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ABSTRACT
In the past decades, the number of variables explaining observa-
tions in different practical applications increased gradually. This has
led to heavy computational tasks, despite of widely using provi-
sional variable selectionmethods indataprocessing. Therefore,more
methodological techniques have appeared to reduce the number
of explanatory variables without losing much of the information. In
these techniques, two distinct approaches are apparent: ‘shrinkage
regression’ and ‘sufficient dimension reduction’. Surprisingly, there
has not been any communication or comparison between these two
methodological categories, and it is not clearwhen each of these two
approaches are appropriate. In this paper, we fill some of this gap by
first reviewing each category in brief, paying special attention to the
most commonly used methods in each category. We then compare
commonly used methods from both categories based on their accu-
racy, computation time, and their ability to select effective variables.
A simulation study on the performance of the methods in each cat-
egory is generated as well. The selected methods are concurrently
tested on two sets of real data which allows us to recommend con-
ditions under which one approach is more appropriate to be applied
to high-dimensional data.
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1. Introduction

Advances in data collection and storage capabilities during the past few decades have
allowed government agencies, researchers, and businesses to store much larger volumes
of data often referred to as ‘high-dimensional data’ or ‘big data’. Many of the high-
dimensional datasets have a large number of predictor variables, aside from the large
sample sizes, that makes the computational analysis of the data very cumbersome if not
impossible. Also the large number of predictor variables may often lead to collinearity
between variables which reduces their explanatory power. Therefore, one needs to effec-
tively reduce the number of predictor variables without sacrificing the explanatory power
of the original ones. Many methodological techniques have appeared to accomplish this
goal, within which two distinct approaches are apparent: One approach fits a model to
the initial data and then attempts to reduce the number of variables, which are typically
referred to as ‘shrinkage regression’ methods. The other approach, ‘sufficient dimension
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2 H. D. HAMEDANI AND S. S. MOOSAVI

reduction’ (SDR), first selects a subset of effective variables containingmost of the informa-
tion and then an appropriate model is fitted. Different methods within each category have
been proposed, but no comparison of methods from these two categories and also within
these categories have appeared. Therefore, a question remains as to which method from
any of these two categories should be chosen for a given high-dimensional dataset in the
first place. In this paper, we attempt to answer this question by analytically and empirically
comparing commonly used methods in each category. These analyses allow us to establish
under which conditions each of these two category of methods can be more successfully
applied to a given big data.

Historically, one of the first attempts in analyzing a moderate to high-dimensional
data has been regression analysis. It provides a conceptually simple method for establish-
ing functional relationships among variables. However, sometimes predictor variables are
highly collinear, and applying classical regression methods such as ordinary least squares
(OLS) to such a large number of variables results in an ill-fittedmodel with high prediction
error. Therefore, once the model is fitted a question remains as to how effective variables
should be selected. Along this line, the family of shrinkage regression methods were pro-
posed to deal with this challenge. In this family, the regression coefficients are penalized, so
that when fitted to the data, the number of non-zero coefficients in the model are reduced.
Different forms of penalty functions have been used in the literature, that vary in their
ability to select and group variables and their appropriateness for high-dimensional data.

The first shrinkage regression method, referred to as Ridge regression, was proposed by
Hoerl and Kennard [25]. Applying the Ridge regression penalty has the effect of shrinking
the estimates of regression coefficients toward zero which introduces bias in their estima-
tion. However, the resultingmean-squared error fromRidge regression tends to be smaller
than that of OLS. Ridge regression cannot select effective variables, which is overcome by
the introduction of the least absolute shrinkage and selection operator (LASSO) method
[35]. However, LASSOmethod remains biased and cannot select more than n (sample size)
variables when the number of predictor variables (p) are much larger than sample size (i.e.
p>n). Therefore, LASSO estimates often perform poorly for high-dimensional data.

Manymethods have focused on addressing various possible shortcomings of the LASSO
method, specially when there is dependence or collinearity between predictors. Most com-
monly used smoothly clipped absolute deviation penalty (SCAD) [2,19,37], Elastic-Net
method [40] and octagonal shrinkage and clustering algorithm for regression (OSCAR)
[1]. All of these methods use penalties to shrink regression coefficients but have different
degree of success in reducing the number of variables. Inmore detail, SCAD can both select
effective variables and obtain unbiased estimates. Elastic-Net removes the restriction faced
by LASSOon the number of effective variables chosen and has a strong ability to group pre-
dictor variables together (grouping property). Therefore, it is a good candidate method for
use with high-dimensional data. OSCAR method performs similar to Elastic-Net method
but has a stronger grouping property than Elastic-Net, such that it has the ability to group
negatively as well as positively correlated predictors that is sometimes desirable.

One last commonly used method is Forward-Lasso Adaptive Shrinkage (FLASH) [31],
which can adaptively adjust the level of shrinkage necessary instead of using a penalty func-
tion. Therefore, it can be effectively used to perform variable selection in high-dimensional
classification problems (p>n). This property significantly expands the range of problems
that FLASH can be applied.
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From 1990s, an alternative family of methods called SDR appeared [33], which unlike
shrinkage regressionmethods, attempts to sufficiently reduce the number of predictor vari-
ables before fitting a model. The aim is to obtain a reduced-size data, in which relevant
important information is preserved, that can then be fed into standard statistical models
such as regression. Therefore, the SDR methodology offers an effective means to facilitate
regression analysis for high-dimensional data. The SDR family of methods reduces the set
of variables to a smaller set of either the original variables or new ones, where the new vari-
ables are linear combinations or even nonlinear functions of the original ones. However,
the majority of SDR methods focus on linear reductions of variables, which arise natu-
rally in many contexts. This allows the sufficiently reduced predictor variables to form a
subspace known as ‘central subspace’, onto which the original data are projected.

Many properties of the central subspace have been developed resulting in a number of
successfully applied dimension reduction methods. Two widely used approaches to find
the central subspace are inverse moment based, and kernel smoothing-based approaches.
The inverse moment-based approach is very easy and fast in computation and requires a
relatively large sample size, while kernel smoothing-based approach works well for a small
sample size and is slow in computation. The most famous methods founded on the inverse
moment-based approach are sliced inverse regression (SIR) [26,28] and sliced average vari-
ance estimation (SAVE) [14]. Minimum average variance estimation (MAVE) [38] is also
themost commonly usedmethod that relies on the kernel smoothing-based approach.One
method might be selected over another depending on the characteristics of data and the
aim of data analysis, but overall SIR method is the most widely used one.

Many recent developments on the SDR methods have been made that tend to extend
the previous methods with fewer assumptions, develop likelihood-based methods, and/or
adapt and fine-tune methods for specific applications (see, e.g. [6,7,8,10,11,13,16,20–
22,26,27,39]). Almost all of these methods require the computation of the inverse of a
p × p sample covariance matrix, which easily becomes problematic for high-dimensional
data, specially the ones that are not sparse or have p>n. More recently, Cook et al. pro-
posed a rather different methodology which integrates recent work on the estimation of
high-dimensional covariance matrix, but circumvents the problems faced when the high-
dimensional data are abundant and p>n. Themain idea is to start from the SIR technique,
and to develop several population weight matrices that can be used for estimation. These
weight matrices play a major role in dimension reduction as the reduction estimator cor-
responding to each weight matrix forms a basis for central subspace. The weight matrices
are estimated by using sparse permutation invariant covariance estimation (SPICE) [32]
and Moore–Penrose generalized inverse technique.

In this paper, we elaborate more on shrinkage regression and SDR families of methods.
We select Ridge, LASSO, SCAD, Elastic-Net, OSCAR and FLASH methods from the fam-
ily of shrinkage regression methods. From the SDR family, we focus on the SDR method
proposed by Cook et al. [12] and the three main weight matrices developed there. More
details on the relative advantages and disadvantages of these methods are provided based
on their accuracy, variable selection and algorithm speed. We then apply all the selected
methods from both families to two sets of real data and a number of simulated sets of data.
Such analyses allow us to compare these two families of methods and the main methods
within each family for the first time, and recommend conditions under which each family
is more appropriate to be applied to high-dimensional data.
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4 H. D. HAMEDANI AND S. S. MOOSAVI

This paper is organized as follows. In Section 2, we review the basics of SDR approach
and discuss the methods employed from this family in this paper. In Section 3 we describe
shrinkage regression methods and their corresponding penalty functions. The advantages
and disadvantages of these methods are also compared based on their penalty functions.
Application and performance of the selected methods on the simulated and real data are
conducted in Section 4. We conclude with a discussion of our findings in Section 5. In the
rest of paper, we use the abbreviation form to simplify the notation.

2. Sufficient dimension reduction

There has been a great interest in SDR methods after 1990. The basic idea of dimension
reduction approach is to map the random vector of predictors X ∈ R

p into another vector
of lower dimension k (k<p) in a way that relevant information in the regression of the real
response y on X is preserved. The goal is to find a sufficient reduction estimator function
� : Rp → R

k that achieves such a mapping. In more detail, sufficient reduction estimator
is defined as follows [9]:

Definition 2.1: The function � is a sufficient reduction estimator for the regression of y on
X if y is independent of X | �(X). The image of� forms a d-dimensional subspace onto which
the predictor X is projected which is called a dimension reduction subspace (SDRS).

Based on the above definition, the regression can be restricted to �(X) once the reduc-
tion estimator � is specified, which has a lower dimension compared to the original
regression problem. A more restrictive subspace is considered as follows [8]:

Definition 2.2: Let Sy |X = ∩SDRS for any arbitrary SDRS. If Sy |X is an SDRS itself, we call it
a central dimension reduction subspace (SCDRS).

Remark 1: Following Cook et al. [12], we denote the dimension of SCDRS by ‘d’ in the rest
of paper.

It would correspond to a sufficient reduction, meaning that it preserves all the relevant
information about response variable and if �(X) is any arbitrary sufficient reduction then
�(X) is a function of�(X). In this paper, we focus onminimal sufficient linear reductions
for simplicity and refer to them as ‘sufficient reductions’:

Definition 2.3: Minimal sufficient linear reduction is a reduction of the form�(X) = ηTX
where η is basis for SCDRS.

In the rest of this section, we review necessary tools for recognition and development
of dimension reduction techniques, focusing more on the integrated dimension reduction
methods developed in [12] that are further used in this paper.

One of the most widely methods in finding SCDRS and sufficient reduction is SIR tech-
nique proposed in [26]. So if (X1, y1), . . . , (Xn, yn) represent the n realizations of the
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random vector (X, y), this regression results in the following relation:

Xi = μX + �β(f (yi) − μf ) + εi, i = 1, 2, . . . , n, (1)

where Xi ∈ R
p,μX = E(X), the εi are independent realizations of a random vector ε ∈ Rp

with mean 0 and variance �, � is a p × d-matrix (d ≤ p) with rank d that is the basis
matrix for �Sy|X , β is an unknown d × r-matrix of coefficients (d ≤ r) with rank d, and
f : R −→ R

r is a known user-selected vector-valued function with E(f (y)) = μf . Often,
in high-dimensional data, we consider f to be a reasonably flexible set of basis functions,
such as a vector-valued polynomial function of y. This regression model implies that the
vector of β(f (yi) − μf ) ∈ Rd gives the coordinates of E(X | y) − E(X) in terms of the basis
matrix � and is independent of ε. Based on this representation, SCDRS = �−1span(�).

A re-parametrization of the SIR method is proposed in [12] that avoids computation of
the inverse of the covariancematrix, and hence eliminates some of the above shortcomings.
Without loss of generality, the authors require that �TW� to be a diagonal matrix where
W is a symmetric p × p positive-definite population weight matrix. Then they derive the
SDR estimator function � as the coordinates of the projection of X − μX onto span(�) in
the �−1 inner product:

�(X) = ηTX := (�T�−1�)−1�T�−1(X − μX). (2)

If we denote the estimation of � by �̂, so finding �̂ is based on using estimators of μX ,
� and β (referred to as X̄, �̂, and β̂ , respectively) when an estimate ofW is specified. For a
given sample weightmatrix Ŵ, estimating population weightmatrixW, the function�(X)

is approximated as follows [12]:

�̂(X) = (�̂TŴ�̂)−1�̂TŴ(X − X̄). (3)

Different specifications of the positive-definite sample weight matrix Ŵ results in differ-
ent SDRs with different properties. In this paper, we apply the following three-dimension
reduction estimators which were also employed in [12]. In the specifications below, let �̂

correspond to the residual sample covariance matrix for regression of X on f (y).

• Diagonal dimension reduction estimator �̂diag: This estimator corresponds to the sample
weight matrix of Ŵ = diag−1�̂, which ignores the correlations between residuals and
only adjusts their variances. This estimator can be computed very quickly even though
it may not be a good choice for highly correlated data [12].

• Dimension reduction estimator �̂
�̂
: This estimator requires the straight forward use of

Ŵ = �̂−1 as the sample weight matrix. This estimator unifies the re-parametrization of
Cook et al. [12] with earlier dimension reduction methods requiring direct calculation
of the inverse of the covariance matrix. It is shown that this sample weight matrix is
quite reasonable to use when n>p+r+4. However, the applicability of �̂

�̂
is extended

to cases when n<p by using Moore–Penrose generalized inverse of �̂.
• SPICE dimension reduction estimator �̂spice: This estimator uses the SPICE method,

developed in [32], to construct a sparse estimate for the inverse covariance matrix �−1

in high-dimensional data through an iterative process. The SPICE estimator is formed
through L1-penalized likelihood optimization when a tuning parameter λ is specified
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6 H. D. HAMEDANI AND S. S. MOOSAVI

to control for how sparse of an estimate is required. When p is large, using a relatively
large value of λ can lead to a substantial reduction in variability of the reduction estima-
tor, while a smaller choice of λ creates less-sparse estimate of inverse error covariance
matrix that slows down the computation time. In the analysis part, the optimal level of
tuning parameter λ is employed.

In Section 4, we compare the performance of reduction estimators �̂diag, �̂�̂
, and �̂spice

on data alongside of the selected methods from shrinkage regression family of methods
outlined in the next section.

3. Shrinkage regression

Shrinkage regression is one of the most important methods in dimension reduction and
variable selection for datasets with large number of predictor variables. These methods are
specially useful when multicollinearity is present between predictor variables. The gen-
eral approach is to impose a penalty term Pλ(β) on the regression coefficients with the
goal of reducing the magnitude and/or number of non-zero regression coefficients. The
coefficients are then estimated such that the penalized squared error is minimized:

β̂ = argβ min(‖y − Xβ‖2 + Pλ(β)). (4)

The penalty function can be adjusted by a tuning parameter λ to achieve a desired level
of coefficient shrinkage. However, the selection of λ should be done with care as inappro-
priately high or low values of λ may result in underestimation or overestimation of the
regression coefficients. The penalty function Pλ(β) is typically expressed as one norm or
a combination of different norms of the regression coefficients such as L1-norm, L2-norm
and pairwise L∞-norm. Thus the way the coefficients are shrunk in a shrinkage regression
method reflects the properties of the corresponding norm(s) employed in its penalty func-
tion. For example a penalty function constructed byL1-normcan lead to a sparse regression
model because of non-differentiability of the norm at 0, but a penalty function based on
the L2-norm keeps all of the predictors in themodel but forces highly correlated predictors
to be averaged. This is also in contrast with a penalty based on pairwise L∞-norm which
encourages equality of the coefficient.

Some of the most important and widely used methods further tested in this paper are
Ridge, LASSO, Elastic-Net, OSCAR, SCAD, and FLASH regression methods. Table 1 out-
lines the penalty functions used in these methods, and illustrates the shape of their level
curves. The table also summarizes the advantages and disadvantages of each of thesemeth-
ods. The choice of each of these methods for a given dataset can then be made based on
the nature of the data and aim of the analysis.

Some properties of the shrinkage regression methods are evident from Table 1. Ridge
regression uses an L2-norm penalty which does not have the ability to select variables.
LASSO method corrects for this by using an L1-norm penalty which makes the fitted
model sparse and more interpretable. However, LASSO exhibits poor performance when
p>n or strong multicollinearity exists between predictor variables. Elastic-Net method is
introduced as a compromise between these two techniques, which has a penalty that is the
weighted sumof the these twomethods [40]. TheOSCARmethod is another generalization
of the LASSOmethodwhose penalty function is a weighted sumof L1 and L∞ norms of the
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Table 1. Some of the most important shrinkage regression methods and their properties.

Method Disadvantages Advantages Penalty Function (Pλ(β))

Level curve(s) of Pλ(β) based
on only two of the regression

coefficients β1 and β2

Ridge Unable to select variables and results in
biased estimators [35]

Better accuracy of prediction compared to the OLS
approach [35]

λ
∑p

j=1 βj
2

LASSO Has a poor performance when p> n or
when strong collinearity exists between
predictor variables, results in biased
estimators, and fails to do grouped
selection [17,35,40]

Variable selection, consistency, and reduced
over-fitting compared to other models [35,40]

λ
∑p

j=1|βj|

Elastic-Net Places positively correlated variables in the
same group, and dose not have an exact
grouping property [40]

Selects variables, has a better accuracy of
prediction compared to LASSO, can select the
true model even when the LASSO fails, and is a
good option for high-dimensional data [40]

λ1
∑p

j=1 |βj| + λ2
∑p

j=1 β2
j

(continued).D
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Table 1. Continued.

Method Disadvantages Advantages Penalty Function (Pλ(β))

Level curve(s) of Pλ(β) based
on only two of the regression

coefficients β1 and β2

OSCAR Cannot handle high-dimensional data [1] Selects variables, encourages grouping effect, and
is a good option for highly correlated data [1]

λ(
∑p

j=1 |βj| + c
∑

k<j max{βj|, |βk|})

SCAD Non-differentiable at the origin [19] Selects variables, and results in a sparse model
with approximately unbiased coefficients for
large coefficients [19]

∑p
j=1(λ|βj| I(0≤|βj |<λ) +
(a2 − 1)λ2 − (|βj| − aλ)2

2(a − 1)
I(λ≤|βj |<aλ) +

(a + 1)λ2

2
I(|βj |≥aλ))

FLASH Poor performance for p< n [31] Selects variables, adjusts the level of shrinkage to
optimize the selection of the next variable, and
is a good option for high-dimensional data [31]

The method has no specific penalty; it is
a combination of LASSO and forward
selection regression with adaptive tuning of
parameter λ.

This method has no specific
penalty.
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JOURNAL OF APPLIED STATISTICS 9

regression coefficients. This method encourages sparsity of predictor variables in the fitted
model as well as equality of coefficients for correlated predictors that have similar rela-
tionships with the response variable [1]. The SCAD method also reduces to LASSO when
a −→ ∞. Unlike the LASSO procedure, the SCAD penalty for coefficients that are larger
than aλ is a constant, making the estimation of these coefficients unbiased. The SCAD
method uses two parameters to specify the penalty function (similar to Elastic-Net and
OSCAR), but it is shown that SCAD performs best when a=3.7 [19].

As mentioned in Table 1, the FLASHmethod is an adoptive procedure based on LASSO
and forward selection. First it considers the model without any variables and then itera-
tively adds variables that are the most highly correlated with the current residual vector. In
each iteration, the residuals are recomputed using the OLS solution based on the currently
selected variables, and the level of shrinkage (choice of λ) is updated so as to optimize
the selection of the next variable. This procedure is repeated until all variables have been
added to the model [31]. The adoptive nature of this method maintains some of the desir-
able properties of LASSO such as variable selection, but circumvents some of its limitations
so that it can be well applied to high-dimensional data.

4. Simulated and real data analysis

In this section, we apply the selected methods in Sections 2 and 3 to simulated and real
data and explore their performance. We use three criteria to compare the performance of
the selected methods in both families of shrinkage regression and dimension reduction:
residual mean square (RMS), the computation time, and the variable selection capability.
RMS is calculated as

RMS =
n∑

i=1

(yi − ŷi)2

n
,

where ŷi in shrinkage regression methods represents the predicted value for observation i
when the appropriate penalty function is applied. In dimension reduction methods, ŷi is
determined by

ŷi = Ê(y |X = Xi) =
n∑

i=1

[
f̂ (�̂(X) | yi)∑n
k=1 f̂ (�̂(X) | yk)

]
yi,

where f̂ is the estimate of the conditional density function f of � | y. For more details on
functions f and f̂ , see, for example, Cook et al. [12].

Of course, a method with smaller RMS and shorter computation time is preferred, but
specially for datasets with large number of predictor variables, the ability of a method to
select variables is highly desired as well in order to reduce the complexity of the problem.
Therefore, we report the number of selected variables in each of themodels that correspond
to the ones with non-zero coefficients. Note that for the dimension reduction methods, we
linearlymap the original predictors into the central subspacewith amuch lower dimension.
In our experiments, we found that when the results of estimation from the central subspace
are mapped back to the original space of the predictors, many of the predictors contribute
to the response variable with a small coefficient. Therefore, in each of our experiments and
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10 H. D. HAMEDANI AND S. S. MOOSAVI

for each of the SDR methods, we also report the dimension of the central subspace (com-
puted according to the permutation test developed by Cook and Yin [15]), along with the
number of predictors that contribute with a coefficient outside of the range (−0.05, 0.05)
(denoted by P∗).

All methods were implemented in R software package. For shrinkage regression meth-
ods, optimal tuning parameters were also computed to minimize the penalized squared
error, making the results more reliable.

4.1. Simulation study

In this section, we use a simulation study to assess the performance of shrinkage regres-
sion and SDR families with different correlation structure between predictor variables. We
consider the relationship between the predictor and response variables to be of the form
y = Xβ + ε in which we set all elements of β except five of them to be zero. Therefore, we
know that the actual number of effective variables is 5. We assume that ε follows a normal
distribution with mean zero and standard deviation 1 and is independent of X. But the
predictors X are assumed to follow a multivariate normal distribution, Np(0,	), in which
the covariance matrix 	 = [σi,j] is set such that σi,j = exp(−φ/20)| i−j|, φ ∈ (0, 1], for i �= j
and 1 otherwise, and the parameter φ is allowed to vary in the range (0, 1]. In our sim-
ulation study, we test three values of φ = 0.1, 0.5 and 1 to assess the performance of our
selected methods when the correlation structure of the data changes. Figure 1 depicts the
correlation structure of the predictor variables in simulated data for these three values of
φ. Based on this figure, changing the values of φ changes the correlation structure of the
predictors so that for φ = 1 or 0.5, we have positive and negative correlations between the
predictors, while for φ =0.1, the correlation between the predictor variables is all positive.
Furthermore, φ = 0.1 makes the correlation between the predictor variables stronger than
φ = 1 or 0.5. Hence, smaller values of φ makes the predictors more highly correlated.

We generate 60 observations of X and ε, i.e. n=60, and consider two levels of the num-
ber of predictors p=400 and p=56. Note that the level of difficulty of the problem for
these two levels of p are different as in the former we have p>n but in the latter we have
p < n. For each level of p, we test our selected methods when φ is set to either 0.1, 0.5, or 1.

(a) (b) (c)

Figure 1. Diagram of the correlation between the predictor variables in the simulated data. For sim-
plicity, we show predictor Xi by just ‘i’ on both axes. The bright and dark colors indicate week and
strong correlation between predictors, respectively. (a) Correlation between the predictors for φ = 0.1.
(b) Correlation between the predictors for φ = 0.5. (c) Correlation between the predictors for φ = 1.
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Now we apply the selected methods in Sections 2 and 3 and assess the performance of
these two methods. Note that when p=400, the OSCAR method cannot be applied (as
p>n), and also when p=56, the FLASHmethod cannot be applied (as p<n). The results
of applying the remaining methods are summarized in Tables 2 and 3.

When p>n, we can see in Table 2 that �̂spice has the best levels of RMS among dimen-
sion reduction methods. In terms of computational complexity, the �̂diag method is more
time efficient than �̂

�̂
and �̂spice, but the computation time of �̂spice is reasonable as well.

However, when p<n, Table 3 shows that among dimension reduction methods �̂
�̂
and

�̂spice have the best levels of RMS, while the best method of choice among the two switches
to �̂

�̂
. The computation time of these twomethods are also very similar. Therefore, we can

conclude that �̂
�̂
and �̂spice are the preferredmethods for the dimension reduction family

as they better capture the correlation structure between the predictor variables than �̂diag
depending on the number of parameters in relation to the data size.

In the choice of dimension reduction methods, it is also important to know how much
of the variations in the data are explained by the model. This can be detected visually by
comparing plots of response variables versus fitted values for each of themethods. The plots
for the three selected dimension reduction methods for the two levels of p are depicted in
Figures 2 and 3, which illustrate that �̂spice is more successful in describing the relationship
between predictors and the response variable, with �̂

�̂
providing second best level of fit

when p<n.
In all three-dimension reduction methods, we found that the dimension of the central

subspaces to vary between 1 and 4 across the different simulated datasets. All central sub-
spaces were found to have high p-values according to the permutation test of Cook and

Table 2. Performance comparison of selected dimension reduction and shrinkage regression methods
for simulated data.

n= 60,p= 400

Method FLASH LASSO Elastic-Net Ridge SCAD OSCAR �̂diag �̂
�̂

�̂spice

φ = 1 RMS 0.021 0.120 0.111 2.760 0.043 – 3.333 2.631 0.535e−3
Number of selected
variables

24 40 47 400 400 – 400 400 400

Dimension of central
subspace (P∗)

– – – – – – 1(6) 1(30) 1(5)

Computation time
(seconds)

19.126 2.590 1.903 7.816 2950.382 – 0.702 471.448 4922.220

φ = 0.5 RMS 0.052 0.144 0.166 2.035 0.064 – 1.312 1.080 0.297e−3
Number of selected
variables

16 21 27 400 400 – 400 400 400

Dimension of central
subspace (P∗)

– – – – – – 1(7) 1(18) 1(6)

Computation time
(seconds)

18.207 0.624 0.437 1.966 542.157 – 0.330 130.936 5150.437

φ = 0.1 RMS 0.017 0.029 0.033 1.582 0.041 – 4.099 0.232 0. 326e−3
Number of selected
variables

14 30 39 400 400 – 400 400 400

Dimension of central
subspace (P∗)

– – – – – – 1(1) 1(38) 1(6)

Computation time
(seconds)

3.908 0.478 0.480 1.745 953.501 – 0.337 140.303 4689.515

P∗ : Number of variables with coefficients outside of the range (−0.05, 0.05).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 0
6:

40
 2

3 
M

ay
 2

01
6 



12 H. D. HAMEDANI AND S. S. MOOSAVI

Table 3. Performance comparison of selected dimension reduction and shrinkage regression methods
for simulated data.

n= 60,p= 56

Method FLASH LASSO Elastic-Net Ridge SCAD OSCAR �̂diag �̂
�̂

�̂spice

φ = 1 RMS – 0.091 0.147 3.732 0.388 0.798e−4 1.901 0.843e−4 0.002
Number of selected
variables

– 17 19 56 56 56 56 56 56

Dimension of central
subspace (P∗)

– – – – – – 2(39) 2(56) 2(55)

Computation time
(seconds)

– 0.158 0.219 0.297 6.562 5825.186 0.141 14.484 16.922

φ = 0.5 RMS – 0.076 0.110 2.452 0.042 0.123e−3 2.510 0.621e−6 0.002
Number of selected
variables

– 16 14 56 56 56 56 56 56

Dimension of central
subspace (P∗)

– – – – – – 1(9) 1(53) 1(8)

Computation time
(seconds)

– 2.246 0.780 1.170 9.032 6656.775 1.031 16.228 13.432

φ = 0.1 RMS – 0.049 0.055 1.086 0.011 0.387e−3 0.650 0.340e−18 0.395e−3
Number of selected
variables

– 7 11 56 56 56 56 56 56

Dimension of central
subspace (P∗)

– – – – – – 4(54) 4(56) 4(56)

Computation time
(seconds)

– 0.359 0.281 0.374 16.850 6338.784 0.452 27.832 12.639

P∗ : Number of variables with coefficients outside of the range (−0.05, 0.05).

Yin [15], meaning that the central subspaces can be described by one or a few linear com-
binations of the predictor variables. Looking at the variables selected in the specification of
the central subspace, we found that all predictors contributed in explaining the response
variable in all three methods. Therefore, all dimension reduction methods perform poorly
in selecting significant variables. However, if we ignore predictors whose coefficients are
close enough to zero and lie in the range (−0.05, 0.05), then �̂spice is the closest method in
estimating the correct number of effective predictor variables (i.e. the chosen number of
5) when p>n but its performance in this respect is not as satisfactory when p<n.

Among the family of shrinkage regression methods, when p>n, Table 2 illustrates that
the FLASH method outperforms the others with the smallest RMS and a reasonable com-
putation time. In terms of variable selection ability of the methods, the FLASH method
chooses the least number of variables, so this method is the best choice in the category of
shrinkage regression methods. SCAD, Elastic-Net and LASSO have somewhat small RMS,
and are the second best compared to FLASH when p>n. However, the SCAD method
is much slower specially when optimizing the tuning parameter and is unable to select
variables.

When p<n, the FLASHmethod is no longer applicable, and Table 3 illustrates that the
OSCAR method outperforms the others with the smallest RMS. However, this method is
not able to properly select effective variables. LASSO and Elastic-Net provide second best
levels of RMS while having superior variable selection capability compared to OSCAR.

Comparing the two families of shrinkage regression and dimension reductionmethods,
we can conclude that overall �̂spice and OSCAR methods provide the best accuracy when
p>n and p<n, respectively, specially when the data exhibit strongmulticollinearity. How-
ever, these methods may not be the best choice if variable selection and/or computational
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Comparison of explanatory power of dimension reduction methods for simulated data (n =
60, p = 400). (a) Response variables vs. fitted values for �̂

�̂
(φ = 1). (b) Response variables vs. fitted val-

ues for �̂diag(φ = 1). (c) Response variables vs. fitted values for �̂SPICE(φ = 1). (d) Response variables vs.
fitted values for �̂

�̂
(φ = 0.5). (e) Response variables vs. fitted values for �̂diag(φ = 0.5). (f ) Response

variables vs. fitted values for �̂SPICE(φ = 0.5). (g) Response variables vs. fitted values for �̂
�̂
(φ = 0.1).

(h) Response variables vs. fitted values for �̂diag(φ = 0.1). (i) Response variables vs. fitted values for
�̂SPICE(φ = 0.1).

speed are most important. In this case, other methods from shrinkage regression family
are the best: when p>n, the FLASHmethod is the best method of choice, and when p<n,
LASSO and Elastic-Net have the best performance in this respect. We also observe that the
relative ranking of these methods, as explained above, remains more or less similar as the
level of multicollinearity in the data (i.e. φ) changes.

4.2. Real data analysis

In this subsection, we apply the selected methods in Sections 2 and 3 to two sets of data:
Cookie dough data used in [30] and Prostate Cancer data employed in [24,34]. In the
cookie dough data, the number of predictors (400) is much larger than the number of
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14 H. D. HAMEDANI AND S. S. MOOSAVI

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Comparison of explanatory power of dimension reduction methods for simulated data(n =
60, p = 56). (a) Response variables vs. fitted values for �̂

�̂
(φ = 1). (b) Response variables vs. fitted val-

ues for �̂diag(φ = 1). (c) Response variables vs. fitted values for �̂SPICE(φ = 1). (d) Response variables vs.
fitted values for �̂

�̂
(φ = 0.5). (e) Response variables vs. fitted values for �̂diag(φ = 0.5). (f ) Response

variables vs. fitted values for �̂SPICE(φ = 0.5). (g) Response variables vs. fitted values for �̂
�̂
(φ = 0.1).

(h) Response variables vs. fitted values for �̂diag(φ = 0.1). (i) Response variables vs. fitted values for
�̂SPICE(φ = 0.1).

observations, a feature of a big dataset that complicates the use of traditional statisti-
cal methods. In comparison, the Prostate Cancer data represent a more standard type of
dataset in the sense that the number of observation (97) is larger than the number of the
predictor variables (8). In addition, as can be seen in Figure 4 and Table 4, each pair of the
predictor variables in both datasets are highly correlated (with more correlation existing
in the Cookie dough data). This multicollinearity adds another layer of challenge to data
analysis and variable selection.

4.2.1. Analysis of cookie dough data.
Cookie dough data, originally used in [30], arose from an experiment to non-destructively
control the sucrose content of cookies with the help of near-Infrared (NIR) spec-
troscopy, (see also [3]). The predictor variables are measurements of the NIR spectroscopy
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Figure 4. Diagram of the correlation between the predictor variables in the Cookie Dough data. For
simplicity, we show predictor Xi by just ‘i’ on both axis. The bright and dark colors indicate week and
strong correlation between predictors, respectively.

Table 4. Correlation between the predictor variables in the Prostate Cancer data.

Predictors lcavol lweight age lbph svi lcp gleason pgg45

lcavol 1.000 0.281 0.225 0.027 0.539 0.675 0.432 0.435
lweight 0.281 1.000 0.348 0.442 0.155 0.165 0.057 0.107
age 0.225 0.348 1.000 0.350 0.118 0.128 0.269 0.276
lbph 0.027 0.442 0.350 1.000 −0.086 −0.007 0.078 0.078
svi 0.539 0.155 0.118 −0.086 1.000 0.673 0.320 0.458
lcp 0.675 0.165 0.128 −0.007 0.673 1.000 0.515 0.633
gleason 0.432 0.057 0.269 0.078 0.320 0.515 1.000 0.752
pgg45 0.435 0.107 0.276 0.078 0.458 0.633 0.752 1.000

Table 5. Performance comparison of selected dimension reduction and shrinkage regression methods
for cookie dough data.

Method FLASH LASSO Elastic-Net Ridge SCAD �̂diag �̂
�̂

�̂spice

RMS 0.267 0.649 0.731 6.474 0.710 30.717 0.108 0.448
Number of selected variables 16 24 101 400 400 400 400 400
Dimension of central subspace (P∗) – – – – – 1(378) 1(400) 1(373)
Computation time (seconds) 12.981 8.354 17.556 6.029 572.386 1.545 524.187 4191.847

P∗ : Number of variables with coefficients outside of the range (−0.05, 0.05).

reflectance spectrum, with 400 wavelengths measured from 1400 to 2198 nm in steps of 2
nanometers, while the dependent variable is the sucrose content of a piece of cookie dough.
Similar to [23], 23rd and 61st observations (out of 70) are removed as outliers. The perfor-
mance of selectedmethods in both dimension reduction and shrinkage regression families
applied to this dataset is compared in Table 5. Note that as p>n in these data, the OSCAR
method cannot be applied.

According to Table 5, in the family of dimension reduction methods �̂diag performs the
worst. Asmentioned in Section 2, the difference between thesemethods is due to the choice
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16 H. D. HAMEDANI AND S. S. MOOSAVI

(a) (b) (c)

Figure 5. Comparison of explanatory power of dimension reductionmethods for cookie dough data.(a)
Response variables vs. fitted values for �̂

�̂
. (b) Response variables vs. fitted values for �̂diag. (c) Response

variables vs. fitted values for �̂SPICE.

of the sample weight matrix and its ability to capture the correlation structure between the
predictor variables with a reasonable accuracy and in a reasonable time. The poor per-
formance of �̂diag can be expected since the predictor variables are highly correlated and
a diagonal weight matrix cannot support this property. However, �̂

�̂
performs the best

among the dimension reductionmethods, with the SPICEmethod coming to second, both
in terms of RMS and computation time. In the choice of dimension reduction methods, it
is also important to know how much of the variations in the data are explained by the
model. This can be detected visually by comparing plots of response variables versus fitted
values for each of themethods. The plots for the three selected dimension reductionmeth-
ods are depicted in Figure 5, which illustrates that �̂

�̂
is more successful in describing the

relationship between predictors and the response variable.
In all three-dimension reduction methods, the central subspaces are one-dimensional

according to the permutation test of Cook and Yin [15] with high p-values, meaning that
the central subspace can be described by a single linear combination of the predictor vari-
ables. Looking at the variables selected in the specification of the central subspace (the
ones with non-zero coefficient in the linear combination), we found that all predictors con-
tributed in explaining the response variable in all three methods. Therefore, all dimension
reductionmethods perform poorly in selecting significant variables. However, if we ignore
predictors whose coefficients are close enough to zero and lie in the range (−0.05, 0.05),
then 400, 378, 373 variables contribute to constructing a sufficient reduction in �̂

�̂
, �̂diag

and �̂spice, respectively. Therefore, in terms of variable selection, �̂spice results in a less com-
plex sufficient reduction in a sense and is desired over the other two methods. However,
none of the methods are able to create a sparse model.

Among the family of shrinkage regression methods, Table 5 illustrates that the FLASH
method outperforms the others with the smallest RMS and a reasonable computation time.
In terms of variable selection ability of the methods, the FLASH method chooses the least
number of variables while providing the best performance, so this method remains the
best choice in the category of shrinkage regression methods. LASSO, SCAD and Elastic-
Net have somewhat similar RMS, and are the second best compared to FLASH, however,
the SCAD method is much slower specially when optimizing the tuning parameter and is
unable to select variables.
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Comparing the two families of shrinkage regression and dimension reductionmethods,
according to Table 5 we can conclude that overall �̂

�̂
method (associated to the weight

matrix Ŵ = �̂−1) provides the best accuracy specially for the cookie dough data that
has more predictors than observations and exhibits strong multicollinearity. However, this
method may not be the best choice if variable selection and/or computational speed is
most important. In this case, the FLASH method from shrinkage regression family is the
best alternative which is superior in terms of variable selection and time efficiency while
remaining relatively accurate.

4.2.2. Analysis of prostate cancer data.
The Prostate Cancer data, first studied in [34], examine the correlation between the level
of prostate-specific antigen (PSA) and a number of clinical measures in 97 men who were
about to receive a radical prostatectomy. The goal is to predict the log of PSA (lpsa) from
measurements of log of cancer volume (lcavol), log of prostate weight (lweight), age, log of
benign prostatic hyperplasia amount (lbph), seminal vesicle invasion (svi), log of capsular
penetration (lcp), gleason score (gleason), and percent of gleason scores 4 or 5 (pgg45).
Similar to the cookie dough data, the predictor variables are highly correlated (see Table 4),
but here the number of predictors is less than the number of observations (i.e. p<n). As
a result, the FLASH method cannot be applied to this dataset. The results of applying the
remaining methods in both dimension reduction and shrinkage regression families to this
data are summarized in Table 6.

As we see in Table 6, among dimension reduction methods �̂SPICE and �̂
�̂
have the

best and similar levels of RMS. Therefore, these methods are better equipped to capture
the correlation structure between the predictor variables than �̂diag. However, RMS for
�̂diag method is not too far away from the other two methods as observed for the cookie
dough data, which is expectable due to the relatively weaker correlation between pairs of
predictors in this dataset. In terms of computational complexity, unlike the previous data,
the �̂SPICE method is more time efficient than �̂

�̂
, but the computation time of �̂

�̂
is

reasonable as well. Consequently, for these data with p<n, the �̂SPICE method is preferred
even though �̂

�̂
is also the best alternative. Comparing the plots of response variables

versus fitted values for each of the dimension reduction methods depicted in Figure 6, we
see a relatively good and similar explanatory capability for the three-dimension reduction
methods as the data points in these plots are similarly scattered around the 45◦ line, even
though the �̂diag method seems to explain somewhat less than the other two methods.

In all three-dimension reduction methods, the central subspaces are one-dimensional
according to the permutation test of Cook andYin [15] with high p-values. Thismeans that

Table 6. Performance comparison of selected dimension reduction and shrinkage regression methods
for prostate cancer data.

Method LASSO Elastic-Net Ridge SCAD OSCAR �̂diag �̂
�̂

�̂spice

RMS 0.547 0.548 0.552 0.464 0.449 0.611 0.440 0.439
Number of selected variables 3 4 8 8 8 8 8 8
Dimension of central subspace (P∗) – – – – – 1(5) 1(5) 1(5)
Computation time (second) 1.118 0.870 0.853 384.049 1517.931 0.187 24.138 0.257

P∗ : Number of variables with coefficients outside of the range (−0.05, 0.05).
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(a) (b) (c)

Figure 6. Comparison of explanatory power of dimension reduction methods for prostate cancer data.
(a) Response variables versus fitted values for �̂diag. (b) Response variables versus fitted values for �̂�̂

.

(c) Response variables versus fitted values for �̂SPICE.

the sufficient reductions can be described by a single linear combination of the eight orig-
inal predictor variables. Looking at the variables selected in the specification of the central
subspace (the ones with non-zero coefficient in the linear combination), we found that all
predictors contributed in explaining the response variable in all three methods. Therefore,
all dimension reduction methods perform poorly in selecting significant variables. How-
ever, if we ignore predictors whose coefficients are close enough to zero and lie in the range
(−0.05, 0.05), then five of the original predictor variables contribute to constructing a suf-
ficient reduction in each of the three methods. Therefore, in terms of variable selection, all
three methods obtain a similar level of model complexity, but none of them are able to cre-
ate a sparsemodel. In addition, for constructing sufficient predictors for �̂

�̂
and �̂spice, the

variables ‘age’, ‘gleason’ and ‘pgg45’ are not very effective, and the values of coefficients of
the other five variables are very close to one another in these two methods. In contrast, the
variables ‘age’, ‘lbph’ and ‘pgg45’ are not effective in constructing a sufficient reduction for
�̂diag method, and all of the coefficients that this method proposes are negative. Therefore,
the behavior of �̂

�̂
and �̂spice is similar but different from that of �̂diag.

Among the family of shrinkage regression methods, Table 6 illustrates that SCAD and
OSCAR methods have the least RMS values, even though the RMS of the other shrink-
age regression methods is also close. However, SCAD and OSCAR are unable to reduce
the number of selected variables and have relatively large computation time. Alternatively,
LASSO and Elastic-Net methods are able to significantly reduce the number of effective
variables down to 3 and 4, respectively. Running the significance test for LASSO proposed
by [4,5,18,29,36] andwe found that LASSO enters one less variable than Elastic-Net at a sig-
nificance level of .05. Also these two methods run very time efficient (less than 2 seconds)
without much sacrifice on the accuracy (RMS). Therefore, if variable selection capability is
desired, LASSO or Elastic-Net methods can be a method of choice. Comparing the regres-
sion coefficients produced by these methods, we observed that all coefficients in LASSO
and Elastic-Netmethods were non-negative, while the coefficients of ‘age’ variable in Ridge
and OSCAR methods were negative which seems to be against the intuition. As a result,
the shrinkage regression methods provide different interpretation of the influence of pre-
dictors on the response variables and the choice of one method over another should be
done with more care.
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Comparing the two families of shrinkage regression and dimension reductionmethods,
according to Table 6 we can conclude that overall dimension reduction method of �̂

�̂
and

�̂spice provides the best accuracy over other methods for the prostate cancer data which
is characterized by less predictors than observations and exhibits strong multicollinearity.
This also agrees with the comparison of these two families ofmethods for the cookie dough
data. But it should be noted that the accuracy improvement obtained from using these
two methods over shrinkage regression methods is much larger in the cookie dough data
with p>n, even though they took longer to run. However, if the aim of the analysis is
to select effective variables, dimension reduction methods are not a good choice. LASSO
and Elastic-Net methods from shrinkage regression family are the best alternative which
are superior in terms of variable selection while remaining relatively accurate and time
efficient.

5. Conclusion

In this paper, for the first time, we analytically and empirically compare commonly used
methods in SDR and shrinkage regression families of methods for analyzing standard and
high-dimensional data. We select Ridge, LASSO, SCAD, Elastic-Net, OSCAR and FLASH
methods from the family of shrinkage regression methods. From the dimension reduction
family, we focus on the method proposed by Cook et al. [12] that integrates many of the
existing dimension reduction methods by the choice of a weight matrix, and experiment
with three main weight matrices developed there. We review the fundamentals of the two
families of methods and summarize their relative analytical advantages and disadvantages.

We then apply all the selectedmethods from both families to simulated data as well as to
two commonly used sets of real data. The first dataset was the cookie dough data in which
the number of predictors were more than number of observations, which is a candidate
for high-dimensional data. In contrast, the second dataset was the prostate cancer data
exemplifying a more standard type of data in the sense that the number of observations is
larger than the number of the predictors. Both datasets as well as our simulated data exhibit
strong multicollinearity that often complicates the use of standard predictive methods.

We compare the selected methods based on three measures: accuracy, computation
time, and variable selection capability. Each of the SDR and shrinkage regression meth-
ods that we studied can be considered usefully in the right situation. But according to
our experimental results on real and simulated data, encompassing both high-dimensional
and standard real data that exhibit significant multicollinearity, we make the following
conclusions:

• For standard data (p < n): From the family of shrinkage regressionmethods, OSCAR is
the most accurate one. Also, among the SDR family, we found that using weight matri-
ces corresponding to the SPICE and �̂−1 provide the best accuracy. These two weight
matrices provide a comparable accuracy with the OSCAR method, where the relative
rank between them may change based on specifics of each dataset such as its multi-
collinearity structure. Also, OSCAR is computationally more demanding than the other
SDR methods, while the computation time remains at an acceptable level. However,
these methods cannot provide proper variable selection among the parameters. If vari-
able selection is highly desired, FLASH and Elastic-Net methods from the shrinkage
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20 H. D. HAMEDANI AND S. S. MOOSAVI

regression family are the best alternatives while they remain considerably accurate as
well.

• For high-dimensional data (p > n): In the shrinkage regression family, note that
the most accurate method for standard data, OSCAR, cannot be applied for high-
dimensional data. In this family, we found the FLASH method to be the most accurate
one. However, among the SDR methods, we found that using weight matrices corre-
sponding to the SPICE and �̂−1 provide the best accuracy. Comparing the two families
of methods, we found that the SDR method with the former two weights are superior
in terms of accuracy, where the relative rank between using these two weights may vary
based on specifics of each dataset (e.g. in our simulation study, we found that the SPICE
weight to be the best, while in the cookie dough data �̂−1 was the best). However, this
level of accuracy comes at the cost of variable selection capability. Based on our exper-
iments, FLASH and LASSO methods can effectively select variables while they remain
relatively accurate.

In addition, our analysis indicates that different levels of multicollinearity between pre-
dictor variables has little impact on the relative ranking of the methods that we studied.
This finding essentially simplifies the task of method selection when dealing with a new
dataset. Of course, our analysis is limited to the commonly used form of collinearity struc-
ture that we considered in our simulation study and observed in the two real datasets, as
well as the sizes of the predictor variables and sample size. More examination of the rela-
tive performance of the selected methods would be needed for datasets with p and nmuch
larger than the ones considered here. Also, development of variable selection capability in
dimension reduction methods can prove to be worthwhile specially in better analysis of
high-dimensional data with multicollinearity.
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