Biometrical Journal 56 (2014) 4, 601-606  DOI: 10.1002/bimj.201300297 601

Discussion

Risk prediction with machine learning and regression methods

Ewout W. Steyerberg® ', Tjeerd van der Ploeg?, and Ben Van Calster?

! Department of Public Health, Erasmus MC, Rotterdam, The Netherlands
2 Medical Centre Alkmaar/Inholland University, Alkmaar, The Netherlands
3 Department of Development and Regeneration, KU Leuven, Leuven, Belgium

Received 20 December 2013; revised 10 January 2014; accepted 10 January 2014

This is a discussion of issues in risk prediction based on the following papers: "Probability estima-
tion with machine learning methods for dichotomous and multicategory outcome: Theory" by Jochen
Kruppa, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R. Konig, James D. Malley, and Andreas
Ziegler; and "Probability estimation with machine learning methods for dichotomous and multicate-
gory outcome: Applications" by Jochen Kruppa, Yufeng Liu, Hans-Christian Diener, Theresa Holste,
Christian Weimar, Inke R. Ko6nig, and Andreas Ziegler.
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Cross-fertilization between medical statistics and epidemiology on the one hand and machine learning
techniques (MLT) on the other can be very stimulating (Kruppa et al., 2014a; Kruppa et al., 2014b).
Probability estimation is key to the area of risk prediction, which is growing in importance in medicine,
where personalized medicine becomes more and more possible through the combination of classical
risk predictors and biomarkers.

The first paper focuses on theoretical aspects, such as consistency of probability estimation (Kruppa
et al., 2014a). For example, for the nearest neighbor (NN) method the authors report that the error in
the estimation of probabilities converges to zero if certain assumptions are met and the sample size tends
to infinity, while this is not strictly true for random forests (RF). Consistency does not hold for logistic
regression (logreg), where the validity of probability estimates depends on the model specification.
Simulation studies are provided which show that each of these methods can fail to provide reasonable
predictions. Calibration properties were particularly poor for some variants of support vector machines
(SVMs) in some simulations, i.e. poor agreement between true probability and predicted probability.
Various performance criteria were studied, specifically squared scoring rules such as the Brier score.
Rank-based measures such as the area under the ROC curve were also used by Kruppa et al., for
which extensions to multicategory evaluation have recently been proposed, such as the Polytomous
Discrimination Index (Van Calster et al., 2012). Likelihood based performance measures might also
have been be used, such as Nagelkerke’s R> (or other variants, Austin and Steyerberg, 2013), but these
would probably have led to the same impression of performance. Finally, the paper illustrates that
some methods behave very similarly, e.g. two variants of NN, and SVM with linear kernel and logreg.

Below we first discuss tuning and implementation aspects of machine learning techniques (MLT)
and regression models (Section 1), followed by reflections on model uncertainty (Section 2) and a
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Figure 1 The probability of y = 1 in Simulation study I, for x, = 25. We simulated 5000 subjects,
where the selected FP function was (x,;+0.1)+(x,+0.1)*. The rcs function used 5 knots (4 df ).

possibly sensible modeling strategy (Section 3). We end with reflections on the potential role of MLT
in addition to regression modeling (Section 4).

1 Tuning, traditions, and modern approaches in regression modeling

One issue of attention with MLT is that they have various tuning parameters. These include the number
of neighbors to consider in NN, the regularization parameters and type of kernel for SVM, and the tree
specifications for RF, which essentially serve to control the complexity of the fitted model. Similarly,
various strategies and modeling approaches are possible for logreg.

First, prediction modelers of medical data should assess nonlinearity of continuous variables
(Harrell, 2001). The blind application of the logistic regression model y~x,;+x,, as was presented
in Simulation I, is not very realistic. The underlying circle model requires some kind of increasing and
decreasing functions for x; and x,. Any epidemiologist would do some form of data inspection, and
would immediately note the more or less squared relation with x; (Fig. 1). Preferences for modeling
non-linearity vary: Harrell advices restricted cubic splines (rcs) as a default tool in regression model-
ing (2001), while Royston and Sauerbrei (2008) advocate the use of fractional polynomials (FP). For
illustration, we fitted FP and rcs functions in a simulation with 5000 subjects (Fig. 1, using R packages
mfp and rms). The true effect of x, is a linear increase from x; = 0 to x; = 17, a probability of 1
between x; = 17 and x; = 33, and a linear decrease between x; = 33 and x; = 50. For the FP model, a
linear term plus square term are selected for x,. This FP model follows the true shape well, although
the probability of 1 is not reached, and low probabilities are underestimated. The rcs model (with
5 knots, 4 df') reached the plateau probability of 1, but slightly overestimated low probabilities at x; =
0 and x; = 50. The models y ~ fp(x,) + fp(x,) and y ~ res(x,) + res(x,) had Brier scores below 0.15,
which is equivalent to the best performing MLTs in this simulation (NN, SVM-Bessel). So, as may be
expected, a reasonably specified logreg model performs very well in simulation 1.

Second, whereas some form of regularization is indispensable for MLT due to their flexibility,
similar techniques exist for logreg to penalize or shrink model coefficients. Examples are L1 (LASSO)
or L2 (ridge) penalization, or Bayesian approaches. The LASSO method uses a L1 penalty to shrink
regression coefficients to zero (Tibshirani, 1996). Hence LASSO combines variable selection with
shrinkage while still providing adequate predictions, as observed in a large simulation study for
patients with an acute myocardial infarction (Steyerberg et al., 2000). Similar to the improvement of
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RF over CART for prediction (Austin et al., 2012), we should use penalized rather than traditional
approaches for logreg if comparisons are made between logreg and MLT.

2 Model uncertainty and parsimony

A major problem for prediction models is model uncertainty. We can usually specify various models,
which all reasonably describe the data (Breiman, 2001). In medical research, we may often have a
relatively long list of potential predictors, e.g. 49 for Application I (stroke) (Kruppa et al., 2014b). This
list was apparently based on solid grounds (a systematic literature review), but some reduction might
have been possible by posing stricter criteria on the evidence underpinning a potential prognostic
effect, such as consistency of a substantial effect size across multiple studies. It is not plausible that
a medical problem has 49 equally important predictors (where we recognize that “importance” may
depend on the modeling technique used). For example, we identified only 3 key predictors of 6 months
outcome in a systematic literature review for patients with traumatic brain injury (Mushkudiani et al.,
2008). In this prediction problem, Age, Glasgow Coma Scale—especially the Motor component—and
pupillary reactivity strongly predicted 6 months mortality (Steyerberg et al., 2008). Models with these
key predictors performed well in temporal and geographical validations (Roozenbeek et al., 2012).
Only minor improvements were noted by including other characteristics, such as CT scan findings,
while many clinicians would consider these characteristics vital for prediction.

Moreover, it is well known that medical data typically have a poor “‘signal to noise ratio” for
predictors. This has two implications. First, sample size and penalization are key factors to accurate
prediction modeling. This is true for regression models, and even more so for MLT. MLT are more
flexible than regression, which makes them more data hungry. A technique such as NN may be
extreme in data requirements, because of its fully nonparametric nature. Second, more parsimonious
model specifications may often be sufficient to capture the main structure of a prediction problem.
Extreme nonlinearity such as in the presented Simulation I is infrequently observed in medical research.
Complex higher order interactions may occasionally exist but impossible to identify in reasonably sized
medical data sets. This is supported by recent studies that report similar performance of logreg versus
MLT (Van Calster et al., 2009, 2010; Van der Ploeg et al., 2011; Austin et al., 2013).

3 Sensible prediction modeling in medical data?

Medical data sets are often of too small size to be able to reliably address difficult research questions,
such as determining which predictors are important and which are not. For example, reliably deter-
mining which of 49 characteristics predict mortality may require far larger numbers of events than
occurring among the training set of 1737 patients in Application I (Kruppa et al., 2014b). In addition,
backward elimination is a standard approach for variable selection in regression analysis, commonly
assessed using p < 0.05 for predictors in a prediction model. Many drawbacks have been discussed in
the past, including biased estimation of regression coefficients, distortion of the estimation of variance
and p-values, and instability of the selected set of predictors (Austin and Tu, 2004; Sauerbrei and
Schumacher, 1992; Steyerberg et al., 1999). For probability estimation the most relevant issue is that
stepwise selection leads to suboptimal prediction: only the most prominent predictors are selected, so
information from close-to-significant predictors is lost, and effects are exaggerated, which leads to too
extreme predictions.

Sensible modeling should find a balance between external knowledge from outside the data versus
what can be learned from the data. The smaller the data set available, the more we have to rely on
external information. This holds primarily for the list of candidate predictors in a model, which is
relevant to both MLT and logreg. But it also holds for issues such as whether we should rely on the
additivity assumption in logreg, i.e. whether we should consider statistical interaction terms. Some
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Table 1 Characteristics of MLT and regression modeling techniques.

Method Consistency Flexibility Sample size requirements Interpretability
NN + + - -
RF +/— + +/— —
SVM +/— + +/— —
Logreg — +/— + +

NN: nearest neighbors; RF: random forest using probability estimation trees; SVM: support vector machine; logreg: logistic
regression.

traditional statisticians might consider assessment of interactions as good modeling practice, while
others would warn for overfitting by the potential for inclusion of spurious interactions. Findings
in prior studies and sample size of the data under study are key considerations for such strategies
(Steyerberg, 2009).

4 A role for MLT in addition to regression?

MLT have various attractive properties such as its focus on regularization and on finding algorithms
and classification models that work, rather than focusing strongly on theory of an assumed stochastic
data model (Breiman, 2001). Clinical risk prediction research uses a similar philosophy, focusing on
performance issues such as discrimination, calibration, utility, and impact. Nevertheless MLT also
have various problems. If we aim for an important role of prediction models in medicine, we need to
follow a framework that not only includes model development, but involves a process of validation
and updating of models (Steyerberg et al., 2013). Updating may require adjustments to local settings
(van Houwelingen, 2000). In logreg, simple updating to the average probability is easily achieved by
changing the model intercept, while this is difficult for MLT.

Furthermore, interpretability to a clinical audience is usually essential (Kruppa et al., 2014b). Lo-
gistic regression models can transparently be presented, with insight in the relative effects of predictors
by odds ratios and in nomograms, score charts and other displays. Such presentations are not possible
for MLTs, although efforts to this end have been undertaken (Van Belle et al., 2012). We however
notice that models are increasingly implemented on the internet. For example, a risk calculator for the
probability of Lynch syndrome related mutation is accessed over 1000 times a month (Kastrinos et al.,
2011). Web-based calculation of risk may allow the underlying model to be quite complex, e.g. a MLT.

Some characteristics of MLT and regression modeling techniques are summarized in Table 1. An
NN approach may be attractive because of the theoretical property of consistency, but is data hungry
(requires huge sample sizes) and lacks interpretability, similar to RF and SVM. The consistency of RF
and SVM may not fully be proven, but the flexibility is large. Although logreg is not consistent in the
estimation of probabilities, the flexibility can be substantial with a modern modeling strategy. Naive
fitting of linear main effects and automatic selection methods such as backward stepwise selection with
p < 0.05 are suboptimal default implementations of logreg. Nonlinear transformations can readily be
made by rcs and FP functions, and the shrinkage or penalization methods such as LASSO provide
better than standard predictive performance. Sample size requirements for logreg depend on how much
external evidence is available, and how much the analyst is willing to rely on such evidence, e.g. on the rel-
evance and effects of predictors. Interpretability of effect sizes is readily possible by a medically trained
audience, and model updating can readily be achieved with simple or more advanced procedures.

All in all, we envision that logreg will remain the default modeling approach to probability estima-
tion in medical risk prediction, especially when applied with modern approaches. MLT may have a
supplementary role, in highly complex problems and to provide a comparison to regression results.
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