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BIOMETRICS 44, 973-983 
December 1988 

Growth Curve Models of Repeated Binary Response 

Edward J. Stanek III 
Division of Public Health, 404 Arnold House, University of Massachusetts, 

Amherst, Massachusetts 01003, U.S.A. 

and 

Scott R. Diehl 
Department of Human Genetics, 4708 Medical Sciences II, 

University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, U.S.A. 

SUMMARY 

Experimental designs that include repeated measures of binary response variables over time and 
under different conditions are common in biology. In such settings, it is often desirable to characterize 
the response pattern over time. When response variables are continuous, this characterization can be 
made in terms of a growth model such as the Potthoff-Roy growth curve model. We illustrate how a 
similar growth curve modeling strategy can be implemented using weighted least squares (WLS) 
methods for binary response data. The growth models are constructed in terms of polynomial 
functions across marginal response. However, when growth models are fit to repeated binary response, 
the nonsignificant higher-order polynomial functions are dropped from the model, rather than used 
as covariates. Dropping the nonsignificant polynomials from the model will reduce the number 
of response functions, and help avoid small-sample problems that can occur when the number of 
correlated response functions is large and sample sizes are small. The reduced set of response functions 
are then modeled using WLS methods. We illustrate such models with an example of binary fly 
oviposition response (accept or reject) exhibited by two populations of flies at four ages to two types 
of fruit. 

1. Introduction 

Experimental designs with repeated measures over time permit evaluation of maturation, 
resistance, and chronic dose, in addition to fixed group effects. Split-plot repeated-measures 
designs enable comparison of response curves for two or more treatments based on the 
within-subject component of variance. The principal outcome variables in such designs are 
often binary. For example, in a study of host fruit acceptance for oviposition by adult 
female flies, individual flies from two different populations were each exposed to two test 
fruits at ages 8-9 days, 11-12 days, 15-16 days, and 18-19 days, with oviposition (yes, no) 
recorded for each fly at each age. Objectives for data analysis include quantifying the effect 
of fly origin and test fruit on oviposition, as well as characterizing the effect of maturation 
over time. The impact of maturation on fly origin and test fruit effects was also of interest. 

Such repeated-measures designs are based on fewer subjects and have more measures per 
subject than similar completely randomized designs. When time corresponds to one of the 
dimensions of the repeated measures, responses can often be characterized by a reduced 
set of functions (such as polynomial functions). Such growth models have been considered 
for Gaussian response by Potthoff and Roy (1964), Khatri (1966), and Rao (1965, 1966, 

Key words. Categorical data; Growth curves; Polynomial models; Repeated measures; Weighted 
least squares. 
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1967), and account for the correlated response of a subject's measures over time. These 
models and methods have been summarized by Grizzle and Allen (1969), Timm (1980), 
Woolson and Leeper (1980), and Geisser (1980). We present similar methods appropriate 
for fitting growth models to repeated measures of binary response. 

When repeated binary measures are made over time, several methods have been proposed 
for model fitting. A general modeling method for repeated binary response analogous to 
the general multivariate linear model for continuous response was proposed by Koch et al. 
(1977). This method is an extension of the weighted least squares (WLS) method of Grizzle, 
Starmer, and Koch (1969). Models can be fit using this method to transition probabilities 
and marginal proportions, with examples of applications given by Koch et al. (1977), 
Stanish and Koch (1984), and in the SAS User's Guide (1985). 

Although the WLS approach is flexible, problems arise when there are continuous 
covariables, small sample sizes, or moderate amounts of missing data. Other methods have 
been developed that address these situations. Partial-association tests based on a generalized 
Mantel-Haenszel strategy have been proposed by Landis, Heyman, and Koch (1978) and 
Landis et al. (1988). Stiratelli, Laird, and Ware (1984) have developed two-stage random- 
effect models for repeated binary response which are fit using an iterative EM algorithm. 
These models are similar to those presented by Laird and Ware (1982) for Gaussian 
response. In work as yet unpublished, Stram, Wei, and Ware have extended this approach 
to settings with ordered categorical outcomes, missing data, and time-dependent covariates. 
Zeger and Liang (1986) and Liang and Zeger (1986) have developed methods for repeated 
binary response that are fit using quasi-likelihood methods. Such models can be fit by 
iterative reweighted least squares using GLIM (Baker and Nelder, 1978) software. Korn and 
Whittemore (1979) have proposed a conditional model for repeated measures of binary 
data. Variance component models for binary response have been proposed by Anderson 
and Aitkin (1985) and Beitler and Landis (1985). Recent reviews of this literature are given 
by Koch et al. (1980) and Ware, Lipsitz, and Speizer (1988). Also, see Ware (1985) for a 
similar review in the context of repeated measures of a continuous outcome. 

We extend application of the WLS method of Koch et al. (1977) to settings where the 
number of repeated measures is too large (relative to the sample size) to permit modeling 
all marginal response functions. The method is analogous to growth curve models with 
continuous response, and uses a polynomial representation of response over time to exclude 
nonsignificant higher-order response functions. Subsequent analyses are based on the 
reduced set of response functions. The method is illustrated with an example of repeated 
measurement of oviposition responses of Rhagoletis pomonella (Walsh) adult female flies 
to two test fruit at four ages. 

2. Fitting Potthoff-Roy Growth Models to Binary Repeated Measures Using WLS 

The basic development of weighted least squares methods for repeated-measures models is 
given by Koch et al. (1977) and summarized in the Appendix. In this section, we illustrate 
how a Potthoff-Roy (1964) growth model can be fit to repeated measures of binary data 
using the WLS approach. Assume d repeated measures of a binary response are made for 
ni study units in i subpopulations (i = 1, ..., s) resulting in r = 2 d possible response 
profiles. Let pi denote an r x 1 vector of observed response proportions, so that nipi 
will follow a multinomial distribution with parameter 7ri. We specify linear models for a 
column concatenation of ui (ui < r) differentiable functions of pi, Fi = fi(pi), where F = 
(F; F' . . . F*)' such that F = X,B + e, and fit these models using WLS. 

For simplicity, assume that each vector of functions Fi (i = 1, ... , s) corresponds to the 
(T + 1) marginal response functions at times t, (j = 0, 1, . . ., T) in each subpopulation, 
where u, = (T + 1) for all i = 1, . .., s. Let N denote a (T + 1) x (q + 1) matrix of natural 
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Growth Curve Models for Categorical Data 975 

polynomials [with jth row (I j t2 . . . tJ1)] for all i = 1, . . ., s. Then a polynomial model 
(of order q for each subpopulation) is given as 

F = (Xs 0 N)f +e (2.1) 

where X denotes the left Kronecker product formed by multiplying each element in the 
left matrix by the matrix on the right, and Xs is an s x v full-rank design matrix (v < s) 
relating growth across subpopulations. When q < T, model (2.1) can be recognized as the 
row-expanded form of a Potthoff-Roy growth model. Partitioning f, into v vectors of 
dimension (q + 1) x 1, flm (m = 1, . . ., v), and partitioning e into s vectors of dimension 
(T+ 1) x 1, ei (i = 1, . .. , s), we can express model (2.1) in a standard multivariate format 
as 

(F, F2 ... Fs)' = Xs(Af 2 ... fl)'N' + (e, e2 C.. es)' (2.2) 

When Xs = Is, the function at the jth time in the ith subpopulation is modeled by the 
polynomial function 

Fij = 1io + tjfi3 + t)f32 + *. + tjf3q + Ci. 

Model (2.2) has the form of a traditional Potthoff-Roy growth model for continuous 
data. For normally distributed response, Potthoff and Roy (1964) proposed estimating 
parameters in model (2.2) by transforming the model to a standard multivariate model 
through postmultiplication by G-'N'(N'G-'N)-', where G is an arbitrary symmetric 
matrix of rank (T + 1). Parameters were subsequently estimated by ordinary least squares. 
Khatri (1966) and Rao (1965) illustrate that maximum likelihood estimates under a similar 
conditional model result when G = S, the sample variance matrix. These models are 
equivalent to a special type of seemingly unrelated regression (SUR) model based on a 
column expansion, as illustrated by Stanek and Koch (1985). 

Estimation of parameters for the SUR model with continuous data is based on WLS, 
with weights estimated from residuals of ordinary least squares regressions. The apparent 
similarity between WLS estimation under SUR models and the WLS used under the 
modeling framework of Grizzle et al. (1969) is more than casual. The categorical data 
modeling strategy can be viewed as a direct extension of SUR models and methods to 
product-multinomial data (Stanek, Institute of Statistics Mimeo Series No. 1456, University 
of North Carolina, 1984). Categorical data applications of SUR models differ in that 
separate weighting matrices are estimated for each subpopulation [each row in model (2.2)], 
and parameter estimates are based on a single iteration of WLS. Estimation for growth 
models of marginal response functions as in (2.2) is nearly identical for continuous and 
categorical data. 

3. Choosing a Subset of Response Functions 

The categorical growth model (2.2) is a model for marginal response functions at (T + 1) 
times based on q + 1 (<T) polynomial trends. For continuous data applications, as 
illustrated by Khatri (1966) and Grizzle and Allen (1969), the additional (T - q) trends 
serve as covariates. Inclusion of these additional trends is useful in the model if they 
are correlated with the (q + 1) response trends of interest. However, the inclusion of the 
(T - q) covariates often lacks a biological rationale, and Kenward (1985) has suggested 
that selection of covariates based on observed correlations may result in underestimation 
of true variances. In categorical data applications, excluding the (T - q) covariates not only 
simplifies interpretation of the model, but also reduces the number of response functions 
on which the model is based. A reduction in the number of response functions permits 
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growth models to be fit to repeated-measures categorical data problems with smaller sample 
sizes. 

We illustrate a preliminary model building procedure to arrive at a subset of q polynomial 
response functions and subsequent modular modeling for categorical data. Orthogonal 
polynomials are used in the model building to allow for independent testing of polynomial 
trends, and hopefully reduce the number of modeled functions. The procedure differs from 
the backward elimination testing strategy for orthogonal polynomial models used with 
continuous data in that orthogonal polynomial trends in each subpopulation are con- 
structed, and the resulting trends tested directly prior to model fitting. Modular linear 
models are then constructed for significant trends. 

Initially, assume X, = Is in model (2.2) and let N represent a full (T + 1) x (T + 1) 
matrix of natural polynomials. Orthogonal functions are formed by replacing N' by the set 
of orthogonal polynomials, P', (P'P = I(T+I )), where N' = R'P', and then postmultiplying 
each side of equation (2.2) by P. If we define Xk as an s x 1 column vector for the kth 
trend such that 7 = (A6 1 ... ST) = (FI F2 ... Fs)'P; Bk as the corresponding s x 1 
column vector of parameters such that B = (BO B, ... BT) = (A, 2 * * *,) 'R'; and ek as 
the s x 1 column vector such that e = (eo e, ... eT) = (e, ?2 ... es)'P; then model (2.2) 
simplifies to the model 7 = IsB + e. 

The (T + 1) column vectors gk (k = 0,..., T) represent T + 1 orthogonal trends for the 
s subpopulations. Important trends are identified by direct hypothesis tests for the trend 
vectors of the form EA(k) = 0, where EA denotes the asymptotic expectation of 9k (see 
Landis et al., 1976). The test statistics are given by Qk = 7k'VkXk- which is approximately 
distributed according to a x2 distribution with s degrees of freedom under the null 
hypothesis. 

Each test for trend is constructed directly from the full set of response functions, and not 
as a contrast subsequent to fitting a model. This testing procedure is advantageous because 
it reduces the chance that the variance matrix will be singular. The test is based on an 
estimate of one response function and one variance from each subpopulation. This approach 
to testing for trend is preferable to the backward elimination procedure [as used for 
continuous data (Bock, 1975)] since the latter approach would necessitate estimation of 
the full (T + 1) x (T + 1) variance matrix for each subpopulation, and as a result be more 
susceptible to small-sample-size problems. However, when sample sizes in subpopulations 
are large, simultaneous tests of more than one response function per subpopulation can be 
constructed, and the backward elimination procedure is feasible. 

In many applications, significant trends will consist of a set of low-order polynomial 
functions, say q < T. Modular models can be built directly to a column concatenation of 
these functions, of the form Sk = XkBk + ek, for k = O, 1, . .. , q. Such models are directly 
analogous to analysis of variance models fit to orthogonal trends when response is 
continuous. When Xk = X (of dimension s x v) for all k = 0, 1, ..., q, this set of 
simultaneous models is given as 

(So S1 . .. * S)' = (Iq+1 0) X)(Bo W . . . Bq)' + (eO e 
..l. ) 

and can be recognized as the column-expanded form of a Potthoff-Roy growth model in 
which all covariates have been dropped. When the design matrices Xk differ, the model is 
a more general SUR model, as discussed by Stanek and Koch (1985). 

Once a final model is fit, parameter estimates can be converted back to. natural polynomial 
estimates for each subpopulation. The natural polynomial estimates in each subpopulation 
are constructed by postmultiplying a matrix of predicted functions by the upper-left 
(q + 1) x (q + 1) submatrix of (R')-f, (A%l 32 .. * s)' = (XOBO XIBI ... XqBq)(R*')-l, 
where Ak represents a (q + 1) x 1 vector of natural polynomial estimates for the ith 
subpopulation and (R*' ) 1 is the upper left (q + 1) X (q + 1) submatrix from (R' )- 

This content downloaded from 193.0.147.31 on Sat, 28 Jun 2014 12:12:51 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Growth Curve Models for Categorical Data 977 

Although the development of previous sections was presented in terms of a simple 
repeated-measures design where each subject was observed under the same conditions at 
T + 1 times, the methods can readily be extended to factorial repeated-measures designs 
or crossover designs with repeated measures. In addition, if the response is ordinal rather 
than binary, similar methods can be applied based on a function of the ordinal response 
(see Stanek's unpublished mimeo series report for an example). 

4. An Example of Fly Oviposition 

We illustrate these methods with data collected in a study of host fruit acceptance for 
oviposition by Rhagoletis pomonella adult female flies (Diptera: Tephritidae) (Prokopy et 
al., 1982a, 1982b; Stanek et al., 1987). Individual females originating as larvae from apple 
or hawthorn were exposed to apple and hawthorn fruit (separately) at ages 8-9, 11-12, 
15-16, and 18-19 days after adult eclosion. Each exposure was initiated by gently placing 
a fly onto a test fruit and allowing it to remain until it either attempted oviposition (scored 
as an "accepter"), or failed to do so within 5 minutes or left the fruit (scored as a "rejecter"). 
The experimental design consists of repeated measures of a binary variable under eight 
conditions (d = 2 fruit x 4 ages) for flies from the two larval origin subpopulations. 
Hypotheses of interest concern the effect of the flies' age, the larval host origin, and the test 
fruit. Differences in a host origin or test fruit with fly age are also of interest. 

Complete data were obtained on 70 flies (37 of apple and 33 of hawthorn larval origin). 
Only 30 of the possible 28 = 256 response profiles were observed (Table 1). Simple linear 
functions of the response profiles were constructed that represent the proportion of accepter 
responses for each test fruit and age in each subpopulation (Table 2). These proportions 
correspond to the simple mean response (with scores of 1 = accepter and 0 = rejecter) for 
flies of a larval origin under each of the eight conditions. The response proportions at the 
four ages for flies of a given larval origin and test fruit are positively correlated (except for 
apple larval origin flies on hawthorn fruit at days 15-16) (Table 3). Correlations for 
hawthorn origin flies are generally larger. The correlation of 1.00 for hawthorn larval origin 
flies tested on apple fruit at 15-16 and 18-19 days indicates an identical response for each 

Table 1 
Frequency of observed profiles byfly origin for eight binary responses (A: Accept; R: Reject) 

Larval origin Larval origin 

Profile Apple Hawthorn Profile Apple Hawthorn 
AAAAAAAA 2 1 RRRAARAA 1 0 
AAARAAAA 1 0 RRRAAAAA 1 0 
AARAAAAA 1 0 RRRRAAAA 6 7 
ARAAARAR 1 0 RRRRRRAR 1 0 
ARRRAAAA 1 1 RRRRRAAA 3 5 
RAAAAAAA 1 0 RRRRARAA 2 1 
RAARAAAA 1 0 RRRRAARR 1 0 
RARRAAAA 1 2 RRRRAARA 2 1 
RARRRRAR 1 0 RRRRRRAA 2 2 
RRAARAAA 2 1 RRRRRRRA 1 6 
RRAAARAA 1 0 RRRRRRRR 0 2 
RRARAAAA 1 0 RRRRRARA 0 1 
RRARAARR 1 0 RRRRRARR 0 1 
RRARARAA 1 0 RRRRARRR 0 1 
RRRARRAA 1 0 RRRRAAAR 0 1 

Note. The order of response is days 8-9, 1 1-12, 15-16, and 18-19 on apple fruit, followed by analogous response 
on hawthorn fruit. 
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Table 2 
Observed proportion that accept fruit (standard errors) and predicted values (standard errors) from 

final model in Section 4 

Age in Observed Predicted 
Larval origin Test fruit days value (SE) value (SE) 

Apple Apple 8-9 .162 (.061) .118 (.049) 
11-12 .216 (.068) .186 (.043) 
15-16 .324 (.077) .278 (.044) 
18-19 .297 (.075) .347 (.051) 

Apple Hawthorn 8-9 .703 (.075) .667 (.048) 
11-12 .649 (.078) .736 (.039) 
15-16 .865 (.056) .827 (.036) 
18-19 .865 (.056) .896 (.042) 

Hawthorn Apple 8-9 .061 (.042) .088 (.038) 
11-12 .091 (.050) .083 (.033) 
15-16 .061 (.042) .076 (.036) 
18-19 .061 (.042) .071 (.043) 

Hawthorn Hawthorn 8-9 .455 (.087) .514 (.058) 
11-12 .636 (.084) .583 (.049) 
15-16 .636 (.084) .674 (.046) 
18-19 .849 (.062) .743 (.049) 

Table 3 
Summary of correlations (phi coefficients) at different ages by larval origin and test fruit 

Hawthorn larval origin flies Apple larval origin flies 

Apple Apple 
Age (days) fruit Age (days) fruit 

8-9 11-12 15-16 18-19 8-9 11-12 15-16 18-19 

8-9 .36 .47 .47 .48 .32 .36 
Age (days) 11-12 .44 .36 .36 .26 .34 .23 

15-16 .44 .61 1.00 -.08 -.13 .43 
18-19 .05 .21 .38 .09 .21 .31 

Hawthorn Hawthorn 
fruit fruit 

Note: The correlation matrix for apple fruit is in the upper-right quadrant, and the correlation matrix for 
hawthorn fruit in the lower-left quadrant. 

fly at these times (i.e., the same two flies accept the fruit and the 31 other flies reject the 
fruit at both ages). This condition is noteworthy because it would result in a singularity in 
the weight matrix if a backward elimination modeling strategy were employed (Stanek et 
al., 1987). Although not presented, smaller positive correlations were observed between 
responses to apple and hawthorn fruit by flies of a given larval origin at different ages. 

Since there are a large number of potential response functions, and a small sample size 
in each larval origin subpopulation, preliminary hypotheses are constructed based on 
averaging response over levels of other variables. In addition, polynomial models are used 
to identify a subset of response functions with significant variability. The preliminary 
hypothesis tests for the main effect of larval origin, test fruit, and larval origin by test fruit 
interaction are constructed as 1-degree-of-freedom Wald statistics by premultiplication of 
the vector of observed proportions in Table 2 by 

A1=(1 -1)014, A2=(1 -1 1 -1) 1, and A3=(1 -1 -1 1)014, 

respectively, where ln~ denotes an n x 1 vector of ones. The results indicate presence of 
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a significant larval origin effect (Q = 8.86, P = .003) and a significant test fruit effect 
(Q = 187.45, P < .00 1), but no evidence of a larval origin by test fruit interaction (Q = .48, 
P = .488). These tests average response over four ages. 

Next we develop a polynomial model for fruit acceptance that identifies trends over time 
and evaluates the influence of larval origin and test fruit on these trends. Trends are 
constructed by postmultiplication of the vector of marginal response functions in Table 2 
by A4 = 14 0 P*, where 

p*_ -5 -2 2 5 
_ 1 -1 -1 I . 
L -2 5 -5 2 

The matrix P* corresponds to a matrix of orthogonal polynomial functions (not ortho- 
normal), where the orthogonal trends are scaled so that the linear trend represents deviations 
in days from the midpoint of the study time period. The use of orthogonal (but not 
orthonormal) polynomials will not affect test statistics because the scaling is accounted for 
in both the numerator and the denominator, and simplifies interpretation. The hypothesis 
of no cubic age trend in each larval origin by test fruit group is constructed by premultipli- 
cation of the vector of orthogonal polynomial functions by A5 = 140 (0 00 1). The resulting 
4-degree-of-freedom test statistic is nonsignificant (Q = 7.212, P = .129). A similar 
hypothesis for quadratic effects is also nonsignificant (Q = 1.193, P = .879), whereas 
hypothesis tests for linear and constant effects are highly significant (Q = 26.24, P < .001 
and Q = 523.8, P < .001, respectively). These results indicate that a model based on the 
constant and linear trends .is appropriate. 

Since the number of flies studied in each larval origin group is small, further analysis is 
based on four response functions in each subpopulation (a constant and linear trend for 
apple and hawthorn fruit) rather than the original eight response functions. These response 
functions are selected and ordered so that all the constant functions appear first, followed 
by the linear functions, by multiplying the 16 x 1 vector of orthogonal functions by 

14 [[ (1 0 0 0)1 
L14 0 (O 1 0 0)1. 

The resulting functions are fit to a simple modular model with main effects for larval origin 
and test fruit, and a larval origin by test fruit interaction using the design matrix 

X = [2 12 I 12 

Tests for main effects and interactions for the constant trend (with 1 degree of freedom) 
indicate evidence of significant larval origin (Q = 8.86, P = .003) and test fruit (Q = 187.45, 
P < .001) effects for the constant function, but no indication of a larval origin by test fruit 
interaction (Q = .48, P = .488). Since the constant function corresponds to an average 
response over time, these test results imply that a simple main effect model will fit mean 
response. The test results for the linear trend indicate a significant test fruit effect (Q = 
7.76, P = .005), and a significant larval origin by test fruit interaction (Q = 3.86, P = .049). 
The larval origin effect for the linear trend is nonsignificant (Q = .05, P = .825). Inspection 
of the linear response functions indicates that the interaction is due to a differential response 
for hawthorn flies on apple test fruit. A subsequent test for parallel slopes among flies on 
each test fruit and hawthorn flies on hawthorn fruit fails to reject this hypothesis (Q = 2.20, 
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d.f. = 2, P = .334). The resulting reduced model contains main effects for the constant 
function, and two linear trends. The model is specified using the design matrix 

X-[o X 

where 

xo= [1 1] and X= [A X] 

The goodness-of-fit statistic for the model (Q = 3.18 with 3 d.f., P = .365) indicates 
adequate fit. The vector of parameter estimates is given as 

Ak A 
(Bo BW) = (1.72 .31 -1.10 1.33 -.10) 

with standard deviations given by 

SD(Bo B ) = (.094 .100 .080 .313 .267). 

The parameter estimates and standard errors can be converted back to parameter 
estimates for a natural polynomial model for each test fruit in each larval origin subpopu- 
lation. Since the design matrices differ for constant and linear trends, the predicted constant 
and linear functions must first be evaluated before converting back to natural polynomials. 
These predicted functions are given as 

[ .929 1.328 

(XoBo X1B1) - 3.126 1.328 [.317 -.098~ 
2.514 1.328 

Since P* is orthogonal (but not orthonormal), the natural polynomial estimates are formed 
by postmultiplying the 4 x 2 matrix of orthogonal polynomial estimates by 

[4 
Lo 518_ 

which represents the 2 x 2 upper-left submatrix from (R'D l/2)-l5 where P*'P* = D. 
Predicted values are then estimated by postmultiplying the resulting matrix of natural 
polynomial estimates by the matrix 

[-5 -2 2 5T 
The resulting predicted values and associated standard deviations are given in Table 2. In 
programs such as GENCAT (Landis et al., 1976) or CATMOD (SAS Institute, 1985), predicted 
values can be estimated by saving the vector of predicted values and then premultiplying 
this vector by 

[ (I4 X 14) I 58 (I40 (-5 -2 2 5)')]. 

5. Discussion 

Parallel techniques for analysis of repeated-measures data when a response is continuous 
or discrete are clearly desirable. As illustrated in Sections 3 and 4, growth-curve-type models 
are feasible for repeated binary response. Some aspects of the modeling strategy make 
certain growth-curve-type models particularly appealing for a repeated binary response. 
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Limiting analyses to response functions that are identified with important variability in the 
data reduces the sample size required for test statistic asymptotics, minimizes chance col- 
linearity among the marginal proportions and weight matrices, and guards against artificially 
inflated test statistics (Kenward, 1985). Often, the number of study subjects, n, is small 
relative to the number of time points, d, so this reduction is important. In the example, 
models based on the eight response functions (4 constant and 4 linear) can be used instead 
of models based on 16 response functions. 

Other modeling concerns are similar when a response is binary or continuous. In each 
setting, a scale choice is desirable that linearizes the trends over time (or dose). Although 
the present example considered age trends in simple response proportions, similar methods 
could be applied based on the logarithm of the marginal response, corresponding to a 
multiplicative scale over age. Another consideration in common for discrete and continuous 
responses is proper accounting for the repeated-measures covariance structure. Analyses 
that assume independent repeated responses for subjects produce inflated test statistics. 
There is a double danger in such models, because the sample size also appears inflated, 
making large-sample requirements for the test statistics seem more believable. 

More generally, the method of Grizzle et al. (1969) can be viewed as an extension of 
seemingly unrelated regression (SUR) modeling to categorical data (Stanek, unpublished 
mimeo series report, 1984). Since a special class of SUR models form the class of growth 
curve models (Stanek and Koch, 1985), there is a direct link between continuous and 
categorical applications. There are two differences between categorical WLS methods and 
standard SUR methods, the first of which is just a difference in notation. SUR models are 
usually expressed in terms of a column expansion of the dependent variables, whereas the 
categorical WLS framework of Grizzle et al. (1969) is usually developed using a row 
expansion of the dependent variables (corresponding to the vector of responses in a 
subpopulation). In addition, SUR models differ from the categorical WLS framework in 
that the covariance matrix is assumed to be identical for each row of the dependent 
variables. Under the categorical WLS framework, the covariance matrix differs between 
rows, since it is estimated from the observed sample response proportions. Both methods 
use weighted least squares to fit the models, where the weight is based on an estimate of 
the covariance matrix. Each method can conceptually be iterated, using residuals based on 
parameter estimates to reestimate the covariance matrix, and then refit the model. Although 
examples of applications of WLS methods are numerous (Forthofer and Lehnen, 1981), 
and attempts have been made in econometric literature to generalize SUR models to 
categorical data (Zellner and Lee, 1965; Zellner and Rossi, 1983), the connection between 
the methods is not widely appreciated. 

RfESUMmE 

Les dispositifs experimentaux qui incluent des mesures repetees de variables reponses binaires au 
cours du temps et sous differentes conditions sont frequents en biologie. Dans de telles situations, il 
est souvent souhaitable de caracteriser le modele de reponse au cours du temps. Quand les variables 
reponses sont continues cette caracterisation peut etre faite en termes de modele de croissance comme 
le modele de courbe de croissance de Potthoff-Roy. Nous montrons comment une strategie similaire 
de modelisation de courbe de croissance sur donnees binaires peut etre mise en oeuvre utilisant les 
methodes des moindres carres ponderes (WLS). Les modeles de croissance sont construits a partir de 
fonctions polynomiales sur les reponses marginales. Cependant, lorsque les modeles de croissance 
sont ajustes sur des reponses binaires repetees, les fonctions polynomiales d'ordre eleve non signifi- 
catives sont eliminees du modele plutot que d'etre utilisees comme covariables. Eliminer du modele 
les polynomes non significatifs reduira le nombre de fonctions reponses et permettra d'eviter les 
problemes dus aux faibles tailles d'echantillons qui peuvent se produire lorsque le nombre de fonctions 
reponses correlees est grand devant les tailles d'echantillon. L'ensemble reduit de fonctions reponses 
est alors modelise suivant la methode WLS. Nous illustrons de tels modeles avec un exemple de 
reponse binaire (presence, absence) de ponte produite par 2 populations de mouches en fonction de 
2 types de fruits a 4 ages diffYerents. 
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APPENDIX 

A general structure for repeated-measures designs using the WLS approach is given by Koch et al. 
(1977). We briefly review this development for binary response to develop ideas and fix notation. 
Assume d repeated measures of a binary response are made for ni study units in i subpopulations (i 
= 1, ..., s), resulting in r = 2d possible response profiles. Let pi denote an r x 1 vector of observed 
response proportions. Then nipi will follow a multinomial distribution with parameter 7r,. Linear 
models are specified for a column concatenation of ui (ui < r) differentiable functions of pi, Fi = 
f,(p,), where F = (F' F' . . . F')' such that F = X,B + c. Here, X is a full-rank design matrix, ,B is an 
unknown parameter vector, and c is a u x 1 vector of errors, such that u = E ,= I ui. 

Parameters are estimated using weighted least squares, where the weights are given by V-1 
{H[V(p)]H -'I and H = [aF(x)/ax I x = p] is a u x sr matrix of first partial derivatives of the functions 
F evaluated at p. Here 

Vi (pi) =(Dpi pipi'), i =1, I'll. s 
ni 

and DPi is an r x r diagonal matrix with elements of pi on the main diagonal. Hypotheses of the form 
Co = 0 are tested using Wald statistics. 

Applications of the WLS methodology have been made to repeated-measures crossover designs, 
split-plot designs, and dose-response studies (Stanish and Koch, 1984). Of particular interest to 
growth applications are settings where the d repeated measures correspond to measures at times to, 
tl,, . . , tT (T 3 1) under each of M conditions such that d = M(T + 1). Models are frequently 
specified in terms of q (<T) polynomial trends over time, where the design matrix for trends in the 
ith subpopulation under the mth condition is given as 

f to tor 1,1 to 

1 tl t2 . . t' 

1 tT tT . . . t T 

for i= 1, . .., sand m= 1, . ..,M. 
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