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Abstract: The extraordinary success of physicists to find simple laws that explain many phenomena
is beguiling. With the exception of quantum mechanics, it suggests a deterministic world in which
theories are right or wrong, and the world is simple. However, attempts to apply such thinking to
other phenomena have not been so successful. Individually and collectively we face many situations
dominated by uncertainty, about weather and climate, about how wisely to raise children, and how
the economy should be managed. The controversy about hypothesis testing is dominated by the
tension between simple explanations and the complexity of the world we live in.
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1. Frequentistic Approaches

The first contribution to discuss is the significance testing of R.A. Fisher. Given a stochastic
model with no unknown parameters and a test statistic or criterion, if data as or more extreme than
the data observed has low probability (say less than 5%), Fisher would say that significance has been
achieved. In this case, Fisher [1] says that a disjunction results: either the stochastic model is false, or
something unusual has occurred. If significance has not been achieved, no conclusions are warranted.

Significance testing has some serious issues. The first is what significance signifies. The theory
cannot say which of Fisher’s disjunction is the case, nor does it permit a probability statement about
which. The probability calculated is NOT the probability of the hypothesis, despite many wishful
misinterpretations. At best, significance testing is an indication of what isn’t true, not what is true.
As a practical matter, if the sample size is small, no significance is found, but if the sample size is
large, significance is routinely found. There are less complicated measures of sample size available.

Implementation of Fisher’s proposal requires that the stochastic model and the test statistic be
chosen before the data are examined. This requirement is seldom met in practice, with the exception
of certain medical trials. In general, it is not possible for a reader of a paper to know when the author
chose the model and statistic, and many abuses of significance testing hide behind this ambiguity.
One attempt to deal with part of this issue is the field of testing multiple hypotheses simultaneously,
for which see Tukey [2], Scheffé [3], Bonferroni [4] and Benjamini and Hochberg [5].

Perhaps the most damaging critique is as follows: imagine a randomization device, like a coin
that has probability 95% of coming up tails and 5% of coming up heads. Reject the null hypothesis if
heads occurs. This procedure has probability 5% of rejecting the null hypothesis if the null hypothesis
is true. Because it completely ignores the data, it is total nonsense. But it has the property that Fisher
proposes. Hence there must be more to the story.

The second important approach is that of Neyman and Pearson [6], who call their method
hypothesis testing to distinguish it from Fisher’s significance testing. Neyman and Pearson propose
that users specify an alternative hypothesis, and that to reject one hypothesis is to accept the other.
The power of the test is the probability of rejecting the null hypothesis, and hence accepting the
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alternative, if the alternative were true. This led to the Neyman-Pearson Lemma [7] (pp. 444–445),
which shows that a likelihood ratio statistic is the most powerful test of a given size (probability of
rejecting the null hypothesis if it is true). In parametric families with a monotone likelihood ratio,
this leads to uniformly most powerful tests, which have the property of maximizing power whatever
alternative is chosen.

The Neyman-Pearson theory is a genuine advance over the Fisher theory in that the specification
of the alternative requires thinking more about what might be true. It eliminates the issue of the
“data-free" test by showing that such a test has very low power. However, it retains ambiguity about
what it means to reject or to accept a hypothesis. Again, such rejection or acceptance doesn’t mean
that the hypothesis is false or true, respectively, nor, again, does it permit a probability statement
about hypotheses. For validity of the probability statements on which it is based, it still relies
on prespecification of the null and alternative hypotheses. Outside of the models with monotone
likelihood ratios, it requires specification of simple null and alternative hypotheses, so in general it is
based on the idea that one of these two specified hypotheses must be true.

In cases in which there are a continuum of possibilities, Neyman [8] suggests a confidence
interval. An α-level confidence interval is the set of null hypotheses that would not have been rejected
by a (1− α)-level significance test. This is a bit anomalous, as it suggests violating the principle that
the null hypothesis should be declared before the data are examined. Often confidence intervals
are misinterpreted as intervals in parameter space having probability (1− α). More properly they
are regarded as a sample of size one from an infinite population of stochastic intervals having the
property that proportion (1− α) of them will include the true value of the parameter. Thus, in any
given instance, the true value of the parameter either lies in the interval or does not. The property of
a confidence interval procedure is that if the procedure is used many times, (1− α) proportion will
contain the true value.

The confidence intervals from the nonsense test procedure discussed above are: with probability
95% the confidence interval (or more generally, the confidence space) is the entire parameter space;
with probability 5%, the confidence interval is the empty set. This procedure has the advertised
probability, 95%, of including the true value of the parameter, whatever it happens to be.

This failing of confidence intervals also occurs in more realistic examples. Suppose X1

and X2 independently drawn from a uniform distribution (θ − 1/2, θ + 1/2), where θ is the
unknown parameter. Let Y1 = min(X1, X2) and Y2 = max(X1, X2). Then it is easy to see that
Pr{Y1 < θ < Y2} = 1/2 for all θ. Consequently if Y1 = y1, and Y2 = y2 are observed, the interval
(y1, y2) is a confidence interval for θ with confidence 0.5.

By construction, X1 and X2 are both greater than θ − 1/2 and less than θ + 1/2, so y1 > θ − 1/2
and y2 < θ + 1/2, i.e.,

y2 − 1/2 < θ < y1 + 1/2. (1)

If y2 − y1 ≥ 1/2, then y1 ≤ y2 − 1/2 so y1 < θ. Similarly, y2 > θ. Therefore in this case it is
certain that the confidence interval contains θ. Furthermore, if y2− y1 is small, it is nearly certain that
the confidence interval does not contain θ. (See [7], (pp. 400–401). Further discussion and examples
along these lines can be found in Buehler and Federson [9] and Robinson [10,11].

To put all this in perspective, suppose it is desired to examine whether the proportion of
blue-eyed men in the world is the same as the proportion of blue-eyed women. We’ll imagine that,
although people are being born and dying every day, at some moment we have the exact numbers of
men and women, and know which have blue eyes. The chance that the prime factorizations would
work out to be exactly equal is minuscule, so even without the data we know that the hypothesis is
almost surely false. Ask a silly question, you get a silly answer.

In response to this, one might retort that what is really meant is whether the frequency of
blue-eyed mean and women are close enough for some practical purpose. Depending on that
purpose, one might want to look at the difference of those frequencies, their ratio, the difference
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of the odds, the ratio of the odds, etc. With a random sample of men and women, the measure of
choice could be estimated. But how sure can one be about the estimate? The property of a confidence
interval, of itself, is not very comforting, since one would like to know whether this is one of the good
occasions, where the interval covers the parameter, or one of the bad ones where it doesn’t.

Incidentally, there would be nothing wrong in treating the blue-eyed frequencies as identical for
a crude analysis in one part of a paper, and then later treating them as different in a more refined
analysis in a later part of the same paper. Different goals justify different treatment.

There are, as I see it, two fundamental problems with the methods of Fisher and of Neyman and
Pearson. The first is that they impose a very discrete view of the world. Either this hypothesis (Fisher)
is true or not, or one of these two (Neyman and Pearson) is true. This vastly limits the usefulness of
their work. With rare exceptions, it makes more sense to think in continuous terms.

The second, and most important, is that the probability statements on which these methods are
based refer to a hypothetical infinite stream of instances. Furthermore, the quantities calculated don’t
mean what users generally think they mean. They want the level of the test to be the probability that
the null hypothesis is wrong. They want a confidence interval to have the advertised probability of
containing the value of the parameter. Instead they’re stuck with an approach that treats the data
as random, even after it has been observed, and refers to data that might have been observed (but
weren’t) for inference.

Many students in elementary frequentistic statistics courses tell me that they don’t understand
statistics because it makes no sense to them. I think many of them do understand it, because what
they have been taught makes no sense.

2. Bayesian Approaches

In the Bayesian world, there are only two sorts of variables, those you know (otherwise known
as data) and those you don’t. All the relevant variables you don’t know at any given time have a
joint distribution representing what you believe about them. When you observe some of them, they
become data, and you condition on them. Technically the method used to condition on the data is
Bayes’ Theorem, hence the name.

To introduce some language, the prior distribution is the marginal distribution on the
parameters; the posterior distribution is the conditional distribution of the parameters given the
observed data. The prior distribution reflects the user’s beliefs before the data are observed; the
posterior reflects those opinions after the data are observed. The posterior is the basis for computing
expected utility for making optimal decisions after the data are observed. For a more extensive
treatment, see Kadane [12].

One possible prior belief about the world is that one of two hypotheses must be true. In this
special case, the posterior odds of the one hypothesis relative to the other is equal to the prior odds
times the likelihood ratio. In this sense, the Neyman-Pearson testing of hypotheses is a special case of
Bayesian analysis. However, the Bayesian analysis gives a posterior probability for each hypothesis,
which is what users wanted all along. Similarly probabilities for a finite number or countable number
of hypotheses can be updated to posterior distributions, conditioned on the data.

But the more general situation is continuous. Again Bayes’ Theorem applies, and gives a
continuous posterior distribution. From this distribution (measurable) sets of any description can
be celebrated, and have posterior distributions. In contrast to confidence sets and intervals, these
posterior probabilities are legitimate probabilities, and have taken the data fully into account.

Thus the Bayesian approach resolves the difficulties inherent in frequentistic statistics.

3. Conclusions

Where does this leave us with respect to tests of significance and hypothesis testing?
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1. Both tests require, typically, enormous simplification of belief to one or two possibilities.
2. Both tests render results that invite users to err in their interpretation.
3. Similarly, confidence intervals invite misinterpretation.
4. By contrast, the Bayesian approach is simple, straight-forward, and is easy to interpret.
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