
AMERICAN

Journal of Epidemiology
Fonwrfy AMERICAN JOURNAL OF HYGIENE

O 1984 by The Johns Hopkins University School of Hygiene and Public Health

VOL. 119 FEBRUARY 1984 NO. 2

Reviews and Commentary
ESTIMATING ODDS RATIOS WITH CATEGORICALLY SCALED COVARIATES

IN MULTIPLE LOGISTIC REGRESSION ANALYSIS1

STANLEY LEMESHOW AND DAVID W. HOSMEH, JR.

An important use of multiple logistic
regression analysis by epidemiologists is
to obtain estimates of odds ratios control-
ling for other variables. This paper ex-
plains how to use the output from logistic
regression computer programs to obtain
odds ratio estimates and associated con-
fidence intervals.

Problems in computation of the odds
ratio estimate can arise for categorically
scaled covariates measured at only two
levels; as the number of levels increases,
these computational problems may be-
come extensive. The appropriate way to
include a categorically scaled variable
with K distinct categories in a statistical
model is to construct K — 1 design (dum-
my or indicator) variables. There are sev-
eral methods for creating these variables.
The choice of method depends on a
number of considerations including the
goals of the analysis and ease of incorpo-
ration into the statistical software
package being used. There is no one stan-
dard method for creating these design
variables. In fact, some programs provide

1 From the Biostatistics/Epidemiology Program,
Division of Public Health, University of Massachu-
setts, Amherst, MA 01003. (Send reprint requests
to Dr. Lemeshow at this address.)

a choice of methods, each requiring a dif-
ferent technique for obtaining estimated
odds ratios. The inconvenience of some of
these techniques should persuade users to
prefer one method over another.

The methodology in this paper is illus-
trated using data from a study considered
by Lemeshow and Hosmer (1). That study
involved the prediction of hospital mor-
tality in 558 patients admitted to the gen-
eral medical/surgical intensive care unit
at Baystate Medical Center in Spring-
field, Massachusetts. Only patients with
complete data on all condition and treat-
ment variables were included in the anal-
ysis. This resulted in a reduction in the
sample size from 558 to 540. For the pur-
poses of this paper, it suffices to consider
only the three independent variables
given in table 1.

THREE COMMON METHODS FOR CODING
DESIGN VARIABLES

Through user-specified transforma-
tions, each of the methods described in
this section may be used with any of the
more popular statistical packages having
logistic regression capabilities (e.g.,
BMDP (2), GLLM (3), SAS (4)).

Since the 1983 release of the program
BMDPLR (BMDP (2)) provides the option
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TABLE 1

Summary of variables used in multiple logistic regression models for data collected at Baystate Medical
Center, Springfield, Massachusetts

Variable Code No. (%) Mean Standard
deviation

Age (years)

Coma

Mechanical
ventilation

1

2

1
2

3

None or coma <48
hours

Coma >48 hours

None or <24 hours
MVENT 1-4 days,

no PEEP*
MVENT 2=5 days

or PEEP

489 (90.6)

51 (9.4)

386 (71.5)
61 (11.3)

93 (17.2)

54.9 18.5

* PEEP, positive end-expiratory pressure.

of using any one of the three most
common methods for creating design vari-
ables without resorting to user-specified
transformations, discussion of the meth-
odology will center on this program. It
should be stressed that the considerations
addressed in this paper will apply to the
analysis of design variables with any soft-
ware package—not just BMDP.

Consider the trichotomous variable me-
chanical ventilation (MVENT). The three
available options for coding this variable
in BMDPLR (BMDP (2, p. 339)) are de-
noted "marginal" (MARG), "partial"
(PART), and "orthogonal" (ORTH). Ap-
plication of each of these methods to
MVENT would yield the coding for two
design variables Wi and w^ (table 2).

The method denoted MARG in
BMDPLR creates two contrasts, u>\ and
W2, which compare each of the higher

TABLE 2

Design variables created for the trichotomous
variable MVENT

Level of
MVENT •

1
2
3

MARG

Wi W

- 1 -
1
0

I

1
0
1

Method

PART

0
1
0

w*

0
0
1

ORTH

w,

-0.7071
0.0
0.7071

w.

0.4082
-0.8165

0.4082

order levels of the categorical response
variable to the baseline (or lowest) level.
The method denoted PART creates two
statistically independent variables which
are particularly convenient when com-
puting the log odds between any two
levels of the categorically scaled covar-
iate. Finally, the method denoted ORTH
creates two design variables whose esti-
mated logistic regression coefficients may
be used to test for linear and quadratic
trends, respectively.

Before proceeding, it is of interest to
note what the values for a design vari-
able, v, would be for a dichotomous vari-
able such as COMA (table 3). In this case,
the MARG and ORTH methods are equiv-
alent to one another since they differ only
by a multiplicative constant proportional
to V2. Hence, the estimated logistic
regression coefficients will differ by this
same constant. The ORTH method of
coding design variables should be used
only when the original variable is at least
ordinal scaled, with categories in some
sense equally spaced. Because of these re-
strictions, we will not consider the ORTH
method further in this paper. We note
that users of the 1980 and 1981 releases
of BMDP have only the method MARG
available to them. To use PART or ORTH
requires user-specified transformations.
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TABLE 3

Design variables created for the dichotomous
variable COMA

Level of
COMA

1
2

MARG

- 1
1

Method

PART

0
1

ORTH

-0.7071
0.7071

ESTIMATING ODDS RATIOS AND
CONFIDENCE INTERVALS

Suppose the logistic regression model is
used to obtain estimates of the probability
that a patient will die (Y = 1) in the hos-
pital given the values of AGE = a,
MVENT, and COMA. This model states
that

Pr(Y = l\a,wltw2,v) =

where lia.w^w^v) = Po + IM + 7i">i +
12w2 + 8u. The values of the estimated
coefficients and their estimated standard
errors for the two methods MARG and
PART are given in table 4.

The estimated logit, or log odds, of
dying versus living is

K^W^WfrV) = Po + PjO + 7 ^ ! + 72^2
+ bv.

USE OF METHOD MARG

The log of the estimated odds ratio for
level 2 of MVENT versus level 1 of

MVENT, #(2,1), holding AGE and
COMA constant, is the difference be-
tween the respective logits. That is

72(0)

= 27i + 72-

Similarly, it can be shown that In
= 272 + 7i, In (#(2,3)) = 7i - 72-

The estimate of the odds ratio ^(2,1) is
exp(ln(#(2,l))). Estimates of the other
odds ratios are obtained in a similar
manner. In the current example, these
computations yield the following esti-
mates:

ln(#(2,l)) = 2(0.124) + (0.714)
= 0.962;

#(2,1) = exp(0.962) = 2.62,

ln(#(3,l)) = 2(0.714) + (0.124)
= 1.552;

#(3,1) = exp(1.552) = 4.72,

ln<#(2,3)) = 0.124 - 0.714 =
-0.59;

#(2,3) = exp(-0.59) = 0.554.

To assess the significance of, or to com-
pute, confidence intervals for these esti-
mated odds ratios, we need estimates of
their standard errors. For the estimated
log odds ln(#(2,l)), it can be shown that

TABLE 4

Estimated logistic regression coefficients and standard errors (SE) for two methods, MARG and PART, of
creating design variables

Variable and
design variable

Coefficient

MARG

Sfe(coefTirient)

Method

Coefficient

PART

^(coefficient)

AGE

MVENT

w2

COMA
V

Constant

0.034

0.124
0.714

1.429
-2.216

0.009

0.216
0.244

0.209
0.523

0.034

0.962
1.552

2.858
-4.483

0.009

0.332
0.385

0.418
0.579
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SE{ln(¥(2,l))} = {4 SE
S

SE{ln(¥(3,l))} = {4 2

SE(7l)
2

4

and

SE{ln(¥(2,3))} = {S
SE(-y2)

2

- 2

where

CdvC^!,^) = C d r r ^ , ^ )
• SE(72).

Using the estimated correlation matrix
of the estimated coefficients and the es-
timated standard errors which are part of
the BMDPLR output, we find that
C6rr(<Y1,72) = -0 .644 and, hence,
C6v(71>72) = -0.644(0.216X0.244) =
- 0.34. The resulting estimated standard
error of ln(¥(2,l)) is

SE{ln(¥(2,l))} = {4(0.216)2 + (0.244)2

+ 4(-0.034)}*
= 0.332.

Similarly, it can be shown that
SE{ln(^(3,l))} = 0.386 and SE
{ln(¥(2,3))} = 0.417. The confidence
limits for an approximate 95 per cent con-
fidence interval for ln(¥(2,l)) are

ln(¥(2,l)) ± 1.96 SE{ln(¥(2,l))}.

The resulting 95 per cent confidence in-
terval is 0.311 =£ ln(¥(2,l)) « 1.613, and
by exponentiating these limits, we obtain
1.37 =£ ¥(2,1) =£ 5.02. Similar calculations
can be performed for the other odds ratios
¥(3,1) and ¥(2,3).

For the dichotomous variable COMA,
the estimated log odds of COMA 3=48
hours (v = +1) versus COMA <48 hours
or no COMA (v = -1), holding AGE and
MVENT fixed, is

= 2S.

Thus, the estimated odds ratio is

exp(25) = exp(2(1.429)) = 17.43.

To obtain the corresponding approximate
95 per cent confidence estimate of ¥(2,1),
an estimate of the standard error of
ln(^(2,l)) = 2$ is needed. This is
2{SE(8)}, where SE(8) is obtained from the
BMDPLR output. Hence, the approxi-
mate 95 per cent confidence interval is

exp{2(1.429) - 1.96(2X0.209)} « ¥(2,1) «
exp{2(1.429) + 1.96(2X0.209)}

or
7.681 < ¥(2,1) « 39.54.

As can be seen, a significant amount of
computational effort is necessary if the
BMDP method of MARG is used for
creating design variables. Use of the
PART method will simplify the necessary
computations.

USE OF METHOD PART

When the same development used for
the presentation of the results for the
MARG method is followed, it can be
shown that the estimated log odds and
odds ratios for MVENT are ln(¥(2,l)) =
7!, ln(¥(3,l)) = 72, and ln(¥(2,3)) = 7i -
•y2. The estimated standard errors Aof the
log odds are: SAE{ln(¥(2,l))} =
SE{ln(¥(3,l))} = SEOYJJ), 3E{ln
= { S ^ ) 2 + SE(72)2 - 2C6v(71,72)}

1*,
where the standard errors are obtained
from the computer output and the covar-
iance is obtained as the product of the cor-
relation and the standard errors. For the
dichotomous variable COMA, ln(¥(2,l))
= o and SE{ln(¥(2,l))} = SE(S). In this
example, these quantities are given in
table 4.

The reader may verify that computa-
tions with these expressions yield pre-
cisely the same estimates and confidence
intervals for the odds ratios as given in
the discussion of the MARG method.

DISCUSSION

When a goal of the analysis is to com-
pare all levels of a categorically scaled
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variable with a referent level, much less
computational effort is required to obtain
odds ratio estimates and confidence inter-
vals with the PART method than with the
MARG method. This is because the
MARG method yields more complex
expressions for the standard errors. These
computations become particularly tedious
when the categorical variable is mea-
sured at four or more levels. For compar-
isons of any other two levels, the compu-
tations required are equivalent for the
two methods.

It has been our experience that many
users of the 1980 and 1981 versions of
BMDPLR, when declaring variables to be
categorical, assume that the method
being used to create design variables is
PART when in fact it is MARG. They
then proceed to calculate odds ratios
using the computations for PART which
are incorrect and lead to erroneous odds
ratio estimates.

In summary, the PART method of spec-
ifying design variables will save a signif-
icant amount of computational effort
when there is interest in comparing the
levels of the categorical variable with a
single referent level. The PART method
leads to direct estimates of the log odds
ratios and the estimated standard errors

may be obtained directly from the output.
The PART method of specifying design
variables may be used in the 1980 and
1981 versions of BMDPLR by having
users create their own design variables
coded (0,1) and declare them to be "in-
terval" scaled. This strategy becomes
cumbersome when considering numerous
models and/or many variables.

Our recommendation is that at the
model building stage any of the methods
for creation of design variables may be
used. Once a final model has been se-
lected, the user should form the design
variables using the PART method to sim-
plify the computations necessary to ob-
tain estimated odds ratios and their as-
sociated confidence intervals.
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