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ABSTRACT
Bayesian models are increasingly fit to large administrative datasets and then used to make individualized
recommendations. In particular, Medicare’s Hospital Compare webpage provides information to patients
about specific hospital mortality rates for a heart attack or acute myocardial infarction (AMI). Hospital
Compare’s current recommendations are based on a random-effects logit model with a random hospital
indicator and patient risk factors. Except for the largest hospitals, these individual recommendations or pre-
dictions are not checkable against data, because data from smaller hospitals are too limited to provide a
meaningful check. Before individualized Bayesian recommendations, people derived general advice from
empirical studies ofmany hospitals, for example, prefer hospitals of Type 1 to Type 2 because the risk is lower
at Type 1 hospitals. Here, we calibrate these Bayesian recommendation systems by checking, out of sample,
whether their predictions aggregate to give correct general advice derived from another sample. This pro-
cess of calibrating individualized predictions against general empirical advice leads to substantial revisions
in the Hospital Comparemodel for AMI mortality. Tomake appropriately calibrated predictions, our revised
models incorporate information about hospital volume, nursing staff, medical residents, and the hospital’s
ability to perform cardiovascular procedures. For the ultimate purpose of comparisons, hospital mortality
rates must be standardized to adjust for patient mix variation across hospitals. We find that indirect stan-
dardization, as currently used by Hospital Compare, fails to adequately control for differences in patient risk
factors and systematically underestimatesmortality rates at the low volumehospitals. To provide good con-
trol and correctly calibrated rates, we propose direct standardization instead. Supplementary materials for
this article are available online.

1. Are Mortality Rates For AMI Lower at Some
Hospitals?

1.1. Individualized Bayes Predictions Should Calibrate
with Sound, Empirically Based General Advice

With a view to providing the public with information about the
quality of hospitals, Medicare runs a website called “Hospital
Compare” (http://www.medicare.gov/hospitalcompare/). Among
other things, for each hospital, Hospital Compare provides
information about the mortality rate of patients treated for a
heart attack, or “acutemyocardial infarction” (AMI). If you enter
your zip code at the website, Hospital Compare will tell you
about hospitals near where you live. Nationally, for a personwho
arrives at the hospital alive, the 30 day mortality rate following
AMI is in the vicinity of 15%. The website’s reported hospital-
specific mortality rates are based on Medicare claims data and a
random effects logit model in which hospitals enter as a random
intercept and adjustments are made for risk factors describing
individual patients, for instance, age and prior heart attacks. The
number reported by Hospital Compare is essentially an indi-
rectly standardized mortality rate for each hospital, adjusting

CONTACT Edward I. George edgeorge@wharton.upenn.edu Department of Statistics, University of Pennsylvania, Philadelphia, PA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

for measured risk factors describing the patient. An indirectly
standardized rate is a constant multiple of a ratio of two pre-
dictions for the mortality of the patients actually treated at that
hospital, namely, in the numerator, the model’s predicted mor-
tality rate if these patients were treated at this hospital, and in
the denominator, the model’s predicted mortality for the same
patients if treated at what Hospital Compare considers to be a
“typical” hospital. A ratio substantially above one is interpreted
as “worse than average risk” and a ratio substantially below one
is interpreted as “better than average risk.” Thewebsite describes
most hospitals as “no different than the national average.”

Some small hospitals treat a fewAMIs per year, whereas there
is a hospital in New York that treats on average about two AMIs
per day. Mortality rates from small hospitals are quite unsta-
ble, and the random intercepts model used by Hospital Com-
pare shrinks these rates to resemble the National average. Their
model says: “if there is not much data about your hospital, then
we predict it to be average.” For any one small hospital, there
is not much data to contradict that prediction. So their model
claims that the mortality rate at each small hospital is close to
the National average. Is this a discovery or an assumption?

©  American Statistical Association
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If it is a discovery, then it is a surprising discovery. A fairly
consistent finding in health services research is that, adjusting
for patient risk factors, mortality rates are typically higher at
low volume hospitals (Luft, Hunt, and Maerki 1987; Halm, Lee,
andChassin 2002;Gandjour, Bannenberg, and Lauterbach 2003;
Shahian and Normand 2003). Indeed, this pattern is unambigu-
ously evident in the data used to fit theHospital Comparemodel.
Therefore, sound general advice would be to avoid low volume
hospitals for treatment of AMI.

So, is the finding of average risk at small hospitals a discov-
ery or an assumption? Actually, it is neither: it is a mistake. The
model is not properly calibrated; see Dawid (1982) for discus-
sion of calibration. Although there is very little data about any
one small hospital, hence very little data to check a statement
about one small hospital, there is plenty of data about small hos-
pitals as a group. When Hospital Compare’s predictions for all
small hospitals are added up, it is unambiguously clear that the
risk at small hospitals as a group is well above the national aver-
age; see Silber et al. (2010).

There is, here, a general principle. A Bayesian model can
use all of the data to make an individualized prediction that
is difficult to check as a single prediction. It is possible that
this individualized prediction is better than relying upon gen-
eral advice, because it is possible that this individualized pre-
diction is tapping into distinctions evident in the data but not
reflected in general advice. But if the general advice is correct as
general advice, the individualized predictions should not aggre-
gate to contradict it. As a check on whether a Bayesian model is
calibrated, checking individualized predictions against general
advice has two virtues. First, what it checks can fail to hold, so
it can reject some models as inadequate. Second, what it checks
is relevant: the check is against the advice you would fall back
upon if individualized predictions were unavailable. A model
may be detectably false in an irrelevant way—it may use a dou-
ble exponential distribution where a logistic distribution would
have been better—but that model failure may have negligible
consequences for its recommendations. However, if the model
contradicts correct general advice, then there is reason to worry
about its individualized predictions. These general considera-
tions are illustrated in Section 4.2.

1.2. Outline: Modeling, Calibrating, and Reporting
Hospital Mortality Rates

In the current article, we showhow theHospital Comparemodel
can be elaborated to yield improved predictions that no longer
contradict general advice. We confirm such improvements by
fitting the model in one sample and making predictions for
another: in particular, we predict the outcome of the general
advice that would be obtained from the second sample by an
empirical study that made no use of the model. For the pub-
lic reporting of these improved predictions, we propose a direct
standardization approach that is effective at adjusting hospital
mortality rate comparisons for patient mix differences between
hospitals.

In Section 2, we apply a Bayesian implementation of the
Hospital Compare model to recent Medicare data for AMI,
obtaining results similar to those reported on theHospital Com-
pare web-page. Observing how it treats the various sources of

mortality rate variation, we then consider, in Section 3, whether
the Hospital Compare model adequately describes the data.
Specifically, in Section 3, we describe a sequence of hierarchi-
cal random effects logit models predicting AMI mortality from
attributes of patients prior to admission, such as age, prior MI,
and diabetes, and from the identity and attributes of individual
hospitals, such as a hospital’s volume, its capabilities in inter-
ventional cardiology and cardiac surgery, and the adequacy of
its support staff in terms of nurses and residents. We also con-
sider an interaction between a patient attribute and a hospital
attribute, so the model becomes able to say that the best hospi-
tal for one patient may differ from the best hospital for another
patient.

The models are evaluated in Section 4.1 on the basis of
predictive Bayes factors that gauge their ability to make out-
of-sample predictions. Then Section 4.2 checks whether the
models are calibrated by (i) performing matched studies of
general advice using out-of-sample data, studies that make no
use of the model, and (ii) using the model’s out-of-sample pre-
dictions to predict the results of those matched studies. In other
words, the model’s individualized predictions are aggregated
to predict the results of a study that might have been used to
generate general advice without individualized predictions.
Some models are much better calibrated than others.

We turn to standardization for public reporting in Section 5.
The parameters of a Bayesian model would be difficult for the
public to understand. Hospital Compare reports indirectly stan-
dardized rates. We contrast and evaluate directly and indirectly
standardized rates. We conclude that indirectly standardized
rates should not be used for public reporting, but directly stan-
dardized rates work well. In Section 6, we describe what can be
learned from our recommended approach to hospital mortality
rate estimation. This includes mortality rate uncertainty inter-
vals, classification of hospitals by low, average, and high mortal-
ity rates, and the influence of hospitals attributes on mortality.
Section 7 concludes with a discussion. In supplemental appen-
dices, we provide technical aspects of our Bayesian computa-
tional approach, as well as extensions and details of the various
analyses considered throughout.

2. Hierarchical BayesianModels for Adjusted
Mortality Rates

2.1. The Data

Our data were obtained fromMedicare records onN = 377,615
AMI cases for patients admitted toH = 4289 hospitals from July
1, 2009 to December 31, 2011. The first two years of data, up to
June 30, 2011, were used to fit the models under consideration
here and in Section 3. The remaining six months of data were
then used for the model validations in Section 4. We will refer
to these two datasets as the training data and the validation data,
respectively.

Each case in our data contains an indicator of patient death
within 30 days of admission, patient-specific demographics and
risk factors (gender, age, history of diabetes, etc.), and hospital-
specific attributes (volume, number of beds, etc.). We denote
these variables as follows. For patient j in hospital h, j =
1, 2, . . . , nh and h = 1, 2, . . . ,H , let yh j ∈ {0, 1} be the binary

D
ow

nl
oa

de
d 

by
 [

93
.1

81
.1

06
.1

68
] 

at
 1

2:
03

 2
5 

D
ec

em
be

r 
20

17
 



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 935

outcome for whether the patient died (yh j = 1) or did not
die (yh j = 0) within 30 days of admission. Let xh j and zh be
the accompanying vectors of patient attributes and hospital
attributes, respectively. The number of patients per hospital nh
varied a great deal over our data, ranging from1 to 2782 patients,
with a median value of 79. The three year volume of all Medi-
careAMI admissions at hospital h, whichwe denote asvolh, is a
particular characteristic that will turn out to figure prominently
in our modeling of mortality rates throughout.

2.2. The Hospital Compare Random EffectsModel

To motivate the modeling of mortality rates for our Medicare
data, let us begin with Figure 1, a plot of the raw observed
hospital mortality rates Oh = 1

nh

∑
j yh j by volume volh. As

would be expected, Oh variation is largest at low volume hos-
pitals where nh is small, and then steadily decreases as hospital
volume increases. Also evident in the plot is a steadily decreas-
ing average mortality rate, summarized by a smoothing spline,
which is highest at low volume hospitals. This spline crosses the
overall average patient mortality rate line ȳ = 0.1498 at a hos-
pital volume of about 450. An issue of central interest is the
extent to which this average patient mortality rate curve can be
explained by patient attributes and/or hospital characteristics.

Recognizing patient and hospital effects as potential sources
of mortality rate variation, Medicare’s Hospital Compare (Yale
New Haven Health Services Corporation 2014, Appendix 7 A)
uses a random-effects logit model to estimate underlying hospi-
tal mortality rates. Proposed by Krumholz et al. (2006) for this
context, this model is of the form

Yhj | αh, β, xh j
ind∼ Bernoulli(ph j) where logit(ph j) = αh + x′

h jβ

(1)

αh | μα, σ 2
α

iid∼ N (μα, σ 2
α ). (2)

Figure . Raw observed hospital mortality rates Oh by volh . Overall average rate
indicatedby the redhorizontal line. Average rate byvolh summarizedby the green
superimposed smoothing spline.

Here, P(Yhj = 1) = ph j = logit−1(αh + x′
h jβ) is the h jth

patient’s underlying 30-day mortality rate, which is determined
by a hospital effect αh and a patient effect x′

h jβ. The hospi-
tal effects αh are modeled as independent normal random
effects drawn from a single normal distribution, which does
not depend on any hospital attributes. On the other hand,
the patient effects x′

h jβ, which explicitly depend on patient
attributes xh j, are transmitted through a common fixed effect
vector β. Under this model, the underlying average 30-day
mortality rate for patients treated at hospital h is given by

Ph = 1
nh

nh∑
j=1

ph j. (3)

To mesh with our labeling of models proposed later in
Section 3.2, we will refer to the Hospital Compare model (1)–
(2) as the (C,C) model because it constrains both the mean and
the variance of the αh distribution to be constant.

For the implementation of this (C,C) model, we propose a
fully Bayesian approach with the relatively noninfluential, neu-
tral conjugate priors

β | σ 2
β ∼ Nd

(
0, σ 2

β Id
)
, σ 2

β ∼ IG(1, 1) (4)

for the fixed effects parameters in (1), and

μα ∼ N (
0, gσ 2

α

)
, g ∼ IG(1, 1), σ 2

α ∼ IG(1, 1) (5)

for the hyperparameters of the random effect distribution in
(2). For compatibility with the model elaborations proposed in
Section 3, we have used a heavy tailed conjugate hyper g-prior
for μα .

With such a fully Bayes model, all inferences about mortality
rates, hospital effects, patient effects, and functions of these, can
be obtained from the posterior distributions π(p | y), π(α | y)
and π(β | y), where p, α, β, and y are the complete vectors
of mortality rates, hospital effects, fixed effects, and observed
mortality indicators, respectively. In particular, we use posterior
means p̂, α̂, and β̂ as estimates throughout, with 95% posterior
density intervals to describe their uncertainty. As described in
Appendix A.1, these can all be efficiently computed by Markov
chainMonteCarlo (MCMC) posterior simulation using a Pólya-
Gamma latent variable augmentation (Polson, Scott, andWindle
2013). As would be expected under heavy tailed priors such as
(4) and (5), our posterior mean estimates from the (C,C) model
are very similar to the constrained likelihood estimates used by
Hospital Comparewith the SAS 9.3GLIMMIX software. Indeed,
the α̂h GLIMMIX estimates and the α̂h Bayes estimates here had
a correlation of 0.9994.

Figure 2(a) plots the P̂h posterior mean estimates by volh for
the (C,C) model. We see immediately that both the Oh values
and the decreasing average mortality rate spline from Figure 1
have been shrunk toward the overall mean mortality rate line
ȳ = 0.1498. As we would expect, theOh realizations have simply
added extra variability to their underlying Ph values. Neverthe-
less, it appears that substantial P̂h variability remains, especially
at the small volume hospitals where nh in (3) is small.

Insight into the source of the P̂h variability under the (C,C)
model is obtained from Figure 3(a), a plot of the α̂h posterior
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936 E. I. GEORGE ET AL.

Figure . P̂h versus volh .

Figure . α̂h versus volh .

mean estimates by volh. Whereas the P̂h manifest larger vari-
ation at the low volume hospitals, as well as an elevated and
decreasing average mortality rate, the α̂h manifest exactly the
opposite behavior (though on a different scale than the P̂h). The
variation of the α̂h is smallest at the low volume hospitals, where
the average α̂h smoothing spline is flat and unrelated to hos-
pital volume. Since αh and x′

h jβ are the only components of
ph j in (1), the variation of the (C,C) model P̂h at the low vol-
ume hospitals is being driven almost entirely by the variation of
patient effects x′

h jβ, j = 1, . . . , nh across hospitals. Thus, under
the (C,C) model, the elevated average mortality rates at the
lower volume hospitals is coming from a riskier patient case-mix
distribution at those hospitals rather than from hospital effect
differences. A primary purpose of the Hospital Compare anal-
ysis is to adjust for patient case-mix variation with an indirect
standardization of the hospital mortality estimates. This stan-
dardization effectively eliminates all mortality rate differences
between the low volume hospitals as will be seen in Figure 4(a)
in Section 5. As discussed in Section 1, such a conclusion is at
odds with the general finding in the literature that patient risk-
adjusted mortality rates are typically higher at low volume hos-
pitals (Luft, Hunt, and Maerki 1987; Halm, Lee, and Chassin
2002;Gandjour, Bannenberg, andLauterbach 2003; Shahian and
Normand 2003).

3. Hierarchical Modeling of the RandomHospital
Effects

3.1. The Illusion of Safe Shrinkage Estimation

The absence of an elevated level of low volume hospital effects
in Figure 3(a) turns out to be an artifact of the (C,C) model, as

will be seen by comparison with alternative models. In leaving
hospital characteristics out of the model and treating the αh’s as
independent of volume volh, the (C,C) model has not allowed
the data to speak to this possibility. Indeed, the pattern in
Figure 3(a) is consistent with the strong random effects assump-
tion (2) of normally distributed αh’s with a common mean μα

and variance σ 2
α . Under such a normal prior, we would expect

all the α̂h estimates to be shrunk toward a single commonmean.
Such shrinkage would be especially pronounced for those α̂h for
which there is less sample information, namely, the α̂h’s for the
low volume hospitals. This is exactly what we see.

Although shrinkage estimation has the potential to improve
noisy estimates, such as the raw small hospital mortality rates in
our setting, it can only do so if the shrinkage targets, here the
means of the αh’s, are appropriately specified. Contrary to the
commonly held belief that shrinkage estimation can donoharm,
which can be the case in certain stylized contexts, shrinkage esti-
mation with a model that is at odds with the data can be very
detrimental. With an unforgiving, nonrobust normal prior that
imposes strong shrinkage, the resulting estimates will be poor
and misleading if shrinkage targets are incorrectly specified; see
Berger (1985).

The evident and plausible relationship between mortality
rates and volume suggests that it would be more reasonable to
shrink mortality rates toward the mean rates of hospitals with
similar volumes. Unfortunately, this does not happen with the
random effects distribution (2), which shrinks all rates toward a
single overall rate.

3.2. Modeling the RandomHospital Effects

The key to the development of a better hierarchical Bayes model
for our data is to elaborate the random effects distribution (2)
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Figure . P̂ISh versus volh .

in a way that will allow the data to inform us of any potential
relationship between hospital mortality rates and volume and
hospital attributes such as volume. For this purpose, we propose
hierarchical logit model formulations of the form

Yhj | αh, β, xh j
ind∼ Bernoulli(ph j) where logit(ph j) = αh + x′

h jβ

(6)

αh | μh(z), σ 2
h (z) ind∼ N (

μh(z), σ 2
h (z)

)
, (7)

where ph j = P(Yhj = 1) is the h jth patient’s underlying 30-day
mortality rate. As in (1), logit(ph j) in (6) is still the sum of
a hospital effect αh plus a fixed effect x′

h jβ. However, (7) now
allows the mean μh(z) and the variance σ 2

h (z) of the hospital
effects distribution to be functions of the hospital attributes z. As
before, the fixed effects x′

h jβ in (6) still account for patient risk
variation via the patient attributes xh j, but the random effects
distributionN (μh(z), σ 2

h (z)) in (7) now allows the αh’s tomore
fully account for hospital-to-hospital variation via the hospital
attributes z. Note that as a matter of convenience, we have sepa-
rated the roles of xh j in (6) and z in (7) to be consistent with their
variation at the patient and hospital levels, respectively. Because
hospital attributes z do not vary within hospitals, this partition
avoids their inclusion within the patient level linear component
(6), where modeling their effects would be complicated by the
collinearity of the intercept estimates with hospital attributes
deployed at the patient level.

We now proceed to consider specific formulations for μh(z)
and σ 2

h (z) that yield better calibrated predictions for our data.
As noted earlier, we refer to the Hospital Compare (1)–(2) spec-
ification of (6)–(7), namely, the one for which μh(z) ≡ μα and
σ 2
h (z) ≡ σ 2

α , as the Constant-Constant (C,C)model. Each of the
formulations proposed below will be a relaxation that nests the
(C,C)model as a special case, thereby allowing the data to ignore
the hospital attributes if they do not lead to better predictions.
Thus, these formulationswill let the data speak rather than over-
ride what the data have to say.

3.3. Modeling αh as a Function of Volume

To shed light on the issue of whether hospital mortality rates
are related to volume after accounting for patient mix effects,
we begin by considering formulations for the mean and vari-
ance of the αh hospital effects in (7) as functions of the hospital
attribute volume volh only.We begin with a simple linear spec-
ification, and then proceed to consider a more flexible model

that allows for a more refined description of the underlying
relationship. This flexible formulation will then serve as a foun-
dation for the further addition of hospital covariates and inter-
actions to our final model in Section 3.4.

Before proceeding, we should emphasize that, although the
application of ourmodels will be seen to unambiguously reveal a
strong association between high hospitalmortality rates and low
volume hospitals, we are not addressing the issue of whether this
relationship is causal. Our goal is mainly to confirm the afore-
mentioned finding of such an association in the literature, and
to show that by including hospital volume in our models, we get
better andmore informative predictions with theMedicare data.
Such predictions will help guide patients toward safer hospitals.

To provide further insight into the relationship betweenmor-
tality rates and hospital size, we also examined the relationship
between mortality rates and beds2008, the number of beds
in 2008, a hospital attribute that is indisputably exogenous to
our observed mortality rates. As shown in Appendix A.3 of the
supplemental material, a strong association between these two
variables persists.

... A Simple Linear Emancipation of theMeans
We begin with perhaps the simplest elaboration of themean and
variance functions for (7),

μh(z) = γ0 + γ1 log(volh + 1), σ 2
h (z) ≡ σ 2

α , (8)

a linear relaxation of the mean that keeps the variance con-
stant. For the full model (6)–(7) with this specification, we add
the conjugate fixed effect prior (4) for β, and add the conjugate
hyperparameter priors

(γ0, γ1)
′ | g, σ 2

α ∼ N2
(
0, gσ 2

α I2
)
, g ∼ IG(1, 1), σ 2

α ∼ IG(1, 1),
(9)

where g and σ 2
α are a priori independent. We will refer to the

hierarchical logit model formulation with this Linear-Constant
specification as the (L,C)model. Note that the (L,C)model nests
the (C,C) model as the special case for which γ1 = 0.

Application of the (L,C)model to our data produced the hos-
pital mortality rate and hospital effect estimates P̂h and α̂h dis-
played in Figures 2(b) and 3(b). We see immediately that com-
pared to their (C,C) counterparts in Figure 2(a), the (L,C) P̂h’s are
generally higher at the lower volume hospitals where the aver-
age rate smoothing spline has been raised substantially. This is
evidently a consequence of their component α̂h’s in Figure 3(b),
which are dramatically different from their (C,C) counterparts
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938 E. I. GEORGE ET AL.

in Figure 3(a). The (L,C) α̂h’s are now substantially higher at
the low volume hospitals, with a clear downward sloping lin-
ear trend in log(volh + 1) summarized by the superimposed
smoothing spline. With a posterior mean estimate γ̂1 = −0.106
and a 95% credible interval (−0.116,−0.096), the data have
expressed an unambiguous preference for a downward sloping
(L,C) mean specification (8) over the (C,C) constant specifica-
tion (2) for which γ1 = 0. As will be seen with the more formal
predictivemodel comparisons in Section 4.1, the (L,C)model P̂h
improve very substantially over their (C,C) counterparts.

... A Spline-Log-Linear Emancipation of theMeans and
Variances

With only a simple linear relaxation of the mean function, the
(L,C) model released volume to reveal higher mortality rates
explained by dramatically higher hospital effects at the low vol-
ume hospitals. To further release the explanatory power of vol-
ume, we consider a more flexible relaxation of both the mean
and variance functions. In particular, we consider a spline spec-
ification for μh(z) coupled with a log-linear specification for
σ 2
h (z).
For the spline mean specification, let v = (log(vol1 +

1), . . . , log(volH + 1))′ be the vector of all hospital specific
volumes. We construct a B-spline basis of degree d and num-
ber of knots κ , represented by the columns of Bd,κ (v), an H ×
k, (k = (d + 1) + κ) matrix. Letting bh(v) be the hth row of
Bd,κ (v), our spline specification is obtained as

μh(z) = bh(v)γS, (10)

where γS is a k × 1 vector of spline regression coefficients. To
this we add a prior on γS of the form

γS | gS, σ 2
α ∼ Nk

(
0, gSσ 2

αP
−1) , gS ∼ IG(1, 1), (11)

where P is a banded matrix that penalizes second-order dif-
ferences between adjacent spline coefficients, and gS serves
as a roughness penalty that determines the wiggliness of the
resulting curve. (The usual spline roughness penalty is λ =
1/gS.) With this penalization, a nested linear parametric form
is obtained as gS → 0. Note that the conjugate inverse-gamma
prior on gS is often considered in the context of hyper-g-priors
for variable selection. This P-spline (penalized B-spline) formu-
lation allows us to begin with a rich B-spline basis Bd,κ (v) with
many knots, and use regularization to circumvent the difficulties
of optimizing the number and position of knots.

For the log-linear variance specification (Box and Meyer
1986; Gu et al. 2009), we set

σ 2
h (z) = exp{δ volh} σ 2

α , (12)

which nests the previous case σ 2
h (z) ≡ σ 2

α when δ = 0. To this
we add the prior

δ | σ 2
α ∼ N (

0, gδσ
2
α

)
, gδ ∼ IG(1, 1), (13)

and then complete the entire Bayesian specification of (10)–(13)
with

σ 2
α ∼ IG(1, 1), (14)

where gS, gδ , and σ 2
α are all assumed a priori independent. We

will refer to the hierarchical logit model formulation with this
spline-log-linear specification as the (S,L) model.

Application of this (S,L)model with a B-spline basis of degree
d = 3 and κ = 17 knots yields the hospital rate and effect esti-
mates P̂h and α̂h in Figures 2(c) and 3(c). These estimates again
support the story revealed by the (L,C) model that low vol-
ume hospitals have generally higher mortality rates driven by
substantially higher hospital effects. Having been freed from
the constraints of linearity and constant variance, the low vol-
ume α̂h estimates are now even higher and more dispersed than
their (C,C) counterparts in Figure 3(b), manifesting a decreas-
ing nonlinear trend. And with a posterior mean estimate of δ̂ =
−0.00112 and a 95% credible interval of (−0.00160,−0.00066),
the data have also expressed a preference for the log linear vari-
ance specification (12) as well. Although the (L,C) and (S,L)
P̂h plots in Figure 2(b) and 2(c) seem very similar, manifesting
considerable patient-mix variability, the formal predictive com-
parisons that we will see in Section 4.1 confirm the (S,L) model
estimates as a further improvement.

3.4. Adding Further Hospital Attributes and Interactions
to theModel

With our (S,L) model as a foundation, we now consider enlarg-
ing the model to incorporate further hospital attributes. This is
most simply done by adding them as linear terms to μh(z) in
(10). This yields the spline-linear mean specification

μh(z) = bh(v)γS + z′
hγL, (15)

where zh is an r × 1 vector of hospital h attributes and γL is an
r × 1 vector of linear regression coefficients. This form is then
completed with the priors

γS | gS, σ 2
α ∼ Nk

(
0, gSσ 2

αP
−1) , gS ∼ IG(1, 1), (16)

γL | gL, σ 2
α ∼ Nr

(
0, gLσ 2

α Ir
)
, gL ∼ IG(1, 1), (17)

where gS and gL are priori independent of each other and ofσ 2
α ∼

IG(1, 1).
Going further, hospital attributes can also be incorporated

as patient-hospital interactions of the form xh j ∗ zh, products
of particular attributes in xh j and zh, respectively. Because the
values of such interaction terms vary at the patient level, these
would be added as covariates to the linear fixed effects part of
the model. Without such interactions, the model would say that
one hospital, h, is either better or worse than another, h′, for
every patient. Of course, there is no reason to restrict attention
to models with this feature and no reason to expect the world to
be well described by such a model. Patient–hospital interactions
remove this limitation.

Keeping the log-linear variance formulation (12)–(13), we
shall refer to the hierarchical logit formulation with this spline-
linear-interaction specification as the (SLI,L) model. Applying
an instance of this model to our data, we added three hospi-
tal attributes named NTBR, RTBR, and PCI as linear terms in
(15). The nurse-to-bed-ratio (NTBR) and the resident-to-bed-
ratio (RTBR) are continuous hospital variables that describe the
density of support staff at a hospital. The binary hospital vari-
able PCI is a catch-all for the ability of a hospital to perform
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any of the following procedures: percutaneous coronary inter-
ventions such as percutaneous transluminal coronary angio-
plasty (PTCA), a stent, or a coronary artery bypass graft (CABG)
surgery. The ability to perform these procedures is common in
large volume hospitals and much less common in small volume
hospitals.

We also added a patient-hospital interaction, ageh j ∗
log(volh + 1), appending it to xh as an additional covariate
for the fixed effects term x′

h jβ. With this interaction, the model
may provide mortality rate estimates that favor one hospital for
a youngerMedicare patient, say aged 68, and a different hospital
for another older Medicare patient, say aged 90.

Application of this particular (SLI,L) model to our data pro-
duced the hospital rate and effect estimates P̂h and α̂h displayed
in Figures 2(d) and 3(d). These estimates again convey the same
message as the (L,C) and (S,L) estimates in Figures 2(b) and 2(c)
and 3(b) and 3(c), namely, that low volume hospital mortality
rates are generally higher, driven by low volume hospital α̂h’s,
which exhibit a clear decreasing average trend asvolh increases.
However, the α̂h in Figure 3(d) now vary more from high to low
(note the changed vertical scale), a consequence of adding the
ageh j ∗ log(volh + 1) interaction, which has served to model
a portion of the hospital effect variation at the patient level.With
a patient–hospital interaction in the model, the α̂h’s no longer
capture the entirety of the hospital effects. And once again,
although the P̂h’s for the three models in Figures 2(b)–2(d) look
very similar,model comparisons in Section 4.1will show that the
(SLI,L) model leads to still further predictive improvements.

3.5. Further Potential Elaborations

As will be confirmed in Section 4, our (L,C), (S,L), and (SLI,L)
models have served to reveal the inadequacies of the (C,C)
model. Paving the way for further improvements, these hierar-
chical elaborations of the random effects model are hardly the
end of the story. Indeed, it is clear that many further elabora-
tions may be promising, for example, by adding more hospital
attributes as linear terms, spline terms, or patient–hospital inter-
actions. One might also consider elaborations of the log-linear
variance specification (12) that include more hospital attributes,
for example, σ 2

h (z) = exp{z′
hδ} σ 2

α , where zh is a q × 1 vector of
hospital h characteristics (possibly different from zh above) and
δ is a q × 1 regression vector.

Going further, one could also consider different families for
random effects distributions. More robust parametric distribu-
tions such as the Cauchy or t-distributionswould serve to down-
weight the influence of extremes. Even more flexibility could
be obtained with nonparametric prior distributions. Indeed,
Guglielmi et al. (2014) proposed modeling hospital coronary
mortality rates with a Bayesian hierarchical logit model anal-
ogous to our (L,C) model but with a dependent Dirichlet pro-
cess for the random effects. Such an elaboration opened the
door for clustering hospitals into groupswith identicalmortality
rates. Other interesting nonparametric random effect logitmod-
els that also incorporate hospital process indicators formodeling
and clustering hospital coronary mortality rates were proposed
by Grieco, Ieva, and Paganoni (2012). Such nonparametric
elaborations provide promising new routes for improved mor-
tality rate modeling.

A model for hospital mortality rates can be used for a variety
of purposes, not just public reporting. Spiegelhalter et al. (2012)
discussed the issues that arise in different applications of such
models.

4. Model Evaluation

4.1. Predictive Bayes FactorModel Comparisons

Following the traditional Bayesian model choice formalism, we
use Bayes factors to compare the performance of the proposed
models (L,C), (S,L), and (SLI,L) with the performance of the
Hospital Compare (C,C) model. For this purpose, we turn to
out-of-sample predictive Bayes factors rather than in-sample
Bayes factors. As is well recognized, in-sample Bayes factors
based on diffuse parameter priors, such as those we have used
with our training data, are unreliable criteria for model com-
parisons (Cox 1961; Berger 2006). Furthermore, because predic-
tion is the intended use of these models, comparisons based on
out-of-sample performance are of fundamental relevance here.
Thus, we use predictive Bayes factors evaluated on the valida-
tion data using posterior rather than prior predictive likelihoods
(Gelfand and Dey 1994).

Posterior predictive likelihoods are obtained by averaging the
probability of the validation data with respect to a data-updated
“prior” distribution using the training data. Here, the predictive
likelihood for modelM is obtained as

π(yval | ytr,M)

=
∫

α,β

π(yval | α,β,M)π(α,β | ytr,M)dαdβ, (18)

where yval and ytr are the validation data and training data y val-
ues, respectively, and α = (α1, . . . , αH )′. Note that the training
data posterior π(α,β | ytr,M) now serves as a stable and non-
diffuse prior for the validation data. The predictive Bayes fac-
tor for comparison of model M1 versus M2 is then naturally
defined as the ratio of the two posterior predictive likelihoods
(Gelfand and Dey 1994; Kass and Raftery 1995),

BFM1,M2 = π(yval | ytr,M1)

π(yval | ytr,M2)
.

Evaluation of the predictive Bayes factor is obtained byMonte
Carlo integration of the posterior predictive Bayes likelihoods
using posterior parameter samples from the MCMC output,
as described in Section A.1, based on the training data. Using
the simulated values α(s),β(s) ∼ π(α,β | ytr,Mh) from (A.4),
these approximations to the posterior predictive likelihoods are
obtained by the empirical averages

π̂ (ynew | ytr,Mi) = 1
M

S∑
s=1

π(yval | α(s),β(s),Mi), i = 1, 2.

The log posterior predictive Bayes factors comparing each
of the (L,C), (S,L), (SLI,L) models with the (C,C) model are
reported in Table 1. The predictive improvement over the (C,C)
model by every one of our models is very large. Beginning with
the (L,C) model, which simply allowed hospital effect means to
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940 E. I. GEORGE ET AL.

Table . Out-of-sample log posterior predictive Bayes factor comparisons to the
(C,C) model.

Model (L,C) (S,L) (SLI,L)

. . .

be linear in volume rather than constant, the predictive likeli-
hood increased by a huge factor of e27.54. Each subsequent elab-
oration led to a further increase—moving from linear to spline-
log-linear in volume (S,L), adding three hospital covariates and
a patient-volume interaction—culminating in a predictive like-
lihood increase of e37.96 for our (SLI,L) model, which was the
very best.

4.2. Out-of-Sample Calibration of Aggregated Individual
Predictions Against Empirical Studies of General
Advice

The Bayesian model predicts future mortality rates at individual
hospitals. For many hospitals, there are too few AMI patients
to permit a serious test of the model’s predictions at that hospi-
tal. Here, we calibrate the model by comparing its predictions to
the general advice people would otherwise fall back on if indi-
vidualized predictions were not available. Specifically, we con-
duct an out-of-sample observational study checking the general
advice, then, we determine which models predict the results of
that observational study with reasonable accuracy.

To illustrate, we consider the advice that one should avoid
hospitals that rarely treat AMI. As noted earlier, the literature
strongly suggests this is good general advice, although it is diffi-
cult to knowwhether it is good advice for any single hospital that
treats few AMIs—after all, such a hospital provides few patients
upon which to base a mortality rate.

Using the validation sample that was not used to build
the model, we look at the 20% of hospitals with the low-
est volume. This consisted of 747 low volume (LV) hospitals
each with volh ≤ 23 AMI in Medicare patients over three
years, that is, on average, at most one AMI patient in Medi-
care every 1.57 months. In the six-month Medicare valida-
tion sample, there were a total of 1353 AMI patients at such
hospitals. Each such patient was matched to five patients at
the 20% hospitals with the highest Medicare volume, defined
to be the 753 hospitals with volh ≥ 467 over three years,
or at least one Medicare AMI patient every 2.34 days. In a
conventional way (Rosenbaum 2010; Stuart 2010), the match-
ing combined some exact matching, a caliper on the propen-
sity score, and optimal matching based on a Mahalanobis dis-
tance. Here, the propensity score predicted the low or high
volume categories using a logit model and the covariates in
Table 2. The training sample’s estimate of risk of death was
used as an out-of-sample risk or prognostic score in the vali-
dation sample, as suggested by Hansen (2008). Hansen’s (2007)
optmatch package in R was used.

Before discussing the results of this comparison, a few words
of caution are needed. In every observational study, there is

Table . Covariate balance before and after matching. The table compares all  patients at low volume hospitals to all , patients at high volume hospitals (All)
and to  high-volume controls matched -to- (Matched). The matching controlled the listed covariates that described the condition of the patient prior to admission.
Standardized differences are differences in means in units of a pooled standard deviation prior to matching.

Covariate means Standardized differences

High volume Before After

Patient covariates Low volume Matched All matching matching

Number of patients   ,  versus ,  versus 
Prior PTCA . . . − . − .
Prior CABG . . . − . − .
Heart failure . . . . − .
Prior MI . . . . − .
Anterolateral MI . . . − . .
Inferolateral MI . . . − . .
Unstable angina . . . . .
Chronic athero. . . . − . − .
CPR failure shock . . . − . − .
Valvular heart dis. . . . − . − .
Hypertension . . . − . − .
Stroke . . . . .
Cerebrovasc. . . . . − .
Renal failure . . . . − .
COPD . . . . − .
Pneumonia . . . . .
Diabetes . . . − . − .
Malnutrition . . . − . .
Dementia . . . . − .
Paraplegia . . . . − .
Peripheral vas. dis. . . . . − .
Cancer . . . . .
Trauma . . . . .
Psych. . . . . .
Chronic liver dis. . . . − . − .
Male . . . − . .
Age (years) . . . . .
logit(Propensity score) − . − . − . . .
logit(Risk score) − . − . − . . .
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Table . Out-of-sample predicted mortality compared against observed mortality in the matched observational study of low and high volume hospitals.

Low volume High volume matched High volume all

Observed mortality . . .
(C,C) . . .
(L,C) . . .
(S,L) . . .
(SLI,L) . . .

reason to be concerned that some important covariate has not
beenmeasured, so that a comparison that corrects for measured
covariates will not correctly estimate the effect under study. This
is a genuine problem in ranking hospitals, and the best solution
is to improve the quality of the data used in ranking hospitals.
The problem affects both the Bayesian model and the elemen-
tary observational comparison that follows in much the same
way—neither method addresses potential biases from failure to
control an unmeasured covariate. This issue, though both real
and important, is less relevant when the focus is on calibration.
Calibration asks whether the model’s predictions agree with an
examination of the data that does not rely upon the model.
The model is judged calibrated if its predictions are in reason-
able agreement with the elementary observational comparison.
The two answers may agree yet both be mistaken estimates of
the effects of going to low versus high volume hospitals; that is
an important question, but not a question about calibration with
the observed data.

Table 2 gives covariate means before and after matching,
together with differences in means as a fraction of the standard
deviation before matching. Notably, the patients at low and high
volume hospitals differed substantially prior to matching, but
were similar in matched samples. Patients at low volume hos-
pitals were older on average (84 years vs. 78 years old), with a
higher estimatedmean probability of death based on patient risk
factors (0.22 vs. 0.13), a higher proportion of dementia (22% vs.
12%), a higher proportion with a history of pneumonia (24% vs.
12%), and a somewhat higher history of congestive heart fail-
ure (21% vs. 14%), all factors that generally increase mortality
risk. Patients at low volume hospitals also had a lower history
of prior percutaneous transluminal coronary angiography (prior
PTCA) or stenting procedures involving the heart (6% vs. 16%),
the history of which generally lowers risk; lower rates of docu-
mented artherosclerosis, a cardiac risk factor; and lower rates of
anterior infarction, a factor also generally associated with worse
prognosis. Part of the difference in mortality between low and
high volume hospitals reflects the sicker patient population at
low volume hospitals; however, the matching has made an effort
to remove this pattern to the extent that it is visible in measured
covariates.

The final two columns of Table 2 give standardized measures
of covariate imbalance before and after matching. The standard-
ized difference is the difference in means, low volume minus
high volume, divided by the standard deviation of the covari-
ate prior to matching. The standard deviation prior to match-
ing is based on the 1302 patients at low volume hospitals and
the 50,278 patients at high volume hospitals, pooling the within
group variances with equal weights; see Rosenbaum and Rubin
(1983) for discussion of this measure of covariate imbalance.
For example, the difference in mean ages before matching, 84.3

versus 77.7, is 80% of the standard deviation, but after
matching this drops to 1% of the same standard deviation. All of
the standardized differences after matching are less than 10% of
the standard deviation, whereas many were much larger before
matching. In short, the groups look comparable in terms ofmea-
sured covariates after matching.

If we did not have the Bayes model for individualized predic-
tion, we might rely on a matched observational study to provide
general advice. As seen in Table 3, an out-of-sample matched
observational study making no use of the Bayes model records
a 30-day mortality rate of 28.3% at low volume hospitals, and a
mortality rate of 19.8% among similar matched patients at high
volumehospitals, or an excessmortality of about 8.5% at low vol-
ume hospitals, which is consistent with what the literature says.
If one had the option, good general advice would be to seek care
for anAMI at a large volume hospital because themortality rates
are lower for patients who look similar in measured covariates
describing patients prior to admission.

The remainder of Table 3 sets aside the actual out-of-sample
mortality, and instead uses the Bayes models to predict the mor-
tality of the very same patients used in the matched observa-
tional study. Let us consider which Bayes models come close to
correct predictions, making individual predictions that aggre-
gate to agree with empirically based general advice.

The (C,C) model is very inaccurate in its predictions. That
model assumed hospital mortality is independent of volume,
and its predictions agree with its assumptions rather than with
the out-of-sample data. It says, incorrectly, that mortality is only
slightly elevated at low volume hospitals, and it also overstates
the mortality at high volume hospitals. In sharp contrast, every
one of the other models agree with the general advice that risk is
elevated at low volume hospitals. Compared to the (C,C) model,
their aggregate predictions are much closer to the actual mor-
tality levels of both the low volume hospitals and their matched
counterparts at the high volume hospitals. It is interesting to
note that although the overall out-of-sample performance of the
(L,C)model was theweakest of the non-(C,C)models in Table 1,
its aggregate predictions for the low volume hospitals were bet-
ter than the rest here. A second illustration of our general out-
of-sample calibration approach is presented in Appendix A.3.

The lessons of Table 3 are summarized below.
� It is important to check models against data in a manner
that is capable of judging their inadequacies. In the current
context, it is difficult to judge that a model is inadequate by
predicting the mortality experience of three patients at a
hospital whose total AMI volume is three patients. Some-
thing else needs to be done to check such predictions.

� It is important to check aspects of models that we actually
care about. A spline is an approximation and no one really
cares whether it is true or false; rather, we care whether it is
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942 E. I. GEORGE ET AL.

adequate or inadequate as an approximation for something
else that we do really care about. In the current context, we
care about model predictions that might both affect hos-
pital choice and patient mortality. In particular, a model
that says low volume hospitals are safe for AMI treatment
when they are not, is a model that is failing in a way that
we actually care about.

� A good model for individualized predictions should pro-
duce predictions that are, in aggregate, consistent with
sound empirically based general advice that we would oth-
erwise fall back on in the absence of individualized pre-
dictions. The model should correctly predict the results of
sound, out-of-sample studies of general advice that make
no use of themodel. In Table 3, ourmodels do this, and the
(C,C) model does not.

� It is popular to associate Stein’s paradox with Bayes infer-
ence, but they actually point in different directions. Stein’s
paradox is a paradox because it seems to say that shrink-
age is never harmful providing at least three parameters
are estimated; however, it actually refers to a very special
situation. In contrast, there is nothing in Bayes inference
that suggests one will get the right answer by assuming
things that are false or by fitting the wrong model. That
the Bayesian, like the classical frequentist, can be wrong,
that both need to look at the data to avoid being wrong,
to look at the data to judge whether their assumptions are
reasonable, and their models are adequate—this need to
look at the data—is a strength of the Bayesian and classical
frequentist perspectives, not a weakness.

5. StandardizedMortality Rates For Public Reporting

After modeling mortality rates as a function of hospital and
patient attributes, the next major step in preparing hospital
rate estimates for public reporting and further analysis is to
remove patient case-mix effects with some form of standard-
ization. Devoid of differences due to patient risk factors, such
estimates allow for much clearer assessments of hospital quality.
In this vein, Hospital Compare employs a form of indirect stan-
dardization for their (C,C) model estimates. As an alternative,
we propose a direct standardization approach thatmore success-
fully eliminates patient case-mix effects over a wider range of
models, and is better calibrated with the actual overall observed
mortality rates. Let us proceed to describe and illustrate these
two different approaches in detail.

To begin with, both standardization approaches make use of
expected mortality rate estimates for any patient at any hospital.
If theh jth patientwith covariates xh j had been treated at hospital
h∗, under any of our models this rate would be given by

ph∗ (xh j) = logit−1(αh∗ + x′
h jβ), (19)

where αh∗ is now the hospital effect and x′
h jβ is the usual patient

effect. Note that unless h∗ = h, this rate is counterfactual, since
patient h j was actually treated at hospital h. Note also that for
models that include patient–hospital interactions, these inter-
action covariates would be included as extra columns of xh j
that change as h∗ is varied. For example, in our (SLI,L) model,
ageh j ∗ log(volh∗ ) would be the added interaction covariate

for patient h j at hospital h∗. Rather than add cumbersome nota-
tion to indicate such dependence of xh j on h∗, for notational sim-
plicity we shall assume that this dependence is implicitly under-
stood from context.

5.1. Indirectly StandardizedMortality Rates

As discussed by Ash et al. (2012), as part of its mandate, CMS is
charged with quantifying “How does this hospital’s mortality for
a particular procedure compare to that predicted at the national
level for the kinds of patients seen for that procedure or condi-
tion at this hospital?” To address this goal, Hospital Compare
reports estimates of indirectly standardized hospital mortality
rates of the form

PIS
h = (Ph/Eh) × ȳ, (20)

where Eh is an average expected 30-day mortality rate for the
hospital h patients had they been treated at the“national level,”
and ȳ is the overall average patient-level mortality rate esti-
mate for AMI. Beyond its intuitive appeal, strictly speaking, PIS

h
lacks any probabilistic justification as a hospital mortality rate
estimate.

For their choice of Eh in conjunction with the (C,C) model,
Hospital Compare uses

EHC
h = 1

nh

∑
j

pμ(xh j) = 1
nh

nh∑
j=1

logit−1(μα + x′
h jβ), (21)

where for patient j at hospital h, pμ(xh j) = logit−1(μα + x′
h jβ)

replaces the hospital effect αh in ph j = logit−1(αh + x′
h jβ) with

themean hospital effectμα from (2). As opposed to ph j, p̂μ(xh j)
treats every patient as if they went to a hospital with the same
average mortality effectμα . To estimate EHC

h , Hospital Compare
uses SAS’s GLIMMIX plug-in estimates of μα and β (Yale New
Haven Health Services Corporation 2014, p. 58, eq. (4)).

Although the choice of EHC
h for Eh is reasonable, it is tied

directly to the Hospital Compare (C,C) model (2) through μα .
To extend indirect standardization beyond the (C,C) model, we
propose instead a more flexible and general choice of Eh that
essentially reduces to EHC

h under the (C,C)model. Our proposal,
which is generally applicable for all the models considered in
Section 3, is

Eh = 1
nh

nh∑
j=1

[
1
H

H∑
h∗=1

ph∗ (xh j)

]
, (22)

where from (19), ph∗ (xh j) is the expected mortality rate
for the h jth patient, had they been treated at hospital h∗.
Intuitively, Eh is the average expected mortality rate of all hos-
pital h patients had they hypothetically been treated at all hos-
pitals, h∗ = 1, . . . ,H . Such averaging over all hospitals removes
hospital-to-hospital variation, leaving only the patient attributes
to drive the variation of Eh. With this choice of Eh, posterior
mean Bayes estimates P̂IS

h of PIS
h in (20) are straightforwardly

obtained via the MCMC approach in Section A.1.
Making use of the fact that logit(·) is close to linear in

the range of most mortality rates here, insight into how Eh
works, as well as its connection with EHC

h , is obtained by the
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approximation

1
H

∑
h∗

ph∗ (xh j) ≈ logit−1(ᾱ + x̄′
h j β), (23)

where ᾱ = 1
H

∑
h∗ αh∗ and x̄h j = 1

H
∑

h∗ xh j. Recall that xh j will
vary over h∗ when patient–hospital interaction covariates are
present. In models with no patient–hospital interactions, where
x̄h j = xh j, Eh essentially treats every patient as if they went to a
hospital with the same average mortality effect ᾱ. In particular,
under the (C,C) model where ᾱ ≈ μα in (21), Eh will be nearly
identical to the Hospital Compare choice EHC

h . As a computa-
tional shortcut, (23) also provides a convenient route to obtain
fast approximations for general Eh.

To see the effect of the indirect standardization (20) with
(22) for the (C,C), (L,C), (S,L), (SLI,I) models, we apply it to
obtain the indirectly standardized mortality rate estimates P̂IS

h
in Figures 4(a)–4(d). In each these plots, P̂IS

h has served to trans-
form the mortality rate estimates P̂h in Figures 2(a)–2(d) into
values that much more closely resemble the hospital effect esti-
mates α̂h in Figures 3(a)–3(d). Beginning with the (C,C) model,
the plot of the P̂IS

h in Figure 4(a) stands in sharp contrast to
the plot of the mortality rate estimates P̂h in Figure 2(a); note
specifically the substantial shrinkage from the two different ver-
tical scales. The effect of dividing Ph by Eh has left the P̂IS

h esti-
mates looking nearly identical to the hospital effect α̂h estimates
in Figure 3(a). Evidently, indirect standardization for the (C,C)
model has successfully eliminated just about all of the patient
case-mix variation from the P̂h estimates. Notice also that, unlike
the abstract scale of the α̂h’s, standardization has left the P̂IS

h ’s on
a mortality scale that makes them easier to interpret and under-
stand.

Turning to the P̂IS
h estimates for the (L,C), (S,L), and (SLI,L)

models in Figures 4(b)–4(d), we see that these P̂IS
h ’s have

also shrunk the P̂h’s to resemble their corresponding α̂h’s in
Figures 3(b)–3(d). For each model, they are substantially larger
at the low volume hospitals, with a clear downward sloping
trend.However, unlike the low volume α̂h’s in Figures 3(b)–3(d),
which are tightly concentrated around their trend averages, the
low volume P̂IS

h values instead fan out dramatically when volh
is low. Insight into this phenomenon is obtained by considering
the ratio of Ph to the Eh approximation (23),

Ph
Eh

≈
∑nh

j=1 logit
−1(αh + x′

h j β)∑nh
j=1 logit

−1(ᾱ + x̄′
h j β)

. (24)

When the αh are far from ᾱ, as occurs for low volume hospi-
tals under the (L,C), (S,L), and (SLI,L) models, the variation of
(24) will reflect the variation of patient attributes x′

h j across hos-
pitals, especially when nh is small. Thus, under these models,
the increased variation of the P̂IS

h at the low volume hospitals is
an artifact of patient-mix variation rather than of the α̂h hospi-
tal quality variation. Although this phenomenon does not occur
under the (C,C) model where all the low volume α̂h’s are close
to ᾱ, this is precisely where the α̂h’s estimates were seen to be
miscalibrated. For all but the discredited (C,C) model, indirect
standardization fails to achieve its goal of eliminating the effect
of patient case-mix variation frommortality rates. Furthermore,
as we will see in the next section, for every one of our models,

indirectly standardized mortality rates systemically underesti-
mate actual mortality rates. Such indirect standardization can-
not be recommended for public reporting.

5.2. Directly StandardizedMortality Rates

Directly standardized mortality rates, an alternative to PIS
h ,

directly eliminate patient-mix effects by averaging the mortal-
ity rates of all patients had they (hypothetically) been treated at
hospital h. Denoted PDS

h , such rates are given by

PDS
h = 1

N

H∑
h∗=1

ni∑
j=1

ph(xh∗ j), (25)

where ph(xh∗ j) in (19) is the h∗ jth patient’s mortality rate had
they been treated at hospital h, and N = ∑H

i=1 ni is the total
number of patients. Because every PDS

h is an average over the
same set of all patients, there can be no patient-mix differences
between them. Note how PDS

h is complementary to PIS
h , which

instead adjusts Ph by Eh, the average mortality rate of hospital h
patients had they (hypothetically) been treated at all hospitals.
Posterior mean Bayes estimates P̂DS

h of PDS
h in (25) are straight-

forwardly obtained via the MCMC approach in Section A.1.
Further insight into PDS

h is obtained by the approximation

PDS
h ≈ logit−1(αh + x̄′

·· β), (26)

where x̄·· = 1
M

∑
h∗

∑
j xh∗ j, which follows from the fact that

logit(·) is close to linear in the range ofmostmortality rates here.
Thus, PDS

h may be regarded as the expectedmortality rate at hos-
pital h of a patient with average x̄·· attributes. In models with no
patient–hospital interactions (where xh∗ j does not vary with h),
x̄·· is simply the mean of xh∗ j over all patients.

Figures 5(a)–5(d) plots directly standardized mortality rate
P̂DS
h estimates by volh for each of the (C,C), (L,C), (S,L), and
(SLI,L) models. As with P̂IS

h , P̂DS
h has served to transform the P̂h

in Figures 2(a)–2(d) into values that much more closely resem-
ble the hospital effect estimates α̂h in Figures 3(a)–3(d), but that
remain on a more meaningful mortality scale. Up to this rescal-
ing, the P̂DS

h estimates under the (C,C) model are also virtually
identical to their α̂h’s, and under the (L,C) and (S,L) models
now appear much more similar to their α̂h’s. No longer fanning
out at the low volume hospitals as the P̂IS

h rates did, these P̂DS
h ’s

have more successfully eliminated patient case-mix variability.
Indeed, with linear correlations of 0.9967, 0.9978, 0.9975 under
these three models, P̂DS

h serves as meaningfully interpretable,
nearly linear rescaling of the α̂h hospital effect estimates. For
the (SLI,L) model, the P̂DS

h ’s are more dispersed than the α̂h’s,
tracking them less closely with a correlation of 0.9906. This is
not surprising because when patient–hospital interactions are
present, as we saw in Section 3.4, the α̂h’s no longer entirely cap-
ture hospital effects. Evidently, the P̂DS

h ’s are a much more effec-
tive reflection of actual hospital effects, and one that puts them
on a natural mortality scale.

It is concerning to see that the overall level of the P̂IS
h rates in

Figures 4(a)–4(d) is systematically lower than the overall level of
the P̂DS

h rates in Figures 5(a)–5(d). To understand what is going
on, we have put two horizontal lines on each of the P̂DS

h plots. For
eachmodel, the higher line is the simple average of the P̂DS

h rates,
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944 E. I. GEORGE ET AL.

Figure . P̂h versus volh .

while the lower line is the same observed average mortality rate
ȳ = 0.1498 obtained by averaging over all patients in our data.
By the indirect standardization construction, the simple average
of the P̂IS

h rates will always equal the average patient mortality
rate ȳ, as is evident in their plots. In fact, the P̂IS

h rates understate
the poor performance of the worst hospitals by overstating the
risk faced by the typical patient as the following discussion will
show.

As we have seen, low volume hospitals have higher than
typical risk, but treat relatively few patients; therefore, the
(unweighted) average risk over hospitals ismuch higher than the
average risk faced by patients. Saying the same thing differently,
a random patient likely went to a larger volume hospital—that
is, what it means to be a larger volume hospital—but a random
hospital is unlikely to have very high volume—that is what it
means to be a random hospital. The expected risk Eh used by
P̂IS
h in approximation (23) is essentially obtained by substituting
the average hospital effect ᾱ for the specific hospital effect αh
in the various expressions for patient mortality rates. This aver-
age hospital effect ᾱ describes the typical hospital, not the hos-
pital that treats the typical patient. Therefore, Eh is too high: it
describes the risk that would be relevant if patients picked hos-
pitals at randomwith equal probabilities, but they do not; rather,
they tend to go to larger volume hospitals with lower risk. This
one problem with P̂IS

h could be fixed with a patch: instead of
using the unweighted ᾱ, one could average over hospitals with
weights proportional to their volumes that would describe the
risk faced by the typical patient. However, this would still not
resolve the patient-mix variability shortcomings of P̂IS

h discussed
in the previous section. Overall, we recommend P̂DS

h over P̂IS
h as

a more reliable standardized mortality rate report, especially for
the model elaborations that we have proposed.

6. Learning fromDirectly StandardizedMortality
Rates

6.1. Mortality Rate Uncertainty

For each hospital h, each of the Bayesian models induces a pos-
terior distribution π(PDS

h | y) on its directly standardized mor-
tality rate. Averages of MCMC simulated samples from each
of these posteriors produced the posterior mean estimates P̂DS

h
plotted in Figures 5(a)–5(d). As is strikingly evident in every
plot, the hospital-to-hospital variation of these P̂DS

h values is
smallest at the low volume hospitals, gradually increasing as vol-
ume increases. This is a consequence of the stronger shrinkage
of the α̂h estimates to their means by each of the random effects
models.

However, this observed hospital-to-hospital variation of
the P̂DS

h values should not be confused with the posterior
uncertainty of the accuracy of each estimate, which can be
much larger. This uncertainty is captured by the full posterior
distribution of each P̂DS

h value, and can be conveyed with inter-
val estimates based on the simulated posterior samples for each
hospital. For example, 95% intervals may be obtained from the
2.5% and 97.5% sample quantiles. Such intervals can be used to
provide a direct assessment of the reliability of each P̂DS

h esti-
mate, a more informative alternative to the practice of eliminat-
ing estimates because of small sample sizes or other reliability
adjustments, as advocated, for example, by Dimick, Staiger, and
Birkmeyer (2010).

To illustrate this uncertainty, Figures 6(a)–6(d) display
boxplots of simulated posterior samples from the π(PDS

h | y)
distributions for 10 typical hospitals of sizes volh =
1, 2, 5, 10, 25, 50, 100, 200, 400, 800 under the (C,C), (L,C),
(S,L), and (SLI,L) models, respectively. Notice how the profile

Figure . P̂DSh posterior uncertainty at  hospitals of varying volume.
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Table . Hospital classifications by mortality rates.

All hospitals Lower volume quartile hospitals Upper volume quartile hospitals

Counts (%) Low Average High Total Low Average High Total Low Average High Total

(C,C)            
(.) (.) (.) (.) (.) (.) (.) (.) (.)

(SLI,L)            
(.) (.) (.) (.) (.) (.) (.) (.) (.)

of mortality rate uncertainty under the (C,C) model stands out
from the rest. Under the (C,C)model, mortality rate uncertainty
is hardly related to volume, the level, and spread of the posterior
distributions being roughly the same at the smaller volh values.
But under our models, especially the fully emancipated (S,L)
and (SLI,L) models, both the level and spread of the posterior
distributions are higher for the low volume hospitals, decreasing
steadily as volh increases.

To further illustrate the informative value of mortality rate
posterior reporting under our approach, Silber et al. (2016)
applied a hospital attribute enhanced variant of our (L,C) model
to estimate mortality rates at five hospitals in Chicago, IL. Con-
sistent with Figure 6, mortality rate posteriors for the smaller
volume hospitals there are seen to be both higher and more
diffuse under the enhanced (L,C) model than under the (C,C)
model.

Thus, the systematically higher mortality rate estimates at
low volume hospitals under our models are also each less pre-
cise or reliable in the sense that there is more uncertainty about
their accuracy. Figure 6 reminds us that in judging the mortality
rate estimate for a given hospital with ourmodels, consideration
must be given both to the point estimate and its uncertainly as
reflected by the posterior distribution. In particular, if a small
hospital was plausibly excellent, an analysis of this form would
convey that such excellence is plausible.

6.2. Hospital Classification byMortality Rates

Domany or few hospitals have highmortality rates compared to
national rates? The 95% credibility intervals for PDS

h described
in the previous section can be used to classify hospitals as low,
average, or high mortality according to whether its 95% inter-
val is entirely below, intersects, or is entirely above the overall
average morality rate of 15%.

Table 4 provides these classifications for the (C,C) and the
(SLI,L) models. Overall, the (C,C) model categorizes most hos-
pitals, 4333, as average mortality, with only 33 as low and 30 as
high. Our (SLI,L) model is much more discriminating, classify-
ing 3310 hospitals as average, with 58 as low and 1028 as high.
However,much of this discrimination between average and high
mortality hospitals occurs at the lower volumequartile hospitals.
Whereas all 1116 low volume quartile hospitals are classified as
average mortality by the (C,C) model, the (SLI,L)) has recate-
gorized 906 of these as high mortality. For the higher volume
quartile hospitals, the (C,C)model classifies 32 as low, 20 as high,
whereas the (SLI,L) model has many more, 57 as low, and only
4 as high. The full cross-classification leading to Table 4 appears
as Table A.1 in Appendix A.4. There we see, for example, that
of the 57 higher volume hospitals classified as low mortality by
(SLI,L), 28 were classified as average by (C,C). In contrast, of the
32 higher volume hospitals classified as low mortality by (C,C),
only 4 were classified as average by (SLI,L).

6.3. The Influence of Hospital Attributes

The (SLI,L) model included three attributes of hospitals besides
volume, namely, NTBR, RTBR, and PCI. The 95% highest pos-
terior density intervals for the coefficients of NTBR and RTBR
included only negative values and excluded zero, while the
interval for PCI included zero. However, PCI is highly correlated
with hospital volume, which is also in the model in the form of
a spline. Figures 7(a)–7(c) plots P̂DS

h versus NTBR, RTBR, and
PCI, respectively, for this model. In Figures 7(a) and 7(b), hos-
pitals with more nurses per bed or more residents per bed are
predicted to have lowermortality. Although not confirmed to be
distinct from volume, the ability to perform PCI (PTCA, stents,
or CABG) is also associated with lower mortality in Figure 7(c).
These patterns are generally consistent with the health services

Figure . P̂DSh under the (SLI,L) model.
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research literature concerning the influence of invasive cardiol-
ogy (Stukel et al. 2007) and nurse staffing (Person et al. 2004)
on AMI survival, though the benefit of treatment at a teach-
ing hospital is more controversial, and studies are inconsistent
regarding its influence onmortality (Allison et al. 2000; Navathe
et al. 2013). Lastly, for the age–volume interaction that was also
included in the (SLI,L) model, a positive coefficient posterior
estimate indicated that large volume hospitals confer a greater
survival benefit for younger medicare patients.

7. Discussion

As a model for AMI hospital mortality rates, we have found the
hierarchical random effect logit model used by Hospital Com-
pare to be inadequate compared to alternatives that model hos-
pital effects as a functions of hospital attributes. Such models
were seen to offer substantial predictive improvements as mea-
sured by out-of-sample predictive Bayes factors. Going further,
we have suggested calibrating individualized predictions from
Bayesian models against empirically based general advice that
would otherwise be used to inform decisions. This entails con-
ducting an out-of-sample study of general advice without using
themodel, and then using themodel to predict the results of that
independent study. For this purpose, a matched out-of-sample
comparison confirmed familiar advice that low volumehospitals
tend to have higher mortality rates when treating AMI. While
our models accurately predicted the results of that matched out-
of-sample study, the current Hospital Comparemodel is not cal-
ibrated in this sense, and hence should not be used.

One of the main goals of this article has been to show that
the inclusion of hospital attributes in our models leads to bet-
ter calibrated and more informative mortality rate predictions.
In particular, we obtained a vast improvement over the Hospital
Compare model with the Medicare data by including hospital
volume, staffing by nurses and residents, PCI, and patient-age
by hospital-volume interactions.While this improvement better
serves the needs of patients, its ramifications for public policy
must be considered cautiously. Because low volume hospitals,
by definition, have little data regarding mortality, a better small
volume hospital may be unable to overcome the poor results of
its similarly sized peers to receive the good ranking it deserves.
To some extent, this problem can be mitigated with our models,
by including measures of uncertainty along with mortality rate
estimates, as described in Section 6.1. However, further model-
ing with additional hospital attributes has the clear potential to
shed more light on the rankings of such hospitals. In particular,
the addition of hospital attributes that distinguish better low vol-
ume hospitals from the rest would be ideal. Indeed, our models
should be considered as the beginning rather than the end of the
story. While hospital volume is a convenient variable, which is
strongly associated with mortality, with more information, for
example, about hospital management, it may even turn out not
to be the most important predictive variable, thereby diminish-
ing its penalizing effect.

We have also recommended that the common practice of
reporting indirectly standardized rates be avoided. We found
that for our improved models, indirectly standardized rates
fail to eliminate the effect of patient mix differences across
hospitals. Furthermore, such indirectly adjusted rates are also

inherently misleading in that they systematically underestimate
population hospital mortality rates. In contrast, direct adjust-
ment faithfully translates the model’s adjustments and mortal-
ity predictions into a properly calibrated and easily understood
format for public reporting.

The future lies with predictions that are individualized not
just to particular hospitals, but to particular patients when
treated at particular hospitals. We scratched the surface of this
topic by including patient-by-hospital interactions in (19), find-
ing that younger Medicare patients benefit more than older
Medicare patients from treatment at high volumehospitals.Note
that oncewe have fit one of ourmodels and obtained estimates of
theαh andβ, (19) can be appliedwith ph(x) for any patient char-
acteristics x to obtain mortality rate estimates for that patient at
any hospital. Such personalized rate estimates would be more
relevant than standardized rates for any particular patient.

Supplementary Materials

Appendix A.1 details the MCMC implementation for simulated sampling
from our hierarchical logit model posteriors. This entails successive substi-
tution Gibbs sampling from the full conditionals obtained with a suitable
Polya-Gamma latent variable posterior augmentation. Appendix A.2 illus-
trates the relationship between mortality rates and number of hospital beds
with a model that excludes volume. This gives further insight into the per-
sistent relationship between hospital mortality and hospital size. Appendix
A.3 provides a second out-of-sample calibration example with US News
and World Report hospital rankings.Appendix A.4 provides the full cross-
classification of low, average and high hospital mortality rates by the (C,C)
and the (SLI,L) models.
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