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Discussion
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This is a discussion of the papers: “Probability estimation with machine learning methods for dichoto-
mous and multicategory outcome: Theory” by Jochen Kruppa, Yufeng Liu, Gérard Biau, Michael
Kohler, Inke R. König, James D. Malley, and Andreas Ziegler; and “Probability estimation with ma-
chine learning methods for dichotomous and multicategory outcome: Applications” by Jochen Kruppa,
Yufeng Liu, Hans-Christian Diener, Theresa Holste, Christian Weimar, Inke R. König, and Andreas
Ziegler.
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The authors are to be congratulated for providing a comprehensive and thorough review for probability
estimation in classification problems, one of the most widely used statistical tools in a variety of
biomedical applications. The authors have nicely summarized several well-established machine learning
methods as means of the probability estimation from both theoretical and practical perspectives.

High dimensional data are now becoming more and more common in biomedical sciences due to
the rapid advances of related technologies for date generation and storage. The needs of statistical
methods for analyzing such high-dimensional data have attracted lots of attention. For example, it is
not uncommon to predict a patient’s risk of having a certain cancer based on microarray or sequencing
data with possibly tens of thousands of covariates. However, in general most of statistical methods
including the probability estimation methods some of which are thoroughly summarized by Kruppa
et al. (2014a); Kruppa et al. (2014b) are not directly applicable when the number of predictor is
large. Here we provide some discussion on the use of the regularization framework in the probability
estimation methods discussed in Kruppa et al. (2014a); Kruppa et al. (2014b) while mainly focussing
on the SVM-based probability estimation readily extendable to any large margin classifiers (Wang
et al., 2007).

1 Regularization

Regularization is a general technique used in statistics and machine learning to prevent overfitting by
using a penalty on model complexity. Since the introduction of LASSO (Tibshirani, 1996), regulariza-
tion has often been regarded as an effective way of variable selection due to its sparse solution with an
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appropriate model complexity penalty and gained great popularity. The main critique of LASSO is that
it produces biased estimates for the large coefficients and there have been a vast of sparsity-inducing
penalties to tackle this problem. Examples include adaptive LASSO, the smoothly clipped absolute
deviation (SCAD), and minimax concave penalty (MCP) among many others. These three are known
to possess oracle properties (Fan and Li, 2001). See Fan and Lv (2010) and references therein for both
selective overviews and further details of variable selection methods including the aforementioned
penalties.

The regularization which is originally introduced under the conventional linear regression model
can be straightforwardly applied to the logistic regression by adding appropriate penalties to the
logistic likelihood. As a simplest choice, L1 (LASSO) penalized logistic regression can be considered
while different penalties such as SCAD and MCP can also be employed as reasonable alternatives to
L1 penalty, although the corresponding estimation requires more attentions in computation since they
are nonconvex penalties (Breheny and Huang, 2011).

2 Variable selection in SVM-based probability estimation via max penalty

The support vector machine (SVM) itself is a regularization method and performs quite competi-
tively even when the dimensionality is large, but its solution is not sparse due to the use of an L2
penalty. Wang et al. (2007) proposed a large margin classifier-based probability estimation method
by training weighted large-margin classifiers, such as weighted SVMs, and aggregating information
from different weighted classification boundaries. In order to achieve variable selection and probability
estimation simultaneously, we may couple Wang et al.’s method with L1 penalized weighted SVM or
SCAD penalized weighted SVM instead of the standard weighted SVM. In this case, it is impor-
tant to have an identical sparsity pattern across all the weighted SVMs when using different weights
in order to identify important variables. To achieve an identical sparsity structure across the differ-
ent WSVM problems, one can solve them together by using a max-type penalty as described in the
following. Denote βm = {βm j : j = 0, . . . , q}T and f (x;πm) = β0m + ∑q

j=1 β jmh j (x), m = 1, . . . , M,
where {h j (x), j = 1, . . . , q} denotes possible candidates of the basis functions often referred to
as to dictionary. The joint estimation minimizes the following objective function with respect to
βm, m = 1, . . . , M:

min
β1,...,βM

M∑
m=1

{
(1 − πm)

∑
i:yi=1

H1( f (xi;πm)) + πm

∑
i:yi=−1

H1( f (xi;πm))
}

+
q∑

j=1

ρλ

(
max

1≤m≤M
|β jm|

)
, (1)

where ρλ(·) denotes a penalty function such as the L1 and SCAD penalties and λ > 0 is the regular-
ization parameter which controls sparsity of the solution. We remark that the set of solutions of (1),
denoted by β̂m, m = 1, . . . , M, share an identical sparsity structure due to the use of a max-type penalty.
Note that a similar approach can be employed in order to achieve variable selection for the penalized
multiple logistic regression which requires to solve J − 1 optimization problems simultaneously.

For multicategory classification, many different sparse large-margin classifiers have been proposed
(Zhang et al., 2008 and references therein). A large margin classifier-based probability estimation
scheme was proposed for multicategory classification in Wu et al. (2010). If variable selection is
desired, an extension of the aforementioned max-type penalty can be applied to this multicategory large
margin classifier-based probability estimation scheme. Yet things become much more complicated since

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



596 S. J. Shin and Y. Wu: Variable selection in large margin

the number of weighted multicategory large margin classifiers escalates as the number of categories
increases. This can potentially be an interesting further research topic.

3 Concluding remarks

Penalized logistic regression is a straightforward extension from the conventional linear regression and
very easy to handle while it requires predominant logistic assumption which may not be valid in some
application. On the other hand, the aforementioned penalized versions of the SVM-based probability
estimates using a max-type penalty may be computationally intensive especially when response is not
binary, but they are model-free approaches and hence desirable when there is no prior knowledge on
p(x).
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