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Life Distributions: A Brief Discussion

INGRAM OLKIN

Department of Statistics, Stanford University, Stanford, California, USA

This article presents a brief description of some of the characteristics of life distri-
butions that arise in survival analysis and reliability theory. Alternative definitions of
a distribution are discussed and related to a variety of stochastic orders: hazard rate
order; likelihood ratio order, convex order, Lorenz order. Nonparametric families, par-
ticularly log-concave densities, completely monotone distributions, increasing hazard
rate families, new-better-than-used families, and bathtub hazard rate families are ana-
lyzed. A taxonomy for semiparametric families is presented and the effect of introducing
parameters on various stochastic orders is shown. Finally, the introduction of covariate
models in these families is developed.

Keywords Hazard rates; Log-concave densities; Nonparametric families; Reliability
theory; Stochastic orders; Survival analysis.

Mathematics Subject Classification 62N05; 60E02.

1. Introduction

Sir Ronald Fisher as early as 1925 stated a motivation for selecting models: “From a limited
experience, for example, of individuals of a species, or of the weather of a locality, we may
obtain some idea of the infinite hypothetical population from which our sample is drawn,
and so of the probable nature of future samples to which our conclusions are to be applied”
(Fisher, 1925).

The fitting of distributions goes back many years with the construction of general
families such as the Pearson family, Chebyshev—Hermite polynomials, Gram—Charlier
series, Edgeworth series, and many more. The more recent research on splines and density
estimation falls into this category.

However, an alternative to fitting distributions was enumerated by Kingman (1978):
“Although it is often possible to justify the use of a distribution empirically, simply because
it appears to fit the data, it is more satisfactory if the structure of the distribution reflects
plausible features of the underlying mechanism.” The present work endeavors to follow this
theme by clarifying characteristics of distributions that one might consider before fitting a
distribution. The development of the Gompertz distribution from actuarial tables provides
an example in which the hazard rate was used. The search for comparing inequality of
wealth was used to study the Lorenz order. Of course, the Poisson distribution is a standard
distribution that arose from models.
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2. Alternative Definitions of Distributions

There is no unique description of a distribution. Some forms provide more intuition about
certain characteristics than other forms. It is important to recognize that each description
provides a different view and understanding of the data. The most common definitions are
the following.

1. The cumulative distribution function (cdf) F defined on the interval (—oo, co) by
F(x) = P{X < x}.

2. The survival function F(x) = 1 — F(x). Some distributions such as the exponential
or Weibull distributions have simple expressions for the survival function. For
lifetime data the survival function is more easily interpreted.

3. If f is a nonnegative function for which

F(x) = /X f(2)dz

for all real x, then f is called the density of X (or F). Fitting densities to data has a
long history. Traditionally families of curves or series have been developed to aid
in fitting densities. Of course, current numerical procedures, such as splines, are
generally available for fitting densities; see, e.g., Scott (1992), Silverman (1986),
Klemela (2009). However, we note that the cdf in item 1 above is unsuited to
determine whether a density is unimodal, and similarly the Kolmogorov—Smirnov
statistic is suited for the cdf and not for the density.

4. The hazard function R(x) = — log F(x) defined on (—oo, 0o). Hazard functions
are useful mathematical tools in part because they are linear for exponential
distributions.

5. If F is an absolutely continuous distribution function with density f, then the
function r defined on (—oo, 00) by

_[f)/F(x) if F(x) >0,
r(x = {oo if F(x) =0,

is called the hazard rate. The hazard rate is a fundamental concept in survival
analysis. The determination of an increasing or decreasing hazard rate is not
readily observed from a graph of the cdf or the density. The connection between
the hazard rate and hazard function is given by

R(x) = /‘x r(t) dt.
0

6. Let F be a distribution function such that F'(0) = 0. The residual life distribution
F; of F at t is defined for all ¢+ > 0 such that F(¢) > 0 by

Fi(x)=Fx+1)/F@)
= P{X >x 41X >t}

The residual life distribution arises naturally as a characterization of the exponen-
tial distribution. This is also true of the hazard rate. This formulation is fundamental
in the construction of actuarial tables.
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If F has a finite mean and F(x) = 0 for x < 0, then the mean residual life (mrl) is
given by

[T Fi(x)dx  fort such that F() >0,
mt) = { ’ for F(t) =

The mrl is related to the survival function by

Foo = P expl— [T 42
F(x)_m(x)exp{ /om(z)}’

where u is the mean of the distribution.
The inverse distribution

F'(p)=sup{z: F(z) < p}, F(x)=inf{p: F '(p) >z}

Inverse distributions are essentially the same as quantiles and play an important
role in statistical inference. See Parzen (2004) for a survey of quantile functions.
The function @™ (x) defined for x such that F(x) > 0 by

F(x)

-+ —_
=

is called the odds ratio of survival.
The function w~(x) defined for x such that F(x) > 0 by

is called the odds ratio of failure. The odds ratio of failure of the residual life
distribution F; has the property that it is increasing (decreasing) if and only if the
hazard rate of the distribution F is increasing (decreasing).

Each of these alternative definitions provides different insights into the data. Although
these alternative definitions apply to the univariate case, only a few generalize to the
bivariate case, which may explain the use of the more common cdf or density function.

3. Ordering of Distributions

Characteristics of distributions such as location, dispersion, skewness, kurtosis, long tailed,
unimodality, etc., have long been used for descriptive purposes. Alternatively distributional
characteristics can be described in terms of a variety of the ordering of random variables.
These orders provide insight into magnitude, shape, or hazard rates. For a more complete
discussion of orders, see Shaked and Shanthikumar (2007), Szekli (1995), or Miiller and

Stoyan
1.

(2002).

Stochastic order X <Y or F <G:
st st

P{X >z} < P{Y > z}.

This order is a tail order introduced by Mann and Whitney (1947). It remains as the
most well-known ordering of distributions.
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2. Hazard rate order X <Y or F < G:
hr hr

rx(z) = ry(2).

3. Likelihood ratio order X <Y or F < G:

Ir Ir
AQ) > @ forallu < v,
fw) = g

where f and g are the respective densities of ' and G. Although the likelihood ratio
order does not have an intuitive interpretation, it is a useful order because it is easier
to prove than stochastic order, and implies stochastic order.

4. Convexorder X <Yor F <G:
cX cx

E¢(X) <= E¢(Y)

for all convex functions ¢. This order has proved useful because the class of convex
functions is so rich.

5. Lorenz order X <Y or F <G:
L L

X
EXc

EY

SIA

This order was introduced by Lorenz (1905) and is a central ordering in economics,
especially for comparing the wealth of two communities. For applications of the
Lorenz order and its relation to the Gini index, see Yitzhaki and Schechtman (2013).

4. Mixtures and Stochastic Order

Because so many distributions arise as mixtures from several populations, it is comforting
to know that stochastic order is preserved under mixture. Mixtures also play a central role
in Bayesian statistics.

If X<Yand U <V, and we mix X with U and Y with V,
st st

W=IX+1U,

Z =1Y+1V,

where [ is arandom variable independentof X, Y, U,and V suchthat P{I = 1} = 1-P{I =
0}, then

wW<Z.
st

From the point of view of applications, the mixing random variable / will generally represent
a discrete covariate.
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5. Nonparametric Families

5.1. Logconcave Densities

One of the most important classes of nonparametric families is that of logconcave densities,

J(x) = exp{—¢(x)},

where ¢ is convex. Examples are the normal, gamma, Weibull densities. They also play a
role in economic theory; see An (1998).
Logconcave densities have the following properties:

(i) The density is unimodal.

(i1) The convolution of two logconcave densities is logconcave.
(iii) The cdf and survival functions of logconcave distributions are logconcave.
(iv) The distribution has an increasing hazard rate.

5.2. Completely Monotone Distribution
This class was defined by Feller (1971, p. 431):

F(x) = /oo e ™ dH),
0

where H is a distribution function. Thus, F is a mixture of exponential survival functions.
The key properties of this family are that if F is completely monotone, then F is infinitely
divisible, and the density is logconvex on [0, oo].

5.3. Increasing Hazard Rate (IHR) Families

As noted, the hazard rate is one of the most important characteristics of distributions used
in survival or reliability analysis.

(i) A distribution F has IHR if and only if — log F is convex.
(ii) A distribution F has IHR if and only if the residual life distribution

Fi(x)=F(x +1)/F(t)

is decreasing.
(iii)) An important fact is that if F and G have IHR, then the convolution F * G has an
IHR.
(iv) IHR families have finite moments of all positive orders.
(v) If F has IHR then F is a Pélya frequency function of order 2.

A somewhat disturbing feature is that mixtures of distributions with IHR can have
decreasing hazard rates (DHRs). This is important when modeling with covariates that can
create mixtures. Of singular importance is that a mixture of exponential distributions (each
of which has a constant hazard rate) has a DHR.

5.4. Increasing Hazard Rate Average (IHRA) Families

Suppose there is a system of components, then the repair of a failed component should not
cause the system to fail. This led to the notion of a coherent system. A binary function ¢ of
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n binary variables is called a coherent system if ¢(0,...,0)=0,¢(1,...,1)=1,and ¢ is
increasing in each of its arguments.

A rather disturbing fact was uncovered, namely, that the class of IHR distributions is
not closed under the formation of coherent systems. This led to the introduction of the class
of IHRA families, which is closed under the formation of coherent systems.

A condition weaker than [HR is an average: a distribution F satisfying F'(0) = 0 is said
to have an IHRA if the hazard function R = —log F satisfies R(¢)/¢ increasing in t > 0.
The terminology arises from its relation to the hazard rate:

R@) 1

t
Z dz,
; t/or(z) Z

IHRA families are closed under convolutions, but not under mixtures.

5.5. New Better than Used (NBU) Families

The idea of NBU families is intuitive in that it compares the residual life distribution with
the distribution,

F(x+1)

20 < F(x),

or in terms of probabilities,

P{X > x +1t}

Pix=y ~TX=zx

Two important properties of NBU families are that the convolution of two NBU families
is NBU, and that if the components of a coherent system are NBU, then the system life
distribution is NBU.

Although the construction of NBU families arose from an engineering context, as in
the case of airplanes, the concept now can be applied to organ transplants in medicine. The
following is an abbreviated summary of implications:

logconcave density = IHR = IHRA = NBU

6. Bathtub-shaped Hazard Rates

An examination of some of the common distributions in survival analysis and reliability
such as the exponential, Weibull, gamma, lognormal, Gompertz distributions shows that
they have either increasing, decreasing, or constant hazard rates. Yet we know that natural
phenomena may have bathtub-shaped hazard rates that traverse a decreasing phase, a
constant phase, and an increasing phase. The construction of distributions with a bathtub
hazard rate was illusive because they do not arise from a single distribution.

The following provides two constructions of distributions with bathtub-shaped hazard
rates. However, knowledge of the data is essential in deciding which construction provides
a reasonable model.

1. If

X =X with probability
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= min(Xg, X) with probability 7 = 1 —

then the hazard rate for the distribution of X can have a bathtub hazard rate. An
example is given by two Weibull distributions

Fo(x) = exp{—x*},  Fi(x) = exp{—x"}.

The hazard rate will be bathtub foro > 2 and g < 1.
2. A second construction is based on

X =min(U, V, W),

where U has a DHR, V has an IHR, and W has a constant hazard rate. Because the
hazard rate of X is a sum of the hazard rates

r(x) =ry(x) + ry(x) + rw(x),

one increasing, one decreasing, and one constant, it is clear that various shapes can
be generated.

7. Taxonomy of Semiparametric Families

A semiparametric family is constructed by the insertion of a parameter into a family F(x)
or F(x). There are many ways to add a parameter to a distribution. The following lists a
number of such parameters, each with a descriptor.

Location F(u) = F(x — ).

Scale  F(x|A) = F(Ax), A >0.

Power F(x|a) = F(x%), a>0.

Frailty or proportional hazards F(x|§) = [F (x)]é , £>0.

Resilience F(x|n) =[F(x)]", n > 0.

Tilt F(x|y)=yF(x)/[1—)7F(x)].

Moment or shape f(x|8) = xf f(x)/ g, where g is a normalizing constant.
Age F(x|t)=F(x+1)/F(t), ©>0.

PN B L=

Parametric families can be constructed by introducing parameters in some sequence.
For example, if F(x) = exp{—x}, then the introduction of a scale parameter yields F(x) =
exp{—Ax}, then a power parameter F(x) = exp{—Aix“}, followed by a moment or shape
parameter to yield the density

f(x) = ex® exp{—ix®},

where ¢ = c(«, B, 1) is a normalizing constant. This density is that of a generalized gamma
distribution.

In another example suppose one starts with a Pareto family F(x) = 1/(1 + x), then
introduce a scale parameter F(x) = 1/(14Ax), then a frailty parameter F(x) = 1/(14+Ax)*,
and finally a moment and power parameter to yield the density

_ (}Lx)oﬁ—l
T = T e

where ¢ = c¢(A, «, &, 0) is a normalizing constant. This density is called a generalized
F-distribution.
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The introduction of a succession of different parameters may lead to the same family
in which case the order does not matter. This is the case with power and scale parameters:

1. F(x) > FOwx) » F(Ax%),
2. F(x) = F(x*) — F((xx)%).

However, with other pairs of parameters the succession may lead to different families.
This is the case with frailty and resilience families.

1. F) - [Fo) - 11— =[Fo] ),
2. F(x) > 1 = [F()]" = {1 = [F(x)]"¥.
8. Coincidences

The question posed here is what distributions are contained in the coincidence of two
families? For example, the coincidence of the scale family F'(Ax) and frailty family [ F(x)]?
is the solution of the functional equation

FOw) = [Foo™.
The solution is the Weibull distribution
F(x) =exp[—(Ax)"], x>0,
or the extreme value distribution
F(x) =exp[—(x)], x <O.

The lognormal distribution arises from the coincidence of the scale and moment
families and is the solution of the functional equation

xP f(x)

Af(Ax) = B’

where ¢(f) is a normalizing constant.
The Pareto distribution arises from the coincidence of the scale and tilt families and is
the solution of the functional equation

y(WF(x)

TS T mRe

9. Effect of the Introduction of a Parameter on Stochastic Orders

Suppose F' < G in one of the many stochastic orders, and a parameter is introduced. Will
the new parametric distributions still be ordered in the same way? The answer is somewhat
surprising.

If F < G in stochastic order, hazard rate order, likelihood ratio order, convex order,
Lorenz order, and a scale parameter is introduced, then for the scale parameter family
F(-|X) < G(-]1) in the same order.

If F < G in stochastic or hazard rate order and a power parameter is introduced, then
for the power parameter family F(-|¢) < G(-|w) in the same order, and for the frailty or
proportional hazards family F(-|€) < G(:|€) in the same order.
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10. Proportional Hazards and Proportional Odds Families

The proportional hazards family
F(xlg) = [F)]
has gained popularity because the hazard rates are proportional:
r(x|§) = &r(x).

The parameter & is often modeled as a function of covariates.
The family

yF(x)

F(xh/) = m,

is a proportional odds family, that is,

Flxly) _ y Fx)
F(xly) F(x)’

This family is somewhat new and has not been used much in applications. It would be
interesting to compare both the proportional hazards and proportional odds families in
some applications.

11. Covariate Models

Most applications involve covariates, and one way to deal with covariates is to model the
parameter as a function of the covariates. One of the early examples by Zelen (1959) was
based on the exponential distribution

F(x|0) = exp{—x/6}
in which the scale parameter 6 is a function of covariates zy, ..., zg,
0 = 0(z) = exp{B1z1 + ... + Brzk}
The proportional hazards model
F(xlg) = [F]
in which the parameter 6 is a function of covariates z1, ..., zk,

E=8@)=pz+...+Bkzk

has been used in many applications.
Bailey and Homer (1977) used a covariate model for the hazard rate,

r(x) = ae ™ + 38,

in which the three parameters o = a(zy,...,2x), *=A(z1,...,2x), and &=
8(z1, ..., zk) are functions of covariates.
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12. Discussion

This article contains some of the main ideas that were the basis of the book Life Distri-
butions. Structure of Nonparametric, Semiparametric and Parametric Families (Marshall
and Olkin, 2007). The material in this article constitutes Parts I, II, III, and IV of the
book. The remaining parts relate to parametric families and to complementary topics. The
topics included in this summary constitute the more novel aspects of the subject of life
distributions.

As noted, the cumulative distribution has been used for the Kolmogorov—Smirnov
test, the density has been studied extensively, the residual life distribution is used in life
tables, the hazard rate in survival analysis. This suggests that some of these alternative
representations will be useful in other contexts. For example, proportional odds rather than
proportional hazards might be more suitable for some types of data.
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