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Probability estimation and machine learning—Editorial
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Most of this issue of the Biometrical Journal is dedicated to the special topic of probability estimation.
The topic is introduced and detailed by the two comprehensive twin papers by Kruppa et al. (2014a,
2014b) on theory and applications compiled by a group of authors who had recently worked together,
focusing in particular on machine learning methods. This work is then discussed in five accompa-
nying commentaries (Binder, 2014; Boulesteix and Schmid, 2014; Shin and Wu, 2014; Simon, 2014;
Steyerberg et al., 2014) which have been invited by the editors of the journal, and a reply is finally
given by Andreas Ziegler (2014), the communicating author of the twin papers.

Solicited by the editors, this Editorial would like to encourage the readers of the Biometrical Journal
to look into probability estimation and machine learning in more detail. When going through the
following papers, readers of the Biometrical Journal may get the impression that, finally, machine
learning techniques have arrived in the journal. However, it is surely not the first time that there were
contributions concerning this topic; a simple search using the term “machine learning” identifies over
50 contributions over the past ten years where this method played a role. What is new, however, is
that the articles by Kruppa et al. (2014a, 2014b) give a comprehensive overview of theoretical as
well as practical aspects of probability estimation using machine learning methods. In the spectrum
of methods, they follow more or less what is considered valuable in recent textbooks, such as in the
popular Hastie-Tibshirani-Friedman book on “Elements of Statistical Learning” (2009) and others
(Berk, 2010; Malley et al., 2011). So, for example, nonparametric regression, random forests, k-
nearest neighbors and support vector machines are covered. What makes the overview special is that it
concentrates on probability estimation and not merely on classification as mostly done in the literature,
including the textbooks mentioned above (Hastie et al., 2009; Berk, 2010; Malley et al., 2011). The
importance of probability estimation in a biomedical context has been recognized very early—see for
instance the five papers on “The measurement of performance in probabilistic diagnosis” published
by J. Hilden, J. D. Habbema and B. Bjerregaard between 1978 and 1981 (Habbema et al., 1978; Hilden
et al., 1978a, 1978b; Habbema et al., 1981a, 1981b)—but it has not attracted sufficient attention in
the past. In terms of diagnostic procedures, for example, it may be much more adequate—also in
terms of the attached uncertainty—to present a diagnosis of a specific disease in terms of an estimated
probability rather than as a simplified yes/no answer.

From that reasoning it is evident that the assessment of predictions in terms of estimated probabilities
is of outstanding importance. With machine learning methods in mind, measures of prediction error
must be able to adequately handle all kinds of predictions. That means they should not rely on specific
model assumptions but should treat predictions, whether they are derived from a statistical model,
a machine learning algorithm, or even from an expert guess, in an equal and unbiased manner. The
Brier (1950) score is such a measure that has this and additional desirable properties—see for instance
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the review article by Gerds et al. (2008)—the Brier score is also the preferred choice in the two articles
by Kruppa et al. (2014a, 2014b).

Besides the need for optimally tuned machine learning approaches that are exemplarily presented
in the two articles, validation of the predictions in independent test data is the method of choice.
With this approach one can investigate whether the estimated probabilities can be used beyond the
particular study (the training data) where they have been derived from. Often, however, adequate
test data can only be gathered with enormous effort. In such a situation, bootstrap or other cross-
validation techniques may guide further development in that they can be used to reliably estimate
the prediction error. An example is the famous 0.632+ estimator developed by Efron and Tibshirani
(1997) that can also be applied to the Brier score (Gerds and Schumacher, 2007). It involves a term
called the “noninformation error” that reflects some kind of worst-case scenario. Especially when
probability estimation is derived via machine learning methods the noninformation error provides
valuable information on the potential amount of overfitting and resulting overoptimism that can be
inherited when these techniques are not properly tuned. So we find ourselves in a similar situation
as with, for example, regularized regression models such as the Lasso (Tibshirani, 1996) or boosting
(Binder et al., 2011). This makes a unifying view of all these approaches as flexible statistical models
useful.

I would like to invite the readers of the Biometrical Journal to use the opportunity to get familiar
with theoretical as well as practical aspects of machine learning techniques and with probability
estimation per se. I hope that this Special Topic will stimulate further scientific discussion and encourage
future submissions dealing with comparative investigations on the use of machine learning as well as
traditional statistical methods in biomedical applications.

Martin Schumacher

References

Berk, R. A. (2010). Statistical Learning from a Regression Perspective. Springer, New York.
Binder, H. (2014). What subject matter questions motivate the use of machine learning approaches compared to

statistical models for probability prediction? Biometrical Journal 56, 584–587.
Binder, H., Porzelius, C. and Schumacher, M. (2011). An overview of techniques for linking high-dimensional

molecular data to time-to-event endpoints by risk prediction models. Biometrical Journal 53, 170–189.
Boulesteix, A.-L. and Schmid, M. (2014). Machine learning versus statistical modeling. Biometrical Journal 56,

588–593.
Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review 78, 1–3.
Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the .623+ bootstrap method. Journal of

the American Statistical Association 92, 548–560.
Gerds, T. A., Cai, T. and Schumacher, M. (2008). The performance of risk prediction models. Biometrical Journal

50, 457–479.
Gerds, T. A. and Schumacher, M. (2007). Efron-type measures of prediction error for survival analysis. Biometrics

63, 1283–1287.
Habbema, J. D. and Hilden, J. (1981a). The measurement of performance in probabilistic diagnosis. IV. Utility

considerations in therapeutics and prognostics. Methods of Information in Medicine 20, 80–96.
Habbema, J. D., Hilden, J. and Bjerregaard, B. (1978). The measurement of performance in probabilistic diagnosis.

I. The problem, descriptive tools, and measures based on classification matrices. Methods of Information in
Medicine 17, 217–226.

Habbema, J. D., Hilden, J. and Bjerregaard, B. (1981b). The measurement of performance in probabilistic diag-
nosis. V. General recommendations. Methods of Information in Medicine 20, 97–100.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning; Data mining, Inference
and Prediction (2nd edition). Springer, New York.

Hilden, J., Habbema, J. D. and Bjerregaard, B. (1978a). The measurement of performance in probabilistic diagnosis.
II. Trustworthiness of the exact values of the diagnostic probabilities. Methods of Information in Medicine
17, 227–237.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 56 (2014) 4 533

Hilden, J., Habbema, J. D. and Bjerregaard, B. (1978b). The measurement of performance in probabilistic diag-
nosis. III. Methods based on continuous functions of the diagnostic probabilities. Methods of Information in
Medicine 17, 238–246.

Kruppa, J., Liu, Y., Biau, G., Kohler, M., König, I. R., Malley, J. D. and Ziegler, A. (2014a). Probability estimation
with machine learning methods for dichotomous and multicategory outcome: Theory. Biometrical Journal
56, 534–563.

Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., König, I. R. and Ziegler, A. (2014b). Probability
estimation with machine learning methods for dichotomous and multicategory outcome: Applications.
Biometrical Journal 56, 564–583.

Malley, D. J., Malley, K. G. and Pajevic, S. (2011). Statistical Learning for Biomedical Data. Cambridge University
Press.

Shin, S. J., and Wu, Y. (2014). Variable selection in large margin classifier-based probability estimation with
high-dimensional predictors. Biometrical Journal 56, 594–596.

Simon, R. (2014). Class probability estimation for medical studies. Biometrical Journal 56, 597–600.
Steyerberg, E. W., van der Ploeg, T. and Van Calster, B. (2014). Risk prediction with machine learning and

regression methods. Biometrical Journal 56, 601–606.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society

Series B 58, 267–288.
Ziegler, A. (2014). Rejoinder. Biometrical Journal 56, 607–613.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


