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Current algorithms for association rule mining from transaction data
are mostly deterministic and enumerative. They can be computa-
tionally intractable even for mining a dataset containing just a few
hundred transaction items, if no action is taken to constrain the
search space. In this paper, we develop a Gibbs-sampling–induced
stochastic search procedure to randomly sample association rules
from the itemset space, and perform rule mining from the reduced
transaction dataset generated by the sample. Also a general rule
importance measure is proposed to direct the stochastic search so
that, as a result of the randomly generated association rules consti-
tuting an ergodic Markov chain, the overall most important rules in
the itemset space can be uncovered from the reduced dataset with
probability 1 in the limit. In the simulation study and a real genomic
data example, we show how to boost association rule mining by an
integrated use of the stochastic search and the Apriori algorithm.

association rule | Gibbs sampling | transaction data | genomic data

Association rule mining (1, 2) in many research areas such as
marketing, politics, and bioinformatics is an important task.

One of its well-known applications is the market basket analysis.
An example of association rule from the basket data might be
that “90% of all customers who buy bread and butter also buy
milk” (1), providing important information for the supermarket’s
management of stocking and shelving. Instead of mining all as-
sociation rules from a database, an interesting and useful task is
to discover the most important association rules for a given
consequent. For instance, a store manager of Walmart might be
interested in knowing which items most of the customers pur-
chased given that they got automotive services done in the store.
For a genomic dataset, one might be interested in finding which
SNP (single nucleotide polymorphism at certain loci in a gene)
variables and their values imply a certain disease with the highest
probability. The focus of this paper is to identify the most im-
portant association rules in a transaction dataset.
Let us formally define the problem of association rule mining

using the notations of ref. 3. Define I = fI1, I2, . . . , Img as a set of
m items called the “item space” and D= ft1, t2, . . . , tng as a list of
transactions, where each transaction in D is just a subset of items
in I, i.e., tj ⊂ I, j= 1, . . . , n. An association rule is defined as an
implication of the form X ⇒Y where X ,Y ⊂ I and X ∩Y =0/.
The sets of items (for short, “itemsets”) X and Y are called
“antecedent” and “consequent” of the rule, respectively. The
support of an itemset, X, suppðXÞ is defined as the proportion of
transactions in D which contain X. The confidence of an asso-
ciation rule is defined as confðX ⇒Y Þ= ½suppðX&Y Þ�=suppðXÞ,
where X&Y is the itemset obtained by amalgamating X with Y. The
support of an itemset measures its commonness and the confidence
of an association rule measures its association strength. By the es-
sential meaning of support, we can also define the support for a rule
X ⇒Y, which is just suppðX ⇒Y Þ≡ suppðY ⇒XÞ≡ suppðX&Y Þ.
Constraint-based search is mostly used in current algorithms

to mine association rules. For instance, the Apriori algorithm (1)
mines all rules satisfying a user-specified minimum support or
minimum confidence, and maximum length. It is difficult to use

such an algorithm in a dense dataset because it either searches
through too many rules being computationally infeasible if the
constraint is low, or misses the important ones otherwise. Some
rule-mining algorithms use well-defined metrics to identify the
most important association rules (4). But, they also use de-
terministic and exhaustive search, consequently becoming com-
putationally intractable when applied to a dense dataset with,
say, a few hundred items in the item space.
In this paper, we present a stochastic search algorithm to mine

the most important, or optimal, association rules from a trans-
action dataset without information loss. The motivation comes
from a genomic dataset of a disease and hundreds of SNP var-
iables, and from the desire to mine the most important associ-
ation rules for the disease outcome. Because the deterministic
search algorithms are not able to cope with the computing in-
tensity and immensity for this dataset, we have developed the
stochastic algorithm to overcome the difficulty.

A New Algorithm Based on Gibbs Sampling
Motivation. Consider a dataset for supervised learning which
contains observations of a response variable and a number of
predictor variables from a sample of individual subjects. Such a
dataset can be converted into a transaction dataset for associa-
tion rule mining if both the response and the predictors are of
categorical type. For example, datasets used in genome-wide
association studies often consist of observations of categorical
response and predictors on subjects. Here the response is a
disease outcome having two categories, case (C) and noncase
(NC), and each predictor is the so-called SNP variable having 3
categories corresponding to 0, 1, and 2 copy numbers of the
minor allele at the loci. In this case, the response variable can be
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represented by 2 response items, and each predictor variable can
be represented by 3 predictor items.
To present the above discussion more explicitly, let n be the

total number of transactions and k be the total number of pre-
dictor items. Denote the two response items as IC and INC. Then
the association rules of our interest have the antecedent being a
subset of fI1, . . . , Ikg and the consequent being either IC or INC.
These rules represent the associations between values of various
predictor variables and the response variable which are different
from those revealed by a supervising learning model such as the
logistic or log-linear regression model.
An alternative representation of the transactions is binary

vectors. Let Js = 1 or 0 indicate the presence or absence of item s
for s= 1, . . . , k,C,NC. Denote J = ðJ1, . . . , JkÞ. The components
of this binary vector are not necessarily independent of each
other and the involved dependence provides a probabilistic
interpretation to the associations among all of the items. Each
transaction is an observation of the binary vector. Therefore,
the collection of association rules of our interest can be divided
into two families as RC = fJ⇒ IC,   ðJ1, . . . , JkÞ∈ f0,1gkg and
RNC = fJ⇒ INC,   ðJ1, . . . , JkÞ∈ f0,1gkg. Let I = fI1, I2, . . . , Ikg.
Denote the power set of I by 2I that is the itemset space con-
sisting of all possible itemsets of I. Given the consequent being
either IC or INC, one has to search through 2I for all possible
association rules. The following two properties clearly hold for
this transaction dataset:

Property 1: 0≤ suppðJ⇒ I−Þ≤ confðJ⇒ I−Þ≤ 1, where I− rep-
resents IC or INC.

Property 2: Because JC + JNC = 1, confðJ⇒ ICÞ+ confðJ⇒ INCÞ= 1.

Our interest is to find association rules with high confidence. A
constraint-based algorithm like the Apriori is computationally chal-
lenging when the item space is too large. It is even more difficult
when the rules with high confidence have very low support. An ex-
ample given in ref. 5 is that the forestry society FallAll conducted
association rules mining to a dataset of 1,000 observations on marsh
sides for providing advice on draining swamps to grow new forests.
The Apriori algorithm was applied to this dataset by specifying the
minimum support and confidence as 0.05 and 0.80, respectively. But,
a strong association rule of confidence 1.0 and support 0.04 was
missed with this set of constraints. In general, mining association rules
in a dense dataset can miss important rules and get misinformed by
noninformative rules produced due to improper constraints. This
mishap motivates us to propose a random sampling and search
procedure by defining a probability distribution for all possible as-
sociation rules from the power set of I, i.e., 2I, to find out those rules
having high-level combined importance of confidence and support.

New Algorithm. The probability distribution for sampling and
searching important association rules entails incorporating
both support and confidence of the rules into the procedure.
For this, we first define a new measure for association rules
in RC ∪RNC and call it the “importance,” which is of the form
gðJ⇒ I−Þ= g−ðJÞ= f ðsuppðJ⇒ I−Þ, confðJ⇒ I−ÞÞ, for a given as-
sociation rule J⇒ I− with I− being IC or INC. Here f is a user-
specified positive increasing function reflecting certain combined
importance of the support and confidence of the rule. Plausible
choices of f are the minimum, summation, or product of the
support and confidence. Once f is specified, our aim becomes
finding the most important association rules in RC and RNC
which can be achieved by the following random-sampling-based
search procedure.
We illustrate the idea of this procedure by focusing on rules in

RC. The same applies for finding the most important rules in
RNC. In light of the non-Bayesian optimization idea of ref. 6, we
propose a probability distribution defined on RC as

pCðJÞ=PðJ⇒ ICÞ= eξgðJ⇒ICÞP
all  JeξgðJ⇒ICÞ, [1]

where ξ> 0 is a tuning parameter. The most important rule in
RC, denoted as Jopt ⇒ IC, is also the one maximizing pCðJÞ over
RC, i.e., Jopt = arg maxJpCðJÞ. This implies that Jopt can be found
(with probability 1) from a random sample of J s generated from
pCðJÞ if the sample size is sufficiently large. It can be proved
that Jopt appears most frequently and has the largest value of
gðJ⇒ ICÞ in the sample with probability 1. However, generating
a random sample from pCðJÞ is not trivial when k is not small,
because the rule space RC becomes huge and the normalizing
denominator in pCðJÞ becomes intractable in evaluation. It turns
out that the method of Gibbs sampling can be used to generate
random samples from pCðJÞ, where we need all conditional prob-
ability distributions of Js given J−s:

pCðJs = 1jJ−sÞ= pCðJs = 1, J−sÞ
pCðJ−sÞ

=
pCðJs = 1, J−sÞ

pCðJs = 1, J−sÞ+ pCðJs = 0, J−sÞ,

pCðJs = 0jJ−sÞ= 1− pCðJs = 1jJ−sÞ

for s= 1,2, . . . , k. Here J−s is the subvector of J with Js removed
and ðJs, J−sÞ is the vector with Js being put back into its original
position in J.
Then the Gibbs sampling algorithm for generating J s from

pCðJÞ is given as the following:

i) Arbitrarily choose an initial vector Jð0Þ = ðJð0Þ1 , . . . , Jð0Þk Þ;
ii) Repeating for j= 1,2, . . . ,M, the antecedent JðjÞ of the rule

ðJðjÞ ⇒ ICÞ is obtained by generating JðjÞs , s= 1,2, . . . , k sequen-
tially from the Bernoulli distribution pCðJsjJðjÞ1 , . . . , JðjÞs−1,
Jðj−1Þs+ 1 , . . . , J

ð j−1Þ
k Þ;

iii) Return ðJð 1Þ, . . . , JðMÞÞ for the association rules sample
fJðjÞ ⇒ IC; j= 1,⋯,Mg.

Table 1. Association rules and their measurements

Rules Supp. Conf. g−ð · Þ

Frequencies

ξ= 3 6 10

I1 ⇒ IC 0.47 0.890 0.420 0.242 0.382 0.595
I1, I3 ⇒ IC 0.28 1.000 0.280 0.190 0.194 0.166
I3 ⇒ IC 0.33 0.650 0.210 0.171 0.155 0.095
I1, I2 ⇒ IC 0.21 0.910 0.190 0.113 0.093 0.064
I1, I2, I3 ⇒ IC 0.11 1.000 0.110 0.101 0.063 0.021
I2 ⇒ IC 0.22 0.470 0.100 0.094 0.057 0.035
I2, I3 ⇒ IC 0.12 0.570 0.070 0.089 0.056 0.024
I2 ⇒ INC 0.25 0.53 0.13 0.182 0.240 0.345
I3 ⇒ INC 0.18 0.35 0.06 0.154 0.173 0.161
I2, I3 ⇒ INC 0.09 0.43 0.04 0.149 0.146 0.136
I1 ⇒ INC 0.06 0.11 0.007 0.125 0.115 0.091
I1, I2 ⇒ INC 0.02 0.09 0.002 0.138 0.101 0.097

“·” in g–(·) represents the association rule J⇒ IC (upper part) or J⇒ INC (lower part).

Table 2. Items appearing in the random sample

T1 Item I390 I3 I2 I1
Proportion 0.01 0.43 0.51 0.55

T2 Item I390 I3 I2 I1
Proportion 0.01 0.43 0.51 0.55

T3 Item I390 I2 I1 I3
Proportion 0.01 0.55 0.60 0.85
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The generated sequence fJð1Þ,⋯, JðMÞg is actually a Markov
chain with its stationary distribution being pCðJÞ and it can be
shown that the most frequent rule occurring in the generated
sample converges to Jopt with probability 1 as M→∞. Moreover,
those most important association rules in RC are more likely
to appear the most frequently in the generated sample than
other less important ones, provided that the sample size M is
sufficiently large. In the cases that the importance values of many
important association rules are large but very close to each other,
choosing a larger value for the tuning parameter ξ increases
the probability ratio of every two rules, ½pCðJ1Þ�=pCðJ2Þ=
eξðgðJ1⇒ICÞ−gðJ2⇒ICÞÞ, which helps differentiate the more important
rules from the less important ones.
This is the framework of our random search procedure. We

remark that the function g in [1] can be replaced by another
interesting measure of association rules such as lift and leverage
(4). Thus, a random sample can also be easily generated ac-
cording to that interesting measure.
Once fJð1Þ,⋯, JðMÞg is generated, the optimal association rules

in RC, which have the highest importance, can be approximated
by the association rules with the near-highest frequencies in the
sample. The approximation precision can be achieved as high as
one wants provided that the sample size is sufficiently large. Note
that if the item space is very large, the generation of a long sample is
computationally expensive. However, it is possible that in the ran-
dom sample of a relatively small size M, the association rules could
all be different from each other and each has the same frequency
1=M. In this case, it is possible that none of the rules is optimal.
Instead, we can compute the frequency for each item that ever
appeared in the antecedents of the sampled rules. The frequency
for item Ii is

PM
j=1J

ðjÞ
i =M for i= 1,2, . . . , k. We would obtain a

subset of items that appear most frequently. Then we can apply the
Apriori algorithm on the itemset space generated by the selected
items to mine the optimal rules. Our simulation study shows that
the random sample obtained by the Gibbs sampling method can
largely reduce the itemset space for search and retain the most
frequent predictor items from the optimal association rules simul-
taneously. In the next section we will elaborate how to use the
generated sample of rules.

Simulation Study and Real Data Application
In this section, we present several numerical examples, first
based on simulated data, and then on real data to demonstrate
the performance of the random-sampling-based search pro-
cedure in different scenarios.

Simulation Studies. A transaction dataset containing strong asso-
ciation rules can be obtained by using the R package MultiOrd
(7) to generate a list of binary vectors from a multivariate
Bernoulli distribution of correlated binary random variables
with a compatible pair of mean vector p and correlation matrix
R (8). We start with a small dataset to show that our method is
able to find the optimal association rules which are the same as
the ones found by using the Apriori algorithm.
Example 1. Suppose a small transaction dataset has k= 3 predictor
items I1, I2, I3 and two response items IC, INC. Also suppose that the
marginal probability of vector ðJ1, J2, J3, JCÞ is p= ð0.5, 0.5, 0.5, 0.5Þ
and the correlation matrix for ðJ1, J2, J3, JCÞ is

R=

0
BB@

1 0 0 0.8
0 1 0 0
0 0 1 0.2
0.8 0 0.2 1

1
CCA.

Then we generate n= 100 binary vectors of ðJ1, J2, J3, JCÞ according
to ðp,RÞ. We compute JNC = 1− JC. Then we obtain a transaction
dataset containing 100 transactions on 5 items I1, I2, I3, IC, INC.
For each response item, there is in total 2k − 1= 7 possible
association rules. We first use the Apriori algorithm (3) to mine
all association rules of the form ðJ⇒ ICÞ or ðJ⇒ INCÞ with sup-
port and confidence greater than 0 and summarize the results
in Table 1. We choose g−ðJÞ= suppðJ⇒ I−Þ× confðJ⇒ I−Þ with
I− = IC or INC depending on mining RC or RNC, for illustration
purposes. Then we use the proposed Gibbs sampling algo-
rithm to generate three random samples of size M = 1,000 of
association rules from the transaction dataset by choosing
ξ= 3,6,10, respectively. The frequency of each association rule
appearing in each sample is shown in Table 1. The rank of
the frequency conforms to that of the importance g−ðJÞ, showing

Table 3. Top 10 frequent items appearing in the rules identified by the Apriori algorithm for
each dataset T1,T2, or T3

T1 Item I44 I292 I135 I97 I286 I184 I187 I3 I1 I2
Proportion 0.019 0.021 0.023 0.024 0.025 0.025 0.027 0.493 0.496 0.500

T2 Item I14 I7 I4 I15 I8 I6 I13 I3 I1 I2
Proportion 0.087 0.090 0.091 0.093 0.105 0.130 0.136 0.496 0.499 0.500

T3 Item I9 I4 I6 I10 I7 I5 I8 I1 I2 I3
Proportion 0.434 0.436 0.438 0.444 0.445 0.445 0.447 0.498 0.499 0.500

Table 4. Top 10 important association rules from T1 (left), T2 (middle), and T3 (right) and their frequencies in the relevant sample

Association
rules Supp Conf gð · Þ Frequency

Association
rules Supp Conf gð · Þ Frequency

Association
rules Supp Conf gð · Þ Frequency

I2 ⇒ IC 0.787 1.000 0.787 0.20 I2 ⇒ IC 0.787 1.000 0.787 0.20 I1, I3 ⇒ IC 0.783 0.996 0.780 0.26
I3 ⇒ IC 0.783 1.000 0.783 0.12 I3 ⇒ IC 0.783 1.000 0.783 0.12 I1, I2, I3 ⇒ IC 0.783 0.996 0.780 0.23
I1 ⇒ IC 0.783 1.000 0.783 0.26 I1 ⇒ IC 0.783 1.000 0.783 0.26 I3 ⇒ IC 0.793 0.979 0.777 0.15
I2, I3 ⇒ IC 0.783 1.000 0.783 0.12 I2, I3 ⇒ IC 0.783 1.000 0.783 0.12 I2, I3 ⇒ IC 0.787 0.987 0.777 0.21
I1, I2 ⇒ IC 0.783 1.000 0.783 0.10 I1, I2 ⇒ IC 0.783 1.000 0.783 0.10 I1, I2 ⇒ IC 0.783 0.983 0.770 0.08
I1, I3 ⇒ IC 0.780 1.000 0.780 0.10 I1, I3 ⇒ IC 0.780 1.000 0.780 0.10 I1 ⇒ IC 0.783 0.975 0.764 0.03
I1, I2, I3 ⇒ IC 0.780 1.000 0.780 0.09 I1, I2, I3 ⇒ IC 0.780 1.000 0.780 0.09 I2 ⇒ IC 0.787 0.963 0.758 0.03
I3, I286 ⇒ IC 0.213 1.000 0.213 0.00 I1, I13 ⇒ IC 0.450 1.000 0.450 0.00 I3, I8 ⇒ IC 0.610 0.995 0.607 0.00
I1, I286 ⇒ IC 0.213 1.000 0.213 0.00 I2, I13 ⇒ IC 0.450 1.000 0.450 0.00 I3, I5 ⇒ IC 0.607 1.000 0.607 0.00
I2, I286 ⇒ IC 0.213 1.000 0.213 0.00 I1, I2, I13 ⇒ IC 0.450 1.000 0.450 0.00 I1, I3, I8 ⇒ IC 0.607 1.000 0.607 0.00

“·” in g(·) represents the association rule J⇒ IC.
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the good performance of our method. It is easy to see that the
frequencies have more power to differentiate the most important
rules from the less important ones, as the value of ξ increases.
Next we illustrate how to use the random search procedure

and how well it performs on three more complex datasets.
Example 2.Consider an item space I = ðI1, I2, . . . , I398, IC, INCÞwith
k= 398 predictor items and two response items. Set each mar-
ginal probability of ðJ1, J2, J3, JCÞ to 0.8, and the marginal prob-
ability of the other predictor items to 0.2, i.e.,

p= fp1, p2, p3, p4, . . . , p398, pCg
= f0.8, 0.8, 0.8, 0.2, . . . , 0.2, 0.8g.

The correlation matrix R between items is set to be an identity
matrix except that RðJs1 , Js2Þ= 0.99 where s1, s2 ∈ f1,2,3,Cg. Then
we generate n= 300 binary vectors from ðJ1, J2, . . . , J398, JCÞ accord-
ing to ðp,RÞ. The transaction dataset T1 is accordingly formed to
contain 400 items and 300 transactions knowing that the status of
INC in each transaction is completely determined by JNC = 1− JC.
Example 3. The transaction dataset T2 has the same item space,
the same number of transactions, and the same correlation
matrix as T1 but a different marginal probability vector

p= fp1, p2, p3, p4, . . . , p20, p21, . . . , p398, pCg
= f0.8, 0.8, 0.8, 0.5 . . . , 0.5, 0.2, . . . , 0.2, 0.8g.

Example 4. The transaction dataset T3 also has l= 400 items and
n= 300 transactions. The marginal probability vector is

p= fp1, p2, p3, p4, . . . , p10, p11, . . . , p398, pCg
= f0.8, 0.8, 0.8, 0.6 . . . , 0.6, 0.2, . . . , 0.2, 0.8g.

The correlation matrix R is an identity matrix except that

RðJs1, Js2Þ= 0.9,   for  s1 ≠ s2;   s1, s2 ∈ f1,2,3,Cg,
RðJs1, Js2Þ= 0.5,   for  s1 ≠ s2;   s1, s2 ∈ f4, . . . , 10,Cg,
RðJs1, Js2Þ= 0.5,   for  s1 ∈ f1,2,3g, s2 ∈ f4,5, . . . , 10g.

From the settings of T1, T2, and T3, we see that items I1, I2, and I3
have high support and the antecedents of the important associ-
ation rules in these datasets most likely contain some of I1, I2,
and I3. We now use the Apriori algorithm and the new Gibbs-
sampling-based search procedure to see whether we can unveil
these attributes in T1, T2, and T3.
To mine the association rules in RC of each transaction

dataset, a random sample of size M = 100 association rules is
generated from each RC using the new algorithm. We find that
the larger ξ is, the more frequently the three items I1, I2, I3 ap-
pear in the generated sample. When ξ= 100, all items ever

appearing in the sample are I1, I2, I3, and I390. Proportions of the
sampled association rules containing each of ðI1, I2, I3, I390Þ from
T1, T2, and T3 are shown in Table 2. The item I390 appears only
once in each sample, thus seeming not to have high support in
the datasets.
We then apply the Apriori algorithm with the constraint of

minimum support 0.05 and minimum confidence 0.6 on the
search. This identifies 31,525, 170,600, and 442,191 association
rules from T1,T2,T3 respectively. The 10 most frequent items
appearing in these rules for each dataset and their respective
proportions of appearance are shown in Table 3. For each
dataset the top 10 of the identified rules according to the im-
portance gð · Þ are also calculated and presented in Table 4, to-
gether with their respective frequencies of appearance in the
corresponding random sample generated. Ranks of the top 10
rules in terms of the frequencies in Table 4 more or less conform
to their ranks in terms of the importance measure. We find that
as the dependence structure of the transaction dataset becomes
more complicated, our algorithm can generate a random sample
containing the most important association rules that are con-
firmed by the Apriori algorithm.
To mine the association rules in RNC, we first use the Apriori

algorithm with the minimum support and confidence setting
(0.05, 0.6) for each dataset, and find no rules. But, a conclusion
of having no important association rules in RNC cannot be drawn
yet because it is computationally infeasible to use the Apriori
algorithm to search a larger collection of itemsets by weakening
the minimum support and confidence constraint. Then, in the
hope of making a difference we use the proposed algorithm with
various values for ξ. The number of items ever appearing in the
generated samples decreases from 398 to around 100 when
ξ= 1,000. But, it could not be further reduced by increasing ξ
except for T1. Also we are still unable to find any important rules
from the generated samples. Hence we tend to conclude that
there are no important association rules inRNC for the simulated
datasets T1, T2, and T3. Now we apply the Apriori algorithm with
minimum support and confidence (0.05, 0.6) on the subset of
each transaction dataset that includes only INC and other items
ever appearing in each generated random sample using ξ= 1,000,
and again are unable to find any important rules of the form
ðJ⇒ INCÞ. These results conform to the setting used to simulate
the transaction datasets T1, T2, and T3, where pNC = 0.2 is small.
From Examples 2–4, we see that our method is capable of

finding the most important association rules that also appear
most frequently in the random sample generated by properly
choosing a large value for ξ. In cases where the item space is
large and the support of rules is very low, our proposed algo-
rithm can be combined with the Apriori algorithm to more ef-
ficiently tackle the association rule mining task.

Table 5. Top 10 important association rules in RNC for the SNPs data and their sampling
frequencies of appearance

Frequency in the random
sample

Association rules SuppðJ⇒ INCÞ ConfðJ⇒ INCÞ gðJ⇒ INCÞ ξ=100 ξ=200 ξ= 300

I136 ⇒ INC 0.803 0.848 0.681 0.220 0.727 0.957
I906 ⇒ INC 0.812 0.830 0.674 0.117 0.123 0.030
I110 ⇒ INC 0.795 0.839 0.667 0.037 0.050 0
I10 ⇒ INC 0.790 0.842 0.665 0.027 0.030 0
I136, I906 ⇒ INC 0.786 0.845 0.664 0.023 0.023 0.003
I874 ⇒ INC 0.795 0.831 0.660 0.023 0 0
I136, I874 ⇒ INC 0.773 0.851 0.658 0.023 0 0
I110, I136 ⇒ INC 0.769 0.854 0.657 0.023 0.003 0
I10, I136 ⇒ INC 0.764 0.858 0.656 0.020 0.003 0
I191 ⇒ INC 0.795 0.824 0.655 0.017 0.020 0

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1604553113 Qian et al.

www.pnas.org/cgi/doi/10.1073/pnas.1604553113


Real Data Application. We apply the proposed Gibbs sampling
method to analyze a case-control dataset that contains genomic
observations for n= 229 women, 39 of which are breast cancer
cases obtained from the Australian Breast Cancer Family Study
(ABCFS) (9) and 190 of which are controls from the Australian
Mammographic Density Twins and Sisters Study (AMDTSS)
(10). The dataset is formed by sampling from a much larger data
source from ABCFS and AMDTSS. Each woman in the dataset
has 366 genetic observations being the genotype outcomes (from
a Human610-Quad beadchip array) of the 366 SNPs on a specific
gene pathway suspected to be susceptible to breast cancer. An
SNP variable typically takes a value from 0, 1, and 2, repre-
senting the number of the minor alleles at the SNP loci. But, in
the current dataset there are 31 SNPs, with only 2 of the 3
possible values being observed. Our task is to find out whether
there are any SNPs having significant associations with the risk of
breast cancer and what these SNPs are. One could use a logistic
model to tackle this task. But, it is difficult due to that the
number of predictor variables (i.e., SNPs) in the data is much
larger than the number of observations, and the SNPs are highly
associated with each other due to linkage disequilibrium. Be-
cause this dataset can be easily turned into a transaction one, we
are able to use an association rule-mining method to undertake
the task. The binary transaction dataset converted from our case-
control dataset contains 1,067 predictor (SNP) items (denoted as
I1, . . . , I1067) and 2 response items IC (breast cancer) and INC (no
breast cancer). It is easy to see that 0≤ suppðJ⇒ ICÞ≤ 0.17 and
0≤ suppðJ⇒ INCÞ≤ 0.83. We choose the importance measure of
association rules as g−ðJÞ= suppðJ⇒ I−Þ× confðJ⇒ I−Þ, I− being
either IC or INC for illustration purposes. Now our aim is to find
the most important association rules for IC and INC.
To find an estimate of the most important rule inRNC, we first

generate a random sample of M = 300 association rules from the
converted transaction dataset with ξ= 100,  200, or 300, re-
spectively. The frequency of each association rule appearing in
each sample is computed and shown in Table 5. We can see that

the difference in the frequencies of association rules becomes
larger as the value of ξ increases, which makes the most important
association rules stand out. The top 10 frequent items ever
appearing in each of the three samples and their proportions of
appearance in the respective sample are shown in the upper section
of Table 6, where we see the item I136 is the most frequent item
ever appearing in each generated sample. Moreover, the most
important association rule I136 ⇒ INC appears the most frequently
in each random sample (see the top part in Table 5).
We then try to use the Apriori algorithm to find the most

important association rules in RNC with different specifications
of the minimum support and confidence setting. The top 10
important association rules can be found by the Apriori algo-
rithm with the minimum support 0.6 and minimum confidence
0.8 setting, and their various measures are shown in Table 5. It
can be shown that the association rule I136 ⇒ INC is indeed the
most important rule in RNC which is the same rule found by the
stochastic search and confirms the good performance of our
proposed method.
For the association rules in RC, the support of any of them is

not greater than 0.17. Because the support of rules is too low and
the item space is very large, the Apriori algorithm cannot cope
with the computing intensity and immensity involved, even with
the setting of minimum support 0.2 and minimum confidence 1.
So, we try to use our proposed method to find the most impor-
tant rule with consequent IC or reduce the size of the item space.
The number of items appearing in the generated samples de-
creases from 1,067 to about 35 by increasing ξ from 10 to 6,000.
But, it cannot be further reduced by larger value of ξ. The top 10
frequent items ever appearing in the generated samples are
reported in the lower portion of Table 6. For illustration pur-
poses we choose ξ= 6,000, with which the number of distinct
items appearing in the random sample is 35. We apply the
Apriori algorithm on the subset of transaction dataset including
only these 35 items by specifying the minimum support and

Table 7. Top 10 association rules for IC after reducing the item space

Association rules SuppðJ⇒ ICÞ ConfðJ⇒ ICÞ gðJ⇒ ICÞ
I7, I42, I750, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I645, I914, I42, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I645, I42, I937, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I636, I914, I42, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I636, I42, I937, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I7, I45, I750, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I645, I914, I45, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I645, I937, I45, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I636, I914, I45, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061
I636, I937, I45, I1004, I389, I214, I711, I191, I193, I804 ⇒ IC 0.066 0.938 0.061

Table 6. Top 10 frequent items appearing in the random samples of association rules for IC
(lower section, i.e., the bottom six rows) and INC (upper section)

ξ=100 Item I1004 I1061 I589 I1066 I874 I191 I10 I110 I906 I136
Proportion 0.043 0.063 0.070 0.070 0.077 0.080 0.137 0.163 0.257 0.470

ξ=200 Item I1061 I1066 I191 I10 I110 I906 I136
Proportion 0.007 0.007 0.027 0.033 0.057 0.150 0.767

ξ=300 Item I1061 I1066 I906 I136
Proportion 0.007 0.007 0.033 0.963

ξ=2,700 Item I750 I45 I1004 I42 I389 I804 I191 I193 I214 I711
Proportion 0.60 0.63 0.70 0.72 0.86 0.92 0.98 0.997 0.997 0.997

ξ=3,500 Item I914 I750 I42 I389 I1004 I191 I193 I214 I711 I804
Proportion 0.64 0.71 0.74 0.95 0.97 0.99 0.99 0.99 0.99 0.99

ξ=6,000 Item I937 I45 I750 I1004 I389 I214 I711 I191 I193 I804
Proportion 0.65 0.67 0.67 0.84 0.90 0.93 0.96 0.99 0.99 0.99

Qian et al. PNAS Early Edition | 5 of 6

ST
A
TI
ST

IC
S



confidence as 0.2 and 1, respectively. The Apriori algorithm is
still not implementable. So, we then single out a subset of 22
items from the 35 items which appeared in at least three-
fourths of the sampled association rules and cut out a new
subset of the original transaction dataset by including only
these 22 items in the transactions. By specifying the minimum
support and confidence as 0.05 and 0.6, a total number of
286,188 association rules have been found in the new subset
transaction data. The top 10 important association rules among
them are reported in Table 7. From Table 7, we see that the
measurements of importance of these association rules are very
low and close to each other. It is not possible to find out these

rules by applying the Apriori algorithm alone. Our proposed Gibbs-
sampling-based algorithm can be used to reduce the number of items
for mining; the reduced data subset is exactly where the Apriori
algorithm can be applied to find the most important association rules
subject to negligible information loss. One could look into these
rules or the frequent items in Tables 6 and 7 to find out the bi-
ological meaning behind them.
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