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Abstract
This article gives a survey of the e-value, a statistical significance measure a.k.a. 
the evidence rendered by observational data, X, in support of a statistical hypoth-
esis, H, or, the other way around, the epistemic value of H given X. The e-value and 
the accompanying FBST, the Full Bayesian Significance Test, constitute the core 
of a research program that was started at IME-USP, is being developed by over 20 
researchers worldwide, and has, so far, been referenced by over 200 publications. 
The e-value and the FBST comply with the best principles of Bayesian inference, 
including the likelihood principle, complete invariance, asymptotic consistency, etc. 
Furthermore, they exhibit powerful logic or algebraic properties in situations where 
one needs to compare or compose distinct hypotheses that can be formulated either 
in the same or in different statistical models. Moreover, they effortlessly accommo-
date the case of sharp or precise hypotheses, a situation where alternative methods 
often require ad hoc and convoluted procedures. Finally, the FBST has outstanding 
robustness and reliability characteristics, outperforming traditional tests of hypoth-
eses in many practical applications of statistical modeling and operations research.
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1 Introduction

The Full Bayesian Significance Test (FBST) is a novel statistical test of hypoth-
esis published in 1999 by both authors [34] and further extended in Ref. [37, 86]. 
This solution is anchored by a novel measure of statistical significance known as 
the e-value, ev(H |X) , a.k.a. the evidence value provided by observational data X 
in support of the statistical hypothesis H or, the other way around, the epistemic 
value of hypothesis H given the observational data X. The e-value, its theoreti-
cal properties and its applications have been a topic of research for the Bayesian 
Group at USP, the University of São Paulo, for the last 20 years, including col-
laborators working at UNICAMP, the State University of Campinas, UFSCar, the 
Federal University of São Carlos, and other universities in Brazil and around the 
world. The bibliographic references list a selection of contributions to the FBST 
research program and its applications.

The FBST was specially designed to provide a significance measure to sharp 
or precise statistical hypothesis, namely, hypotheses consisting of a zero-volume 
(or zero Lebesgue measure) subset of the parameter space. Furthermore the 
e-value has many necessary or desirable properties for a statistical support func-
tion, such as: 

(i) Give an intuitive and simple measure of significance for the hypothesis in test, 
ideally, a probability defined directly in the original or natural parameter space.

(ii) Have an intrinsically geometric definition, independent of any non-geometric 
aspect, like the particular parameterization of the (manifold representing the) 
null hypothesis being tested, or the particular coordinate system chosen for the 
parameter space, in short, be defined as an invariant procedure.

(iii) Give a measure of significance that is smooth, i.e. continuous and differentiable, 
on the hypothesis parameters and sample statistics, under appropriate regularity 
conditions for the model.

(iv) Obey the likelihood principle , i.e., the information gathered from observations 
should be represented by, and only by, the likelihood function, [13, 96, 143].

(v) Require no ad hoc artifice like assigning a positive prior probability to zero 
measure sets, or setting an arbitrary initial belief ratio between hypotheses.

(vi) Be a possibilistic support function, where the support of a logical disjunction is 
the maximum support among the support of the disjuncts, see [133].

(vii) Be able to provide a consistent test for a given sharp hypothesis.
(viii) Be able to provide compositionality operations in complex models.
(ix) Be an exact procedure, i.e., make no use of “large sample” asymptotic approxi-

mations when computing the e-value.
(x) Allow the incorporation of previous experience or expert’s opinion via (subjec-

tive) prior distributions.

Author's personal copy
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The objective of the next two sections is to recall standard nomenclature and provide 
a short survey of the FBST theoretical framework, summarizing the most important 
statistical properties of its statistical significance measure, the e-value; these intro-
ductory sections follow closely the tutorial [122, appendix A], see also [37].

2  Bayesian statistical models

A standard model of (parametric) Bayesian statistics concerns an observed (vector) 
random variable, x, that has a sampling distribution with a specified functional form, 
p(x | �) , indexed by the (vector) parameter � . This same function, regarded as a func-
tion of the free variable � with a fixed argument x, is the model’s likelihood function.

In frequentist or classical statistics, one is allowed to use probability calculus in 
the sample space, but strictly forbidden to do so in the parameter space, that is, x is 
to be considered as a random variable, while � is not to be regarded as random in 
any way. In frequentist statistics, � should be taken as a “fixed but unknown quan-
tity”, and neither probability nor any other belief calculus may be used to directly 
represent or handle the uncertain knowledge about the parameter.

In the Bayesian context, the parameter � is regarded as a latent (non-observed) 
random variable. Hence, the same formalism used to express (un)certainty or belief, 
namely, probability theory, is used in both the sample and the parameter space. 
Accordingly, the joint probability distribution, p(x, �) should summarize all the 
information available in a statistical model. Following the rules of probability calcu-
lus, the model’s joint distribution of x and � can be factorized either as the likelihood 
function of the parameter given the observation times the prior distribution on � , or 
as the posterior density of the parameter times the observation’s marginal density,

The prior probability distribution p0(�) represents the initial information available 
about the parameter. In this setting, a predictive distribution for the observed random 
variable, x, is represented by a mixture (or superposition) of stochastic processes, all 
of them with the functional form of the sampling distribution,according to the prior 
mixing (or weight) distribution,

If we now observe a single event, x, it follows from the factorizations of the joint 
distribution above that the posterior probability distribution of � , representing the 
available information about the parameter after the observation, is given by

In order to replace the ‘proportional to’ symbol, ∝ , by an equality, it is necessary 
to divide the right hand side by the normalization constant, c1 = ∫

�
p(x | �)p0(�)d� . 

This is the Bayes rule, giving the (inverse) probability of the parameter given 
the data. That is the basic learning mechanism of Bayesian statistics. Computing 

p(x, �) = p(x | �)p(�) = p(� | x)p(x) .

p(x) = ∫�

p(x | �)p0(�)d� .

p1(�) ∝ p(x | �)p0(�) .

Author's personal copy
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normalization constants is often difficult or cumbersome. Hence, especially in large 
models, it is customary to work with unormalized densities or potentials as long 
as possible in the intermediate calculations, computing only the final normalization 
constants. It is interesting to observe that the joint distribution function, taken with 
fixed x and free argument � , is a potential for the posterior distribution.

Bayesian learning is a recursive process, where the posterior distribution after 
a learning step becomes the prior distribution for the next step. Assuming that the 
observations are i.i.d. (independent and identically distributed) the posterior distri-
bution after n observations, x(1),… x(n) , becomes,

If possible, it is very convenient to use a conjugate prior, that is, a mixing distri-
bution whose functional form is invariant by the Bayes operation in the statistical 
model at hand. For example, the conjugate priors for the Normal and Multivariate 
models are, respectively, Wishart and the Dirichlet distributions, see [55, 145].

The founding fathers of the Bayesian school, namely, Reverend Thomas Bayes, 
Richard Price and Pierre-Simon de Laplace, interpreted the Bayesian operation as 
a path taken for learning about probabilities related to unobservable causes, repre-
sented by the parameters of a statistical model, from probabilities related to their 
consequences, represented by observed data. Nevertheless, later interpretations of 
statistical inference, like those of Bruno de Finetti who endorsed the epistemological 
perspectives of empirical positivism, strongly discouraged such causal interpreta-
tions, see [128, 129] for further discussion of this controversy.

The ‘beginnings and the endings’ of the Bayesian learning process deserve fur-
ther discussion, that is, we should present some rationale for choosing the prior dis-
tribution used to start the learning process, and some convergence theorems for the 
posterior as the number observations increases. In order to do so, we must access 
and measure the information content of a (posterior) distribution. References [64, 
69, 123, 145] explain how the concept of entropy can be used to unlock many of 
the mysteries related to the problems at hand. In particular, they discuss some 
fine details about criteria for prior selection and important properties of posterior 
convergence.

3  The Epistemic e‑values

Let 𝜃 ∈ Θ ⊆ Rp be a vector parameter of interest, and p(x | �) be the likelihood asso-
ciated to the observed data x, as in the standard statistical model. Under the Bayes-
ian paradigm the posterior density, pn(�) , is proportional to the product of the likeli-
hood and a prior density,

A hypothesis H states that the parameter lies in the null set, defined by inequality 
and equality constraints given by vector functions g and h in the parameter space,

pn(�) ∝ p(x(n) | �)pn−1(�) ∝
∏n

i=i
p(x(i) | �)p0(�) .

pn(�) ∝ p(x | �) p0(�) .
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From now on, we use a relaxed notation, writing H instead of ΘH . We are particu-
larly interested in sharp (precise) hypotheses, i.e., those in which there is at least one 
equality constraint and, therefore, dim(H) < dim(Θ).

The FBST defines ev(H) , the e-value supporting (in favor of) the hypothesis H, 
and ev(H) , the e-value against H, as

The function s(�) is known as the posterior surprise function relative to a given ref-
erence density, r(�) . W(v) is the cumulative surprise distribution. Due to its inter-
pretation in mathematical and philosophical logic, see [16], W(v) is also known as 
(the statistical model’s) truth function or Wahrheitsfunktion. The surprise function 
was used in the context of statistical inference by Good [56], Evans [48], Royall 
[103] and Schackle [109, 110], among others. Its role in the FBST is to make ev(H) 
explicitly invariant under suitable transformations on the coordinate system of the 
parameter space, see next section.

The tangential (to the hypothesis) set T = T(s∗) , is a Highest Relative Surprise 
Set (HRSS). It contains the points of the parameter space with higher surprise, rela-
tive to the reference density, than any point in the null set H. When r(�) ∝ 1 , the pos-
sibly improper uniform density, T  is the Posterior’s Highest Density Probability Set 
(HDPS) tangential to the null set H. Small values of ev(H) indicate that the hypoth-
esis traverses high density regions, favoring the hypothesis.

Notice that, in the FBST definition, there is an optimization step and an integra-
tion step. The optimization step follows a typical maximum probability argument, 
according to which, “a system is best represented by its highest probability reali-
zation”. The integration step extracts information from the system as a probability 
weighted average. Many inference procedures of classical statistics rely basically on 
maximization operations, while many inference procedures of Bayesian statistics 
rely on integration (or marginalization) operations. In order to achieve all its desired 
properies, the FBST procedure has to use both operation types.

3.1  Nuisance parameters

Let us consider the situation where the hypothesis constraint, 
H ∶ h(�) = h(�) = 0 , � = [�, �] is not a function of some of the parameters, � . 
This situation is described in [11] by Debabrata Basu as follows:

ΘH = {� ∈ Θ | g(�) ≤ 0 ∧ h(�) = 0} .

s(�) = pn(�)∕r(�) ,

s∗ = s(�∗) = sup�∈H s(�) , ŝ = s(�̂) = sup�∈Θ s(�) ,

T(v) = {� ∈ Θ | s(�) ≤ v} , W(v) = �T(v)

pn(�)d� ,

T(v) = Θ − T(v) , W(v) = 1 −W(v) ,

ev (H) = W(s∗) , ev(H) = W(s∗) = 1 − ev(H) .

Author's personal copy
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If the inference problem at hand relates only to � , and if information gained on 
� is of no direct relevance to the problem, then we classify � as the Nuisance 
Parameter. The big question in statistics is: How can we eliminate the nuisance 
parameter from the argument?

Basu goes on listing at least 10 categories of procedures to achieve this goal, like 
using max� or ∫ d� , the maximization or integration operators, in order to obtain a 
projected profile or marginal posterior function, p(� | x) . The FBST does not follow 
the nuisance parameters elimination paradigm, working in the original parameter 
space, in its full dimension.

3.2  Reference prior and invariance

In the FBST the role of the reference density, r(�) is to make ev(H) explicitly invari-
ant under suitable transformations of the coordinate system. The natural choice of 
reference density is an uninformative prior, interpreted as a representation of no 
information in the parameter space, or the limit prior for no observations, or the neu-
tral ground state for the Bayesian learning operation. Standard (possibly improper) 
uninformative priors include the uniform, maximum entropy densities, or Jeffreys’ 
invariant prior. Finally, invariance, as used in statistics, is a metric concept, and the 
reference density can be interpreted as induced by the statistical model’s information 
metric in the parameter space, dl2 = d��G(�)d� , see [2, 12, 17, 49, 55, 64, 69, 70, 
145] for a detailed discussion. Jeffreys’ invariant prior is proportional to the square 
root of the information matrix determinant, p(�) ∝

√
det G(�).

3.3  Proof of invariance

Consider a proper (bijective, integrable, and almost surely continuously differenti-
able) reparameterization � = �(�) . Under the reparameterization, the Jacobian, sur-
prise, posterior and reference functions are:

Let ΩH = �(ΘH) . It follows that

hence, the tangential set, T ↦ �(T) =
̃
T  , and

J(�) =
�
� �

� �

�
=

�
� �−1(�)

� �

�
=

⎡
⎢⎢⎢⎣

� �1
� �1

…
� �1
� �n

⋮ ⋱ ⋮
� �n

� �1

…
� �n

� �n

⎤⎥⎥⎥⎦
s̃(�) =

p̃n(�)

r̃(�)
=

pn(�
−1(�))�J(�)�

r(�−1(�))�J(�)�

s̃∗ = sup
�∈ΩH

s̃(�) = sup
�∈ΘH

s(�) = s∗

Author's personal copy



1 3

São Paulo Journal of Mathematical Sciences 

3.4  Asymptotics and consistency

Let us consider the cumulative distribution of the evidence value against the 
hypothesis, V(c) = Pr ( ev ≤ c) , given �0 , the true value of the parameter. Under 
appropriate regularity conditions, for increasing sample size, n → ∞ , we can say 
the following:

• If H is false, �0 ∉ H , then ev converges (in probability) to 1, that is, 
V(0 ≤ c < 1) → 0.

• If H is true, �0 ∈ H , then V(c) , the confidence level, is approximated by the 
function

t = dim(Θ) , h = dim(H) and Q (k, x) is the cumulative chi-square distribution with k 
degrees of freedom.

Under the same regularity conditions, an appropriate choice of threshold or 
critical level, c(n), provides a consistent test, �c , that rejects the hypothesis if 
ev(H) > c . The empirical power analysis developed in [76, 135] provides critical 
levels that are consistent and also effective for small samples.

3.5  Proof of consistency

Let V(c) = Pr ( ev ≤ c) be the cumulative distribution of the evidence value 
against the hypothesis, given � . We stated that, under appropriate regularity con-
ditions, for increasing sample size, n → ∞ , if H is true, i.e. � ∈ H , then V(c) , is 
approximated by the function

Let �0 , �̂  and �∗ be the true value, the unconstrained MAP (Maximum A Posteriori), 
and constrained (to H) MAP estimators of the parameter �.

Since the FBST is invariant, we can chose a coordinate system where, the 
(likelihood function) Fisher information matrix at the true parameter value is the 
identity, i.e., J(�0) = I . From the posterior Normal approximation theorem, see 
[55], we know that the standarized total difference between �̂  and �0 converges in 
distribution to a standard Normal distribution, i.e.

ẽv(H) = ∫̃
T

p̃n(�)d� = ∫T

pn(�)d� = ev(H).

QQ(t, h, c) = Q
(
t − h, Q −1(t, c)

)
, where

Q (k, x) =
Γ(k∕2, x∕2)

Γ(k∕2,∞)
, Γ(k, x) = ∫

x

0

yk−1e−ydy ,

QQ(t, h, c) = Q
(
t − h, Q −1(t, c)

)
.
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This standarized total difference can be decomposed into tangent (to the hypothesis 
manifold) and transversal orthogonal components, i.e.

Hence, the total, tangent and transversal distances ( L2 norms), ||dt|| , ||dh|| and 
||dt−h|| , converge in distribution to chi-square variates with, respectively, t, h and 
t − h degrees of freedom.

Also from, the MAP consistency, we know that the MAP estimate of the Fisher 
information matrix, Ĵ  , converges in probability to true value, J(�0).

Now, if Xn converges in distribution to X, and Yn converges in probability to Y, 
we know that the pair [Xn, Yn] converges in distribution to [X, Y]. Hence, the pair 
[||dt−h||, Ĵ] converges in distribution to [x, J(�0)] , where x is a chi-square variate with 
t − h degrees of freedom. So, from the continuous mapping theorem, the evidence 
value against H, ev(H) , converges in distribution to e = Q (t, x) , where x is a chi-
square variate with t − h degrees of freedom.

Since the cumulative chi-square distribution is an increasing function, we can 
invert the last formula, i.e., e = Q (t, x) ≤ c ⇔ x ≤ Q −1(t, c) . But, since x in a chi-
square variate with t − h degrees of freedom,

A similar argument, using a non-central chi-square distribution, proves the other 
asymptotic statement.

3.6  Decisions: reject H, remain neutral, or accept

In this subsection we briefly discuss the important question of deciding when to 
Accept, or Reject, or remain Neutral about a statistical hypothesis H, given observed 
data X. We start our discussion elaborating on the asymptotic results derived in the 
last sub-section.

If a random variable, x, has a continuous cumulative distribution function, F(x), 
its probability integral transform generates a uniformly distributed random variable, 
u = F(x) , see [5]. Hence, the tranformation sev = QQ(t, h, ev) , defines a “standarized 
e-value”, sev = 1 − sev , that can be used somewhat in the same way as a p-value of 
classical statistics. This standarized e-value may be a convenient value to report, 
since its asymptotically uniform distribution (under H) provides a large-sample limit 
interpretation, and many researchers will feel already familiar with consequent diag-
nostic procedures for scientific hypotheses based on adequately large empirical data-
sets. In particular, a researcher may use cut-off thresholds already familiar to the him 
when dealing with p-values. Efficient procedures for computing empirical cut-off 
thresholds that are effective for small size data sets are developed in [14, 76–79].

√
n(�̂ − �0) → N

�
0, J(�0)−1J(�0)J(�0)−1

�

= N
�
0, J(�0)−1

�
= N(0, I)

dt = dh + dt−h , dt =
√
n(�̂ − �0) ,

dh =
√
n(�∗ − �0) , dt−h =

√
n(�̂ − �∗) .

Pr (e ≤ c) = QQ(t, h, c) = Q.E.D.
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Traditionally,  statisticians are used to establish a dichotomy: Reject/ Accept 
(technically, Not-Reject) H if the significance measure in use is below or above the 
established cut-off threshold. Nevertheless, a thorough analysis of consistent desid-
erata for logical properties of such a decision procedure take us to an unavoidable 
conclusion: The classical Reject/ Accept dichotomy must be replaced by a trichot-
omy, namely, Reject/ remain Neuter (a.k.a remain undecided or agnostic)/ Accept 
H if, respectively, 0 ≤ sev(H |X) < c1 , c1 ≤ sev(H |X) < c2 , or c2 ≤ sev(H |X) ≤ 1 , 
where 0 < c1 < c2 < 1 ; For an extensive and detailed analysis of consistent desid-
erata for statistical test procedures, see [63, 112].

The study of such logical desiderata was in part motivated as a way to contrast the 
statistical properties of the FBST with other statistical tests of hypotheses. Surpris-
ingly, it is possible to travel this path in the opposite direction, that is, it is possible 
to start from consistent desiderata for logical properties of statistical tests and, from 
those, derive a complete characterization of a class of statistical significance meas-
ures and hypothesis tests that coherently generalizes the FBST, see [46, 47, 131] for 
further details. Moreover, this Generalized FBST finds interesting applications in 
metrology and related fields, were reliable bounds for the precision of experimental 
measurements can be obtained  from sources external to the statistical experiment 
designed to test the hypothesis under scrutiny. Finally, this kind of detailed error 
analysis for crucial scientific experiments finds valuable applications in the fields of 
metrology, epistemology, and philosophy of science, see [47] and future research.

4  A survey of FBST related literature

A systematic cataloging of all published articles related to this research program 
is beyond the scope of this article; in the next subsections we survey a selection 
of such articles. The selected articles provides a sample covering diverse areas like 
statistical theory and methods, applications to statistical modeling and operations 
research, and research in foundations of statistics, logic and epistemology. This 
selection is certainly biased, favoring the the authors’ personal taste or involvement.

4.1  Statistical theory

Several authors have developed the statistical theory that provides the mathematical 
formalism and demonstrates the outstanding statistical properties FBST and its sig-
nificance measure, the e-value. The following articles have explored and developed 
these themes of research:

• Reference [34] is the first article of this research program. It presents the basic 
definition of the e-value and the FBST, and gives several simple and intuitive 
applications. Reference [86] provides an explicitly invariant version of the infer-
ence procedures. After a long process in which the authors had to overcome 
objections raised by influential mainstream Bayesian thinkers, [37] was pub-
lished in the flagship journal of ISBA - the International Society for Bayesian 
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Analysis. Reference [30] provides an entry on the FBST in the International 
Encyclopedia of Statistical Science.

• References [6, 7, 32, 77–79] give and extensive treatment for the case of non-
nested and separate hypotheses, including a detailed analysis of some Bayesian 
classifiers.

• References [28, 44, 84, 94, 95, 113] establish several theoretical or empirical 
relations between the the e-value and alternative significance measures.

• References [19, 98, 99, 104, 105, 137–139] develop higher order asymptotic 
approximations of (log) likelihood and pseudo-likelihood functions that, in turn, 
are used do develop high-precision but fast computational algorithms for calcu-
lating e-values in parametric models. The availability of a good library of such 
fast and reliable computer programs will, in turn, we believe, facilitate the incor-
poration of the FBST in statistical softwares intended for end-users or routine 
applications.

4.2  Statistical modeling

Several authors have developed a wide range of applications of the FBST to sta-
tistical modeling and operations research. The following articles have explored and 
developed these themes of research:

• Reference [35] applies the FBST to software compliance testing and certifica-
tion.

• Reference [76] provides a unified and coherent treatment to a large class of 
structural models based on the multivariate normal distribution. Previously, sub-
classes of these models had to be handled individually using tailor-made tests. 
Reference [141] gives some simple applications.

• References [24, 42, 43, 142] develop or use unit root and cointegration testing 
for time series. The FBST is shown to be more reliable and effective than several 
previously published tests, without the need of any ad hoc artifices, like specially 
designed artificial priors (an obvious oxymoron).

• References [61, 88, 102] apply the FBST to failure analysis and systems’ reliabil-
ity.

• Reference [22] applies the FBST to detect equilibrium conditions, or the lack 
thereof, in market prices of economic commodities or financial derivative con-
tracts.

• Reference [25] applies the FBST in the context of empirical economic studies.
• Reference [54] use the FBST for selection and testing of statistical copulas.
• References [57, 135] consider applications using generalizations of the Poisson 

distribution.
• References [58–60] use the FBST for signal processing and detection of acoustic 

events.
• Reference [114] applies the FBST to model selection in statistical studies con-

ducted under informative sampling conditions.
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• References [18,  38, 62, 80, 83, 87, 91, 144] use the FBST to verify Hardy-
Weinberg equilibrium conditions, and other applications of statistical mod-
eling in the area of genetics.

• References [10, 3, 29, 75, 100, 101] use the FBST to test parametric hypoth-
eses related to generalized Brownian motions, continuous or jump diffusions, 
extremal distributions, persistent memory and other stochastic processes.

• References [4, 14, 39, 93] develop theory or applications of the FBST for sta-
tistical hypotheses related to independence in contingency tables and other 
multinomial models.

• References [20, 1, 21, 31, 36, 41, 74, 82, 107, 108, 115] apply the FBST for 
checking hypotheses in statistical models applied to biological sciences, ecol-
ogy, environmental sciences, medical diagnostics and efficacy evaluation, psy-
chology and psychiatry.

• References [23, 65] apply the FBST to test hypotheses in astronomy and astro-
physics.

4.3  Foundations of statistics, logic and epistemology

Traditional significance measures used in statistics are always designed to work 
in tandem with a specific epistemological framework that gives them an appro-
priate interpretive context and support. For example, p-values are usually pre-
sented in the context of the “judgment metaphor” and the deductive falibilism 
epistemological framework, as developed by the philosopher Karl Popper, among 
others. Meanwhile, Bayes factors are presented in the context of the “gambling 
metaphor” and utility based decision theory, as developed by Bruno de Finetti, 
see Ref. [40, 45, 66, 67]. Furthermore, the logic or algebraic properties of each 
significance measure, in its appropriate domain of statistical hypotheses, must be 
mutually supportive and compatible with intended interpretations. The following 
articles have explored and developed these themes of research:

• References [85, 112, 136] analyze the FBST from a decision-theoretic Bayes-
ian perspective. The first paper proves the “Bayesianity” of the FBST, in the 
sense its inference procedures can be derived by minimization of an appropri-
ate loss function.

• References [86, 133] compare the theoretical properties of the e-value with 
those of traditional significance measures, like the p-value and Bayes Factors. 
These articles analyze in great detail historical arguments given by celebrated 
statisticians against the use of procedures based on highest density probability 
sets. Among those that opposed such ideas is Dennis Lindley, an influential 
figure at IME-USP and a personal friend of the first author. Finally, Ref. [86, 
133] analyze historical desiderata for an acceptable Bayesian significance test 
that were formulated by the frequentist statistician Oscar Kempthorne to the 
first author, and show how the FBST successfully achieves all these desired 
characteristics.
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• Reference [16] analyzes the composition of hypotheses defined in independent 
statistical models and the corresponding composition rules for e-values and truth 
functions.

• Reference [140] studies significance measures for evidence amalgamation and 
meta-analysis.

• References [46, 47, 51, 63, 131] analyze conditions of logical consistency for 
significance measures and test procedures for several hypotheses defined in the 
same statistical model. Conversely, these articles fully characterize some (agnos-
tic or trivalent) generalizations of the FBST as the only statistical tests satisfying 
such logical consistency conditions.

• References [119–121, 123–127] develop the Objective Cognitive Constructivism 
as an epistemological framework formally compatible and semantically amena-
ble to the e-value significance measure and the FBST hypothesis test.

• Reference [27] analyzes solutions to the problem of (statistical) induction, 
including Bayesian perspectives in general and the FBST in particular.

• References [59, 97, 117, 118, 129] apply concepts related to the FBST or the 
Objective Cognitive Constructivism epistemological framework to the study of 
economic or legal systems.

• References [128, 130] analyze the philosophical premises used by Karl Pearson 
to define the p-value and to establish the epistemological foundations of frequen-
tist statistics; why Pearson’s work and the subsequent work of Bruno de Finetti 
reversed previous commitments of Bayesian statistics; and how the FBST can be 
seen a way to reenter the path envisioned by the founding fathers of the Bayes-
ian school, namely, Reverend Thomas Bayes, Richard Price and Pierre-Simon de 
Laplace.

• References [15, 50, 81, 89, 106, 121] analyze the role of randomization proce-
dures in the context of the Objective Cognitive Constructivism epistemological 
framework in particular, and in Bayesian statistics in general.

5  Future research and final remarks

The FBST research program has grown and spread far and wide, in some directions 
suggested by these authors, and also in other directions that were for us completely 
unforeseen and wonderfully surprising. We are confident that this research program 
will continue to flourish and expand, exploring new areas of theory and application. 
The authors would like to suggest a few topics (focusing on theoretical and applied 
statistics) worthy of further attention as possible entry points for those interested (be 
all welcome) in joining this research program:

(1) In the context of information based medicine, see [31], it is important to compare 
and test the sensibility and specificity of alternative diagnostic tools, access the 
bio-equivalence of drugs coming from different suppliers, identify and test the 
efficacy of possible genetic markers for clinical conditions, etc. How to combine 
fast and computationally inexpensive heuristic algorithms and reliable statistical 
test procedures to best handle these and similar problems?
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(2a) Influence diagrams are a powerful tool for decision modeling, see [9, 33]. Nev-
ertheless, it is often hard to select optimal diagrams to model complex applica-
tions, see for example [41, 111]. How can the FBST best be used for sequen-
tial or concomitant inclusion/ exclusion of links or edge selection in influence 
graphs?

(2b) The aforementioned questions also arise in the context of Bayesian networks. In 
this context, it is important not only to test the significance of individual edges, 
but also to test the integrity of higher level sparsity structures, like the network 
click structure or its block factors, see [116, 121, 132, 134].

(3) The e-value and the FBST were originally developed for parametric models. 
How can the e-value be used, interpreted, computed (and maybe generalized) 
in semi-parametric or non-parametric settings? For instance, in models using 
functional bases, how can we test speeds of convergence for series expansions?

(4a) The compositionality rules established in [16] are based on functional operations 
over the truth functions, W(v). [8, 71] present similar rules (for serial-parallel 
composition) in the context of reliability theory. Can these theories be seen as 
particular cases of more general and abstract logical formalisms?

(4b) The same compositionality rules assume independence between distinct models 
in a given structure. Could statistical copulas, see [52, 54, 68, 92], be used to 
successfully capture weak dependencies between distinct truth functions?

(5) The conditions for pragmatic acceptance of sharp hypotheses stated in [47] 
depend on consensual bounds for background uncertainties. For universal 
physical constants, metrologists establish such bounds by aggregating results of 
diverse experiments; similar situations occur in meta-analysis studies. Several 
statistical methods have been proposed to aggregate such diverse data-sets, see 
[26, 53, 72, 73, 90]. What are the best ways to coherently establish and represent 
aggregate uncertainty bounds in the FBST framework?
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