayes factor, with the threshold remain-
ing the ratio of weights.

11. DISCUSSION

The distinction between statistical significance and scientific, bio-
logical or clinical relevance has long been recognised and remains
a topic of interest to scientists and statisticians alike [59–63].
Whilst the former can to some degree be guaranteed by an appro-
priate choice of a large sample size, the latter is not in the control
of the scientist or pharmaceutical sponsor except insofar that they
can influence key opinion leaders within the relevant scientific
community. Of course, the cost of ‘guaranteeing’ statistical sig-
nificance will be high, and we have already argued that many
sponsors would wish to increase the MCID in order to reduce the
sample size – resource sample sizing. Part of the problem is that
the traditional approach to statistical inference fixes the required
level of evidence, in whatever context, independent of the
sample size.

The example given by Peter Freeman indicates a serious conse-
quence of this approach [64]. In the example, a constant p-value
of 0.041 could be achieved for treatment estimates ranging from
0.25 to 0.000722 with a 100 000-fold increase in sample size. Par-
tially on the basis of this example, Peter Freeman argues that
we should

Allow for sample size when interpreting any p-value. A
p-value of 0.05 from a small sample can be quite strong
evidence, but one of 0.05 from a large sample is always very
weak evidence and in extreme cases provides evidence in
favour of the hypothesis. Always require a p-value of 0.001 or
less in large samples (n >200, say) before declaring anything
significant. [64]

This quote supports the discussion in the previous section of the
decision criterion (9). Whilst it is in general true that increasing the
sample size should require a more stringent criterion for rejecting
the null hypothesis, the absolute amount of evidence depends on
the ratio of costs. The claim by Freeman that we need to require an
extremely small p-value for sample sizes greater than 200 is based
on likelihood ratio threshold of 4; in other words, he is effectively
assuming that type I errors are four times more costly than type II
errors. For other assumptions, a different level of evidence will be
required but will still increase with sample size.

Freeman suggests that the argument is not understood by
statisticians because the standard practice in group sequential
designs is to begin with a small nominal significance level at the
first interim and then to increase the nominal significance level
as the study progresses through the subsequent interims to the
final analysis, whereas the idea that the evidence criterion should
become more stringent with increasing sample size suggests
the converse.

The 2014 Ebola virus outbreak has highlighted the need to take
into account the consequences of type I and type II errors. The
treatment of infected international medical staff with the unap-
proved and untested-in-humans experimental drug ZMapp is no
doubt related to the high mortality rates associated with the virus.
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Figure 9. Chronology of Ebola virus outbreaks and case fatality rates.

Figure 9 shows a Bayesian hierarchical meta-analysis of case fatal-
ity rate data taken from the WHO (www.who.int/mediacentre/
factsheets/fs103/en/). If and when ZMapp is subjected to test-
ing in a randomised trial, what should be the level of evidence
that is required to establish its efficacy? The approach outlined
in this paper provides a rationale for reducing the level of evi-
dence required in recognising the particular importance of not
committing a type II error.

An alternative to increasing the type I error would be to for-
mally incorporate the historical data provided in Figure 9 into the
analysis of a future study. The use of historical data in this way
is not new, and their use in both preclinical [65] and clinical con-
texts [66] goes back nearly 40 years. Pharmaceutical statisticians
have been at the forefront of recent developments in Bayesian
approaches to the use of historical information, particularly con-
trol information. Examples of these developments are the power
prior [67], although there are issues with its original formulation
[68–70], predictive priors [71] and commensurate priors [72]. Viele
et al. provide a recent, useful review [73]. This work is exclusively
Bayesian, but there are some traditional, frequentist, analogues.
Tarone, for example, constructs a test for trend in proportions
based on a Cochran–Armitage statistic with an adjustment to
the concurrent control data depending upon the historical infor-
mation [74]. Of course, the combination proposal could also be
applied to such tests.

The general result (6) does not depend on the particular exam-
ple, and it is not new. Lindley and Savage in joint work pointed
out that in determining a particular pair of type I and type II error
rates, the only form that indifference curves can have is paral-
lel straight lines in which the slope is the negative of the ratio
of the priors associated with the null and alternative hypothe-
ses [75–77]. Cornfield considered minimising a linear function of
the two errors, in which the slope parameter ‘measures the unde-
sirability, or the cost, of an error of the first kind relative to one
of the second kind’ and stated that it is easy to show that the
rejection region for such a case must consist of all likelihood ratio
values that exceed the fixed slope [78]. DeGroot argued that it
is better to minimise a weighted sum of type I and type II error
than to specify a value of type I error and then minimise type

II error [79]. More recently Bernardo and Smith have noted the
result, pointing out that ‘minimising a linear combination of the
two types of error is the only coherent way of making a choice’
of ˛ and ˇ ‘in the sense that no other procedure is equivalent to
minimising an expected loss’ [80]. Finally, Spiegelhalter et al. refer
to Cornfield’s paper, in particular the consequence of the results
for sequential analyses [81]. They quote Cornfield:

. . . it is clear that the entire basis for sequential analysis
depends upon nothing more profound than a preference for
minimizing ˇ for given ˛ rather than minimizing their lin-
ear combination. Rarely has so mighty a structure and one
so surprising to scientific common sense, rested on so frail a
distinction and so delicate a preference. [78]
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