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Discussion

Machine learning versus statistical modeling
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This is a discussion of the following papers: “Probability estimation with machine learning methods
for dichotomous and multicategory outcome: Theory” by Jochen Kruppa, Yufeng Liu, Gérard Biau,
Michael Kohler, Inke R. König, James D. Malley, and Andreas Ziegler; and “Probability estimation
with machine learning methods for dichotomous and multicategory outcome: Applications” by Jochen
Kruppa, Yufeng Liu, Hans-Christian Diener, Theresa Holste, Christian Weimar, Inke R. König, and
Andreas Ziegler.
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The twin papers by Kruppa et al. (2014a, 2014b) give an illustrated overview of the use of machine
learning methods for probability estimation. Their contribution is extremely important, since both
aspects—prediction with machine learning and probability estimation—have been relatively neglected
in the biometrical literature, although they play a major role in practice. A remarkable strength of their
work is that theoretical properties of several important machine learning methods are summarized
in a comprehensible form. Again, these theoretical issues have often been neglected in articles on
machine learning in the biomedical literature. In this comment, we discuss a number of issues that
however have to be carefully taken into account when machine learning methods are considered for
predictive purposes in biometrical practice: the choice of the learning algorithm within the available
candidates, the problem of parameter tuning, and computational transportability and reproducibility
of the obtained prediction models.

1 The two cultures: stochastic versus algorithmic, explaining versus predicting

Breiman (2001) states in his seminal paper on the two cultures of statistical modeling: “There are two
cultures in the use of statistical modeling to reach conclusions from data. One assumes that the data
are generated by a given stochastic data model. The other uses algorithmic models and treats the data
mechanism as unknown.” He also claims that the statistical community traditionally prefers the first
view. In this perspective, biometricians certainly do not substantially differ from the general statistical
community, a notable exception being the community of computational scientists with a background
in statistics working at the interface between biometrics and bioinformatics, for example on omics data
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analysis. Medical statisticians often react with skepticism to the use of machine learning methods for
different reasons, some of them discussed by Kruppa et al. (2014a, 2014b).

In a different but related approach, Shmueli (2010) distinguishes between the explanatory modeling
perspective, the descriptive modeling perspective, and the predictive modeling perspective. In her frame-
work, “predictive modeling [is] the process of applying a statistical model or data mining algorithm to
data for the purpose of predicting new or future observations”, explanatory modeling is used for testing
causal theory, and descriptive modeling aims at “representing the data structure in a compact manner”.

The two frameworks by Shmueli (2010) and Breiman (2001) are connected. Roughly speaking,
whereas the stochastic modeling approach considered by Breiman (2001) might fit well into the
descriptive modeling perspective, the algorithmic approach might be preferred from a predictive point
of view. These aspects are addressed by Kruppa et al. (2014b), for instance when they state that
“the fundamental question is whether a clinician will trust the findings obtained with a fancy non-
interpretable machine and use this in clinical routine”. One may ask whether a clinician would accept
to take a purely predictive perspective.

More generally, the question of the chosen perspective should probably be asked and answered much
more clearly by statisticians and biomedical scientists in practice. Our experience is that practitioners
sometimes come to us to develop a prediction rule for any medical condition or outcome while the
project is in fact of descriptive aim (with no intention to develop a prediction tool to be applied to
real patients in clinical settings for medical decision making). For example, the interest of clinicians is
often in hazard ratios provided by Cox regression or odds ratios provided by logistic regression. They
are analyzed with respect to effect size or statistical significance but not with respect to their predictive
value. In this case, it is in our view questionable whether machine learning methods should be generally
preferred over using more interpretable modeling approaches. If the purpose is predictive modeling,
however, machine learning methods have a lot to offer. For example, if a practitioner wants to derive
a prediction rule to be integrated in a medical electronic device, interpretability of the prediction rule
is certainly not the priority (and anyway machine learning methods also provide measures that allow
clinicians for assessing the importance of covariates for prediction purposes).

As clearly outlined in the two papers, no single prediction method performs universally best in all
situations, which is in line with the well-known “no free lunch theorem” as described by Wolpert
(2001). It is not easy to foresee which method will perform better on a particular dataset and even
not easy to explain the respective performance of the methods once their results are known. In this
perspective, there is no reason to restrict to a single prediction method if the goal is to achieve good
prediction accuracy.

2 “Degrees of freedom” of the data analyst

One issue to consider when applying machine learning is that replacing a single standard method—
logistic regression—by a wide range of other candidates (kNN, SVM, etc.) for handling the same issue
increases the degrees of freedom of the data analysts.

By “degrees of freedom” of the analyst, we mean the amount of decisions and choices the data
analyst has to make during the analysis (Simmons et al., 2011). Increasing the degrees of freedom of
the analyst might also increase the risk of conscious or subconscious overoptimism and “fishing for
significance”, that is the risk that the analyst tries (many) different approaches and at the end chooses
the approach that yields the best looking results.

At this stage it is important to distinguish between two distinct approaches for analysis. In the first
approach, which we term “validation approach”, the best method is typically selected from the set of
candidate methods based on its prediction accuracy as estimated by cross-validation (CV) or a related
resampling-based procedure. Afterwards, it is fitted again on the whole training set, and the resulting
prediction rule is finally applied to an independent validation dataset for evaluation. This approach
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adopted by Kruppa et al. (2014b) is correct and yields an unbiased estimate of the accuracy of the
selected prediction rule.

In contrast, in the second approach, no independent dataset is available for validation, and the CV
error estimates of the different candidate methods are the only results at hand. This implies a method-
ological problem. All candidate methods yield different CV accuracy estimates. Selecting the candidate
yielding the best accuracy and reporting these results only could yield a biased accuracy estimate.
It would be a form of fishing for significance resulting from the degrees of freedom of the analyst.
That is because an optimization process takes place when selecting the “best” candidate. This issue is
extensively illustrated through applications to high-dimensional small sample data in Boulesteix and
Strobl (2009) and Jelizarow et al. (2010). A weighted-average approach based on decision theory is
proposed by Bernau et al. (2013) to correct for the bias resulting from the optimization process.

An issue related to the increase of the “degrees of freedom of the data analyst” is the problem
of tuning parameters. For example, in random forests various parameters can be controlled by the
user, such as the number of candidate predictors considered at each split (often denoted as “mtry”),
the minimal size of terminal leaves, the maximal depth of the trees, and so on (Boulesteix et al.,
2012). Logistic regression does not involve any visible quantitative parameters like those of random
forests. However, as noted by Kruppa et al. (2014a), the degrees of freedom of the data analyst is
also considerable in logistic regression as far as variable selection or handling of interactions are
concerned. Driving forward the comparison with random forests, one might say that variable selection
and handling of interactions are intrinsic to random forests, as they are performed “automatically”
and are (in)directly controlled by tuning parameters, while in logistic regression they would be done
manually. Consequently, traditional methods bear the risk of model misspecification, which occurs
when the degrees of freedom of a model are too small because they have been restricted manually
by the data analyst. The proportional hazards assumption in Cox regression, for example, is often
too restrictive and might lead to biased decision making (Schmid et al., 2013). Conversely, machine
learning methods avoid model misspecification by allowing for a greater flexibility (i.e. by a larger
number of tuning parameters). However, this flexibility comes at a big price in terms of computational
costs.

All in all, we believe that the “degrees of freedom of the data analyst” is large in both model-based
approaches such as logistic regression and machine learning. The difference is that in machine learning
methods this happens through well-defined and quantitative parameters. This leaves space for potential
dangers, typically: trying many values successively and presenting only the finest results. But this also
makes the process of prediction rule construction more transparent as soon as methods such as CV
are applied to choose the values of parameters—a procedure that is only rarely applied in the context
of traditional methods like logistic regression.

Note, however, that even the choice of the CV procedure may be regarded as part of the degrees
of freedom of the analyst. In fact, the results of CV may be variable and may highly depend on
the particular random partition used for CV (Boulesteix et al., 2013). Also, there are numerous
competing variants of CV (bootstrap resampling, k-fold CV, 0.632+ bootstrap, . . . ). These variants
might strongly differ when applied to a single dataset. For example, the estimated prediction error
obtained from k-fold CV is typically upwardly biased because learning is based on datasets that are
smaller than the original sample. Conversely, increasing the value of k increases the similarity of
the learning samples, so that the variability of the resulting prediction error estimate increases as
well. A typical example is leave-one-out CV (with k = n), which results in error estimates with high
variance. Bootstrap resampling, on the other hand, results in learning samples that are independent
(conditionally on the data at hand) but also suffers from a relatively high bias since only 63.2% of the
observations are used on average in each learning sample. To correct for this bias, Efron and Tibshirani
(1997) proposed the 0.632+ bootstrap (which effectively is a weighted combination of the training and
the test error). Still, this method retains a notable bias in situations with strong signal-to-noise ratio
and small sample size (Molinaro et al., 2005). It is thus advisable to apply (different types of) CV
several times and synthesize the obtained results to achieve better stability.
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3 Computational transportability, reporting, and reproducibility

As noted by Kruppa et al. (2014b), computational transportability is an issue when applying machine
learning in biometrical practice. By computational transportability, we mean the possibility from a
technical point of view for other researchers to apply the proposed prediction model to their dataset
or, in other words, the transport and exchange of computer programs allowing prediction between the
developers of statistical methods and those who want to apply the methods and need to interpret and
report their results.

Note that the term “transportability” is sometimes used to denote the generalization ability of a
model, that is its ability to predict well in other settings such as in another hospital or another lab. This
is a completely different aspect that we do not consider here, although it is also very important. To
define computational transportability more precisely, let us consider the case of a researcher who wants
to apply the prediction model proposed in a medical paper to make predictions for new patients. If the
prediction model proposed in the medical paper was derived by logistic regression, all the researcher
needs—besides a precise description of the covariates that is necessary to all methods—is the value of
the coefficients of all covariates (including the intercept) of the model developed in the original paper
and application, see for example To et al. (2006). Having that, the probabilities for the new patients are
estimated by applying the function f (x) = exp(x)/(1 + exp(x)) to the linear predictor. The prediction
model is thus (i) easily transportable in the sense that it does not take much time and effort to compute
the estimated probabilities (any simple software such as Excel can be used), (ii) easy to report in the
sense that the authors just need to present a few numbers that do not take much space and are easy to
understand to anybody with basic statistical training.

In contrast to simple methods like logistic regression, prediction models derived by machine learning
methods can often be applied by other researchers only if they have access to the corresponding software
objects (or to the training data, as noted by Kruppa et al. (2014b) for the case of kNN). For example,
suppose the prediction rule of interest was derived using the random forest algorithm. To apply
it to own data, other researchers need the corresponding software object produced by the original
researcher by applying the random forest algorithm to his training data. Strictly speaking, it would
also be possible from a theoretical point of view to report a random forest in a paper—if the paper had
a lot of pages and the researcher a lot of time to copy-paste these many pages into a software program!
Indeed, a random forest can be seen as yielding a partition of the space of predictors. In principle, this
partition could be described in a paper in terms of the involved predictors and thresholds. Of course,
this is completely impossible in practice and nobody would do that.

For most machine learning methods, there is no other possibility to transport the prediction rule
than to use the software object produced by the researcher who fitted it. It implies that this software
object is made available in some form (e.g. from the journal’s website, from the authors’ homepage,
from a data exchange platform, from the authors on request by email). While it would go beyond
the scope of this letter to discuss the advantages and inconveniences of each approach, we point out
that it is in general not trivial to make such an object available in the long term. Even if the software
object remains publicly available, changes in the software program will be a major issue that may in
practice impair the application of the prediction model after only a short period of time in the absence
of adequate stable software infrastructure.

A solution to this problem could be the use of “hybrid” techniques such as gradient boosting with
component-wise linear base-learners (Hothorn et al., 2010). Although gradient boosting—which is not
discussed in the articles by Kruppa et al. (2014a, 2014b)—has its roots in the machine learning field,
linear base-learners result in accessible prediction models with essentially the same interpretation
as classical regression and classification models. Specifically, results obtained from linear gradient
boosting are easily transportable.

An issue related to transportability is the reproducibility of published results. In case of a traditional
model such as logistic regression, for example, researchers can usually choose among a variety of
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equivalent implementations and thus reproduce (or validate) published results very easily. Machine
learning methods, in contrast, are usually less transparent and unfortunately often poorly documented.
Furthermore, if a given method is implemented in different softwares (which is not always the case),
these variants often yield different results. Clearly, this makes reproducibility and external validation of
a model difficult. Following the reproducible research policy of the Biometrical Journal (Hothorn et al.,
2009), Kruppa et al. (2014a, 2014b) have documented their software code and also provide a publicly
available implementation of their methods via the Random Jungle software (Schwarz et al., 2010).

4 Conclusion

We appreciate the successful effort of the authors to make machine learning methods more accessible
to the biometrical community through two articles that contain both scientific contributions and
tutorial-like presentations and illustrations of the considered methods. In our view, the choice of the
learning method, parameter tuning, and computational transportability are some of the remaining
challenges that machine learning methods will have to address to establish themselves as prediction
tools in biometrical practice.
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