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This is the reply to the discussion of the two companion articles on the theory and application of
“probability estimation with machine learning methods for dichotomous and multicategory outcome”
by Kruppa et al. (2014; 534-563 and 564-583). The five discussion papers are Binder (2014; 584-587),
Boulesteix and Schmid (2014; 588-593), Shin and Wu (2014; 594-596), Simon (2014; 597-600), and
Steyerberg et al. (2014; 601-606).
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The remarks received by all of the discussants demonstrate that there is no silver bullet for analyzing
prediction models. I found their comments and critiques both challenging and stimulating, and I am
extremely grateful to them all for their efforts and for submitting their commentaries that provide
further valuable insights into probability estimation. Obviously, the comments address further aspects
and provide opinions from different angles, influenced by personal experiences. Unfortunately, this
rejoinder has to be left uncommented, last but not least for reasons of space. The comments and this
rejoinder are aimed to provide the basis for controversial discussion that should be continued in the near
future. Although I liked to reply to each of the comments, I decided for a summarizing reply focusing
on the most important central and recurring themes of (1) interpretability, (2) software, computational
transportability, and reproducible research, (3) probability estimation in n > p problems versus
p > n problems, (4) choice of tuning parameters, and, finally, (5) the role of logistic regression.

1 Interpretability

Statistics traditionally deals with inference, including effect size estimation and statistical significance
testing, while machine learning methods are generally used for classification, probability estimation,
or predictive modeling (Simon, 2014). In machine learning, the interpretability of the model is gen-
erally considered less important; for many machines it is even impossible. It might be this lack of
interpretability that led Steyerberg et al. (2014) to their statement that “logreg will remain the default
modeling approach to probability estimation in medical risk prediction, especially when applied with
modern approaches” and that machine learning techniques “may have a supplementary role, in highly
complex problems and to provide a comparison to regression results”. As pointed out by Boulesteix
and Schmid (2014), it might be the perspective that “should probably be asked and answered much
more clearly by statisticians and biomedical scientists in practice”. In my view, this could be phrased
differently: If the primary aim is to investigate the role of a specific independent variable, that is feature,
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or to better understand the underlying biology, a classical parametric regression model is probably the
model of choice. However, if the primary aim is the construction of a prediction model aiming at low
error estimates, interpretability of the model is of a lower-level concern. A specific machine learning
approach might be even preferable in this situation over a classical parametric regression method when
its performance fits the purpose of estimation.

Regarding the problem of marker identification, Binder (2014) stated that “the main danger then is
to miss or misjudge an important predictor of clinical events that could be useful for arriving at medical
decisions”. However, if the primary aim is to derive a model with excellent prediction performance,
the variables included in the final model are less important than the overall model performance.
Nevertheless, “the established markers might need to be given a special role in the training process”.
Binder (2014) and Steyerberg et al. (2014) criticized that uniform treatment of all potential predictors
provided seems to be a feature of many machine learning approaches. As pointed out by Binder, the
unequal treatment of independent variables is easily implemented for regression modeling approaches
by considering the effect of the new markers adjusted for established predictors. I admit that variables
cannot be selected preferentially in some of the machine learning methods. However, for random
forests it has been possible to select features with varying probabilities as split variables (Biau, 2012).
This is implemented in our own software Random Jungle (Kruppa et al., 2014b). Similarly, features
can be weighted differently in nearest neighbor methods in the distance calculations. I agree that the
use of external information is meaningful for low dimensional prediction problems, and modeling
should follow the general principles discussed in detail, for example by Harrell (2001). However, high
dimensional data problems might ask for different modeling strategies.

The two different perspectives interpretative and predictive modeling have also been discussed by
Shmueli (2010). The more general perspective seems to be that the pure predictive probability estimation
approach without additional interpretation is generally considered to be not important. However, as
pointed out by Steyerberg et al. (2014), “we can usually specify various models, which all reasonably
describe the data”. One such well-known example from the literature is the study of Golub et al. (1999)
who aimed at distinguishing between acute myeloid leukemia and acute lymphoblastic leukemia using
gene expression data shortly after the availability of microarrays. Their prediction models varied
between 10 and 200 independent variables, and all models were found to be equally accurate. As
analytically shown by Hand (2006) using a simple and intuitive model, only minor improvements in
predictions can generally be expected when variables are added to a prediction model.

Fifteen years after the pioneering Golub et al. paper, I would like to emphasize that the pure
predictive approach has been used and is currently used also with a strong focus on commercial use.
Examples, established in clinical practice (Scharl et al., 2012) are the diagnostic tests Oncotype DX®
and MammaPrint® that are both based on complex gene expression signatures. Alternatives to these
test systems include tests based on immunohistochemistry, and among the available products are IHC4
and Mammostrat®. Oncotype DX and MammaPrint are based on 21 and 70 genes, respectively, and
utilize complex gene expression profiles that obviously lack interpretability. Both test systems clearly
are in vitro diagnostic multivariate index assays and cleared by the Food and Drug Administration
(FDA) for commercial use. In contrast, the protein expression measures in the so-called IHC4 test are
based on ER/PR, HER?2, and Ki-67, which have been extensively studied in the literature so that a
test system including these markers is biologically meaningful. Irrespective of interpretability, the tests
are used in applications because test results affect treatment decision.

The pure predictive approach has been taken before. One example is the so-called triple test that
quantifies the risk of giving birth to an infant with Down’s syndrome using quantitative levels of
a-fetoprotein (AFP), human chorionic gonadotrophin (hCG), and unconjugated oestriol (uE;) in
the serum of pregnant women (Wald et al., 1988; Norgaard-Pedersen et al., 1990). In analogy to the
immunohistochemistry approaches, the number of molecular biomarkers used in these tests is limited,
and biological interpretations are available. However, the triple test that was used commercially until
approximately a decade ago, was a black box because formulae for calculations were not made available.
By using an extensive search of the entire space of AFP, hCG, and uE, values, we reconstructed the
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formulae of the risk calculations (Viethen and Ziegler, 1998). Furthermore, we were able to demonstrate
substantial differences in the estimated risks between the different risk assessment systems and a clear
lack of model validation.

Of course, if a model is interpretable, it is more likely to be accepted by clinicians compared to any
black box systems. However, concerning Oncotype DX and Mammaprint, model performance and
clinical utility turn out to be the more important aspects.

The acceptance of black box systems, such as the classical triple test or the more recent multimarker
tests Oncotype DX and Mammaprint might generally be higher for tests utilizing molecular informa-
tion, such as DNA, epigenetic, gene expression, metabolomic, or general protein expression markers
when compared with clinical variables. With molecular markers the user might be willing to accept
the general interpretation of a genetic or molecular involvement without understanding all specific
details. Thus, these tests are not entirely black but rather gray boxes with regard to interpretability. In
any case, the predictive models need to be externally or temporally validated (Altman and Royston,
2000).

2 Software and computational transportability

If a model is a black box, it is important that corresponding software objects are available (Boulesteix
and Schmid, 2014). The software should also be simple to use, and it needs to be validated. As
a result, the FDA has released a guideline on general principles of software validation. Ideally,
the software works independently of the users local operating system; otherwise, the entire system
needs to be validated to prevent errors such as the classical Microsoft Windows Calculator error
(http://support.microsoft.com/kb/72540/en-us). If the model is not too complex, nomograms are
an alternative to ready-to-use software packages. They are easy to use and provide in most cases the
basis for a simple model interpretation. However, they involve some manual calculations, and such
they are prone to human errors. Nevertheless, nomograms avoid the problems inherent to software
validation, and allow an ease transportable.

Software validity also plays a role for the implementation of machine learning methods. Traditional
regression models are available in many standard software packages (Boulesteix and Schmid, 2014),
which enable a relatively simple validation. In contrast, implementations of sophisticated and fast
machine learning approaches are not widespread, and the documentation could be rather cryptic. As
some of the packages are in a development stage, upward compatibility is not always guaranteed.
Furthermore, implementations may substantially differ between packages even within the same com-
puting environment, and they may lead to inconsistent results. For example, differences have been
identified in the implementation of importance measures for random forests (Schwarz et al., 2010). All
these aspects make software validation of these learning machines difficult.

Computational transportability covers different aspects. As pointed out before (Kruppa et al.,
2014a), the ability for model transportability differs substantially between machines. Specifically,
nearest neighbor methods require the transfer of the entire training dataset (Boulesteix and Schmid,
2014; Kruppa et al., 2014a). The transfer is even more demanding for bootstrapped nearest neighbors.
However, in some areas of research, such as gene expression analysis, the training data are often made
publicly available anyway. Even more, several journals, including the Biometrical Journal, emphasize
the reproducibility of research by asking authors to provide access to both data and computer code
(Hothorn et al., 2009). This approach allows reproducing the calculations produced by others (Diggle
and Zeger, 2010; Keiding, 2010). It also provides researchers with code that can be adapted for the
analyses of other datasets although this might be a nontrivial task. In statistical methodological
research, available code allows to understand all steps involved in a specific analysis. However, the
availability of data and code does not allow reproducing the entire research because many decisions
need to be made by the data monitoring and data management teams as well as the data analyst
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before the master file that is used for analyses is available (Keiding, 2010; Peng, 2011; Anonymous,
2014).

When comparing random forests with nearest neighbors, transportability of a model is simpler for
random forests because only the structure of all trees needs to be made available, and these can be easily
displayed as a 2D array. The simplest representation is achieved for the standard logistic regression
model, where only regression coefficients need to be made available. Boulesteix and Schmid (2014) note
that the clear definition of all clinical variables and their measurement is important to transport the
model. Unfortunately, this information also includes all data quality control and data transformation
steps prior to the use of machine learning. To make these data available can be extremely challenging
or even impossible for high throughput molecular data, when “low-level statistical analysis”, such as
transformations, filtering, and normalization procedures are applied in quality control steps prior to
“high-level statistical analysis” (Ziegler et al., 2008). To give an example, quantile normalization is
specific to a single training dataset. These obstacles hinder the transportability of a model, even when
a standard regression model, such as logistic regression, is used.

3 Probability estimation in n > p versus p > n problems

Shin and Wu (2014) point out that most statistical methods including the probability estimation
methods are not directly applicable in p > n problems, that is when the number of features is large.
Two different aspects need to be considered here.

First, more efficient implementations of machine learning methods for high dimensional data are
urgently required. For example, some researchers have used support vector machines with linear
kernels for p > n problems, most likely because of the computational burden in case of the use of
nonlinear kernels; see Shin and Wu (2014). In random forests, the computational complexity also
increases substantially with the number of features available as split variable (mtry), and the choice of
a high mtry value or even the tuning of mtry is difficult in most packages because of computational
restraints in most implementations (Schwarz et al., 2010).

Second, p > n problems seem to require different modeling strategies than n > p problems, which
have been studied over many years (Harrell et al., 1996; Harrell, 2001). Specifically, n > p problems
generally allow the explicit modeling of continuous independent variables, including restricted splines
or fractional polynomials for dealing with nonlinearity (Steyerberg et al., 2014). Furthermore, inde-
pendent variables may be selected carefully through a systematic literature search, and they may even
be weighted according to external knowledge. This explicit modeling approach seems to be impractical
in p > n problems and is likely to yield unstable models. For example, a modern gene expression array,
such as Affymetrix’ Human Transcriptome Array 2.0 contains almost 300,000 transcripts, that is con-
tinuous independent variables. This would lead to more than 1 million parameters to be investigated
when either cubic splines with five knots or fractional polynomials of degree 2 are used. Procedures
for the automated stable identification of a reasonable nonlinear functional relationship between the
feature and the outcome should avoid overfitting and should also be robust against outliers. The
reliable identification of all variables predicting the endpoint in a multivariable model is, however,
considered to be impossible because all samples have to be considered small according to the curse of
dimensionality (Kruppa et al., 2014a).

As a result, it is important to distinguish between the identification of (1) a relevant variable for the
inclusion in a model, (2) its functional form in a model, and (3) its causal influence. Phrased differently,
whether an independent variable should be included in a model or not can be answered more stable
than the question about its functional form. Whether the independent variable is causal is another
question and related to causality; see for example the Hill criteria (Hill, 1965).

Feature selection has been identified in three commentaries as a major issue in p > n problems
(Binder, 2014; Shin and Wu, 2014; Steyerberg et al., 2014). For example, cost can be reduced substan-
tially for molecular measurements in clinical routine if an array can be used which has been tailored to
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the specific problem instead to a more global question that is mostly intended for research purposes
with no commercial interest. Furthermore, analytic validity is generally higher for smaller microarrays
and specific problems.

4 Tuning parameters

Steyerberg et al. (2014) states that machine learning techniques “are more flexible than regression,
which makes them more data hungry. A technique such as [nearest neighbors] ... may be extreme in
data requirements, because of its fully nonparametric nature”. Diaz-Uriarte and Alvarez de Andrés
(2006) proposed a backward feature selection method for random forests, and they suggested that
there is little need to fine-tune the other parameters for excellent performance. Khondoker et al. (2013)
and Kruppa et al. (2013) considered, however, various tuning parameters for random forests, such as
the terminal nodesize (nodesize), the number of trees to be grown in a forest (ntree) in addition
to mtry. It is intuitively clear that more trees are required in applications for probability estimation
if the terminal nodesize is small. However, there are many more tuning options inherent to random
forests. Specifically, it is unclear which split criterion should be used, whether bootstrap samples
should be drawn with replacement or without replacement, how large the dataset from the resampling
should be, or whether bootstrapping should be done with stratification by the proportion of samples
in each category of the outcome variable (Ziegler and Konig, 2014). Furthermore, there are several
conceptually different principles for generating random forests (Ziegler and Konig, 2014).

Parametric regression models, even more penalized regression models also allow for great flexibili-
ties. First, one may choose between several regularization approaches, such as LASSO or elastic net.
Second, in case of continuous variables, the functional form of the variable can be modeled in many
different ways to allow for nonlinearity. Similarly, multicategory independent variables may be treated
as continuous variables or several categories may be grouped. Third, interactions between variables
can be integrated into the model as well and, finally, variable selection can also be performed. Penalized
regression models might therefore also be “data hungry”. Therefore, I agree more with Boulesteix and
Schmid (2014) who stated that “the choice of the learning method, parameter tuning, and computa-
tional transportability are some of the remaining challenges that machine learning methods will have
to address to establish themselves as prediction tools in biometrical practice”. This applies, however,
to both machine learning and classical regression methods.

5 Role of logistic regression

Steyerberg et al. (2014) grants machine learning approaches only a supplementary role for probability
estimation in medical risk prediction. I fully agree with their interpretation for n > p problems, where
standard modeling approaches are available. However, in high dimensional data analysis machine
learning methods may have more than a supplementary role although they clearly are computationally
intensive (Shin and Wu, 2014).

Parametric models, such as logistic regression, have a higher rate of convergence and a lower
variability, if the model is correctly specified. However, one should note that omission of variables leads
to model misspecification in both the machine learning methods and parametric regression models.
Machine learning methods are generally nonparametric and a misspecification of the functional
form affects parametric regression models only. If the model is misspecified, the resulting maximum
likelihood estimator still reaches a minimum and may be called minimum ignorance estimator (White,
1982). The relevance of the misspecification will, however, be application specific, and may be open
for discussion.

Animportant advantage of parametric regression, such as logistic regression, over almost all machine
learning approaches is, however, its calibration ability. Specifically, if the model is transferred to a new
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setting with a different baseline probability, the original estimate of the intercept does not match
the intercept of the new dataset anymore. With logistic regression, it is simple to only estimate the
intercept on the new dataset, while keeping all other regression coefficients fixed. This is a simple way
to calibrate the model (Konig et al., 2008). In machine learning, calibration generally is impossible,
and approaches for model calibration are urgently required.
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